JPH0230588A - Stabilization of recording and erasing states - Google Patents
Stabilization of recording and erasing statesInfo
- Publication number
- JPH0230588A JPH0230588A JP63179263A JP17926388A JPH0230588A JP H0230588 A JPH0230588 A JP H0230588A JP 63179263 A JP63179263 A JP 63179263A JP 17926388 A JP17926388 A JP 17926388A JP H0230588 A JPH0230588 A JP H0230588A
- Authority
- JP
- Japan
- Prior art keywords
- light
- recording
- erasing
- recording layer
- fading
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000006641 stabilisation Effects 0.000 title 1
- 238000011105 stabilization Methods 0.000 title 1
- 230000003287 optical effect Effects 0.000 claims abstract description 57
- 238000000034 method Methods 0.000 claims abstract description 29
- 238000005562 fading Methods 0.000 claims abstract description 17
- 239000005264 High molar mass liquid crystal Substances 0.000 claims abstract description 15
- 239000000463 material Substances 0.000 claims description 23
- 230000008859 change Effects 0.000 claims description 22
- 238000000149 argon plasma sintering Methods 0.000 claims description 15
- 229920000642 polymer Polymers 0.000 claims description 13
- 238000002834 transmittance Methods 0.000 claims description 11
- 238000010521 absorption reaction Methods 0.000 claims description 8
- 238000004061 bleaching Methods 0.000 claims description 5
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 230000002441 reversible effect Effects 0.000 claims description 3
- 239000002861 polymer material Substances 0.000 claims description 2
- 239000000758 substrate Substances 0.000 abstract description 6
- 239000000049 pigment Substances 0.000 abstract description 4
- 230000007423 decrease Effects 0.000 abstract description 3
- 239000011521 glass Substances 0.000 abstract description 3
- 239000006185 dispersion Substances 0.000 abstract 1
- 230000003252 repetitive effect Effects 0.000 abstract 1
- 230000001850 reproductive effect Effects 0.000 abstract 1
- 239000000975 dye Substances 0.000 description 29
- 239000004973 liquid crystal related substance Substances 0.000 description 15
- 239000012071 phase Substances 0.000 description 12
- 238000010438 heat treatment Methods 0.000 description 10
- 239000004065 semiconductor Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000010408 film Substances 0.000 description 5
- 239000000203 mixture Substances 0.000 description 5
- 238000001816 cooling Methods 0.000 description 4
- 239000004974 Thermotropic liquid crystal Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 230000031700 light absorption Effects 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 238000005191 phase separation Methods 0.000 description 3
- 238000004132 cross linking Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- QGKMIGUHVLGJBR-UHFFFAOYSA-M (4z)-1-(3-methylbutyl)-4-[[1-(3-methylbutyl)quinolin-1-ium-4-yl]methylidene]quinoline;iodide Chemical compound [I-].C12=CC=CC=C2N(CCC(C)C)C=CC1=CC1=CC=[N+](CCC(C)C)C2=CC=CC=C12 QGKMIGUHVLGJBR-UHFFFAOYSA-M 0.000 description 1
- SCYULBFZEHDVBN-UHFFFAOYSA-N 1,1-Dichloroethane Chemical compound CC(Cl)Cl SCYULBFZEHDVBN-UHFFFAOYSA-N 0.000 description 1
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 239000004990 Smectic liquid crystal Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 229920006125 amorphous polymer Polymers 0.000 description 1
- -1 and nematic Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000007844 bleaching agent Substances 0.000 description 1
- 230000003098 cholesteric effect Effects 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000002667 nucleating agent Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000001782 photodegradation Methods 0.000 description 1
- 238000006303 photolysis reaction Methods 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229920000131 polyvinylidene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- 238000010583 slow cooling Methods 0.000 description 1
- 229920000638 styrene acrylonitrile Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/244—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
- G11B7/245—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/244—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
- G11B7/25—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing liquid crystals
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/252—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers
- G11B7/258—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers
- G11B7/2585—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of layers other than recording layers of reflective layers based on aluminium
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Transfer Or Thermal Recording In General (AREA)
- Optical Recording Or Reproduction (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、書き換え型光記録媒体の特定領域の記録情報
の固定化方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for fixing recorded information in a specific area of a rewritable optical recording medium.
[従来の技術]
従来、書き換え型光記録媒体は、TeOx等の相変化、
光磁気など、無機材料を記録層とした光記録媒体やフォ
トクロミック材料、液晶、相分離ポリマーなどの有機材
料を記録層とした光記録媒体が知られている。[Prior Art] Conventionally, rewritable optical recording media use phase change technology such as TeOx,
Optical recording media with a recording layer made of an inorganic material such as magneto-optical material, and optical recording media with a recording layer made of an organic material such as a photochromic material, liquid crystal, or phase-separated polymer are known.
これらの書き換え型光記録媒体は記録の消去か可能であ
る反面、誤記録、誤消去の可能性も残されているため、
記録情報の保護という点ては問題があった。Although it is possible to erase records on these rewritable optical recording media, there is still the possibility of erroneous recording or erasure.
There were problems with the protection of recorded information.
また、記録情報か、例えば記録層上の数個のビット列で
ある際には、記録することにより得られた(以下「記録
状態」と記す)ビット、及び記録されないまま又は消去
された(以下「消去状態」と記す)ビットの両方の状態
に対して保護が必要となってきている。In addition, when the recorded information is, for example, several bit strings on a recording layer, bits obtained by recording (hereinafter referred to as "recorded state") and bits that remain unrecorded or are erased (hereinafter referred to as "recorded state") are included. Protection is becoming necessary for both states of the bit (referred to as the "erased state").
そこて、特にTeOxや液晶などを用いた記録層の光の
透過率や反射率を可逆的に変化させることによって情報
の記録と消去を行うような書き換え型光記録媒体におい
て、記録、再生あるは消去手段によって記録層の光学特
性が変化しないような記録領域を形成する方法か提案さ
れている。Therefore, recording, reproduction, or A method has been proposed for forming a recording area in which the optical characteristics of the recording layer are not changed by the erasing means.
この方法としては、例えば、
■記録層上にビットあるいはホールなどの形状変化を与
える方法、
■記録層が有機材料を含有している際、記録層を重合あ
るいは架橋し、構造固定する方法、等がある。Examples of this method include: (1) providing a change in the shape of bits or holes on the recording layer; (2) when the recording layer contains an organic material, polymerizing or crosslinking the recording layer to fix its structure, etc. There is.
[発明が解決しようとする課題]
しかしながら、上記の従来の記録情報の固定化方法には
、以下のような欠点かあった。[Problems to be Solved by the Invention] However, the above-described conventional method for fixing recorded information has the following drawbacks.
ます、■のような記録層の形状変化を用いた固定化方法
ては、記録情報の検出に記録層の光透過率あるいは光反
射率を使用しているために、記録状態あるいは非記録状
態のどちらか一方の状態のみしか固定化てきないという
欠点かあった。In the immobilization method using the shape change of the recording layer as in (2), the optical transmittance or optical reflectance of the recording layer is used to detect the recorded information, so it is difficult to detect whether the recorded or non-recorded state is The drawback was that only one state could be fixed.
また■のような記録層の特定領域を重合あるいは架橋す
る固定化方法ては、記録層中にこのような化学反応を起
こさせるための化合物を新たに添加しなければならず、
このような添加物が光記録媒体の繰り返し耐久性、ある
いは記録、消去特性の悪化の原因になる。Furthermore, in the immobilization method of polymerizing or crosslinking a specific region of the recording layer as in (2), it is necessary to newly add a compound to cause such a chemical reaction in the recording layer.
Such additives cause deterioration of the repeated durability or recording and erasing characteristics of the optical recording medium.
本発明は、この様な従来技術の欠点を改善するためにな
されたものてあり、光の透過率あるいは光の反射率が可
逆的に変化する材料と光吸収色素とを含有する記録層を
有する光記録媒体において、記録及び消去の繰り返し耐
久性か優れる上に、光吸収色素を選択的、局所的に退色
させることにより記録情報の誤記録、誤消去を防止する
ことかできる記録及び消去状態の固定化方法を提供する
ことを目的とするものである。The present invention has been made in order to improve the drawbacks of the prior art, and has a recording layer containing a material whose light transmittance or light reflectance changes reversibly and a light-absorbing dye. In optical recording media, it is possible to improve the recording and erasing conditions by selectively and locally fading the light-absorbing pigment, and preventing erroneous recording and erasing of recorded information, in addition to having excellent durability for repeated recording and erasing. The purpose of this invention is to provide an immobilization method.
[課題を解決するための手段]
即ち、本発明は、光透過率又は光反射率が可逆的に変化
し、その光学特性の保持が可能である材料と光吸収色素
とを含有する記録層を有する書き換え型光記録媒体上の
記録及び消去状態を固定化する方法において、光吸収色
素を退色させることにより記録層の光学特性を固定化す
ることを特徴とする記録及び消去状態の固定化方法であ
る。[Means for Solving the Problems] That is, the present invention provides a recording layer containing a material whose light transmittance or light reflectance can be changed reversibly and whose optical properties can be maintained, and a light-absorbing dye. A method for fixing recording and erasing states on a rewritable optical recording medium comprising: fixing optical properties of a recording layer by fading a light-absorbing dye; be.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明において、光の透過率あるいは光の反射率が可逆
的に変化し、その光学特性の保持か可能な材料(以下、
記録材料と記す)には、TeOx等の結晶−非晶質の相
変化をする無機材料や液晶、相分離ポリマー等が挙げら
れる。In the present invention, a material (hereinafter referred to as
Examples of the recording material include inorganic materials that undergo a crystal-amorphous phase change such as TeOx, liquid crystals, phase-separated polymers, and the like.
これらの記録材料のうち、本発明では、高分子液晶や相
分離ポリマーなどの高分子材料を用いることが好ましい
。Among these recording materials, in the present invention, it is preferable to use polymeric materials such as polymeric liquid crystals and phase-separated polymers.
高分子材料は、TeOx系等の相変化する無機材料、低
分子液晶等の有機化合物に比べ、記録層の膜を容易に作
ることが可能で、しかも酸化、光劣化等に対する安定性
に優れるため、環境安定性や記録再生に対する耐久に優
れた光記録媒体を安価に作ることができる。また、高分
子材料は光吸収色素等の添加剤との相溶性が良好て、高
分子材料同志のブレンドなども可能で多種多様の光記録
媒体を作ることができる。Compared to phase-changing inorganic materials such as TeOx-based materials and organic compounds such as low-molecular liquid crystals, polymeric materials can be used to form the recording layer more easily, and are more stable against oxidation, photodegradation, etc. , optical recording media with excellent environmental stability and durability for recording and reproduction can be produced at low cost. In addition, polymeric materials have good compatibility with additives such as light-absorbing dyes, and blending of polymeric materials with one another is possible, allowing the creation of a wide variety of optical recording media.
相分離ポリマーや高分子液晶は、加熱後の急冷や徐冷の
差によって、あるいは加熱後に電界や磁界を印加するか
しないかの差により、光反射率や光透過率を可逆的に変
化させることかてき、しかもそれが一定温度下て保持て
きるという特性があるため、書き換え型光記録媒体の記
録層として用いることかてきる。Phase-separated polymers and polymeric liquid crystals can reversibly change their light reflectance and light transmittance depending on whether they are rapidly cooled or slowly cooled after heating, or whether or not an electric field or magnetic field is applied after heating. Moreover, since it has the property of being maintained at a constant temperature, it can be used as a recording layer of a rewritable optical recording medium.
相分離ポリマーとしては、例えば2種類以上の無定形ポ
リマーを混合した系か挙げられ、これらは温度によって
相溶状態と相分離状態とに変化をする。相分離状態ては
、ある特定のポリマー組成物を有する微小領域に系か分
離し、それぞれの組成の光の屈折率か異なれば微小領域
の界面て光か強く散乱される。従って、相分離状態は光
散乱状態である。一方、相溶状態では、このような界面
か存在しないため光は散乱されない。この相分離状態と
相溶状態は、それぞれの光散乱特性に応し、例えば、光
反射率や光透過率を検出することて識別てきる。Examples of phase-separated polymers include systems in which two or more types of amorphous polymers are mixed, and these change into a compatible state and a phase-separated state depending on the temperature. In a phase-separated state, a system is separated into micro regions having a specific polymer composition, and if the refractive index of light of each composition is different, the light will be strongly scattered at the interface of the micro regions. Therefore, the phase separation state is a light scattering state. On the other hand, in a compatible state, no such interface exists and light is not scattered. The phase-separated state and the compatible state can be distinguished, for example, by detecting light reflectance or light transmittance, depending on their respective light scattering characteristics.
また、温度による相溶−相分離の変化パターンによって
、これらの相分離ポリマーにはL CS T(Lowe
r Cr1tical 5olution Tempe
rature)型とUC3T(lJpper Cr1t
ical 5olution Temperature
)型に区別され、前者は高温側て相分離状態を示し、低
温側ては相溶状態を示し、後者はその逆である。IJ
CS T型には、例えばポリスチレン−ポリイソラテン
系、ポリスチレン−ポリフタジエン系、ポリプロピレン
オキシドーポリフタシエン系等か挙げられ、L CS
T型には、ポリ塩化ビニル−ポリメタクリル酸−〇−ヘ
キシル系、スチレンアクリロニトリル共重合体−ポリメ
タクリル酸メチル系、ポリフッ化ビニリデン−ポリアク
リル酎メチル系などが挙げられるが、これらに限定され
るものではない。In addition, due to the change pattern of compatibility-phase separation due to temperature, these phase-separated polymers have L CST (Lowe
r Cr1tical 5solution Tempe
rate) type and UC3T (lJpper Cr1t
ical 5solution Temperature
) The former shows a phase-separated state on the high temperature side and a compatible state on the low temperature side, and the latter shows the opposite. I.J.
The CS T type includes, for example, polystyrene-polyisolatene type, polystyrene-polyphtadiene type, polypropylene oxide polyphtadiene type, etc.;
Type T includes, but is not limited to, polyvinyl chloride-polymethacrylate-〇-hexyl system, styrene acrylonitrile copolymer-polymethyl methacrylate system, polyvinylidene fluoride-polyacrylic methyl methacrylate system, etc. It's not a thing.
また、これらの相分離ポリマーは加熱後徐冷することに
より、高温側での相溶あるいは相分離の状態を低温側の
状態に変化てきる上に、加熱後急冷することにより、高
温側での状態を冷却後も保持てきるという特徴かあるた
め、書き換え型を含め光記録媒体に応用できる。In addition, by slowly cooling these phase-separated polymers after heating, the state of compatibility or phase separation on the high temperature side changes to the state on the low temperature side. Because it has the characteristic of retaining its state even after cooling, it can be applied to optical recording media, including rewritable media.
一方、高分子液晶は、サーモトロピック液晶であり、中
間相としてネマチック、スメクチック、コレステリック
のタイプか使用てきる。高分子サーモトロピック液晶は
、薄膜状態か得られるのみならず、低分子液晶に比べ記
録状態の保持が容易であるという利点を有する。On the other hand, polymer liquid crystals are thermotropic liquid crystals, and nematic, smectic, or cholesteric types can be used as the intermediate phase. Polymer thermotropic liquid crystals have the advantage of not only being able to form a thin film but also being easier to maintain a recording state than low molecular weight liquid crystals.
例えば、本発明において利用できる高分子サーモトロピ
ック液晶(以下、単に高分子液晶と記す)は、次の2つ
に分類される。For example, polymer thermotropic liquid crystals (hereinafter simply referred to as polymer liquid crystals) that can be used in the present invention are classified into the following two types.
■メソーゲン基、あるいは比較的剛直て長い原子団か屈
曲性類て結ばれたもの。■Mesogen groups, or relatively rigid and long atomic groups, or those connected by flexible structures.
■側鎖にメソーゲン基、あるいは比較的剛直て長い原子
団を有するもの。■Having a mesogen group or a relatively rigid and long atomic group in the side chain.
これらの高分子液晶は異なる数種の高分子液晶と混合し
て用いることか可能である。また高分子液晶と低分子液
晶との混合物、高分子液晶と高分子との混合物として用
いることも可能である。These polymer liquid crystals can be used in combination with several different types of polymer liquid crystals. It is also possible to use a mixture of a polymer liquid crystal and a low molecular liquid crystal, or a mixture of a polymer liquid crystal and a polymer.
以下に高分子液晶の具体例を示すかこれらに限定される
ものてはない。Specific examples of polymer liquid crystals are shown below, but the invention is not limited to these.
Me
R: 0CR3゜
R: 0(:3)1゜
R: CN
これらの高分子液晶はガラス転移点以下の温度てその構
造状態を保持てきる特徴があるため、例えば、次のよう
な記録モードか可能である。Me R: 0CR3゜R: 0(:3)1゜R: CN Since these polymer liquid crystals have the characteristic of maintaining their structural state at temperatures below the glass transition point, for example, the following recording modes can be used. It is possible.
l13
か多数のドメイン(分域)から成るポリドメイン状態に
保持しておく。次に、等吉相を示す温度以上に高分子液
晶を加熱後、ガラス転移点以下に急冷し高分子液晶を等
吉相の状態に保持することにより、記録が行われる。l13 is maintained in a polydomain state consisting of a large number of domains (domains). Next, recording is performed by heating the polymeric liquid crystal to a temperature higher than the temperature at which it exhibits the isokitic phase, and then rapidly cooling it to below the glass transition point to maintain the polymeric liquid crystal in the isokitic phase state.
(2)の記録モードは、まず高分子液晶を電界等を用い
液晶相か単一のドメインから成るモノドメイン状態に保
持しておく。次に、ガラス転移点以上に高分子液晶を加
熱後冷却することにより、液晶相をポリドメイン状態に
保持することで記録が行われる。In the recording mode (2), the polymer liquid crystal is first maintained in a liquid crystal phase or a monodomain state consisting of a single domain using an electric field or the like. Next, recording is performed by heating the polymeric liquid crystal above its glass transition point and then cooling it to maintain the liquid crystal phase in a polydomain state.
これら(1)、(2)のいずれの記録モードでも、記録
状態を加熱後の徐冷か加熱と電界印加の組合せにより、
初期の状態に戻すことか可能であるため、書き換え可能
な光記録媒体として用いることができる。従って、先非
散乱−光散乱の各状態を逆転させて記録モードとするこ
とも可能になる。In both of these recording modes (1) and (2), the recording state can be changed by slow cooling after heating or by a combination of heating and electric field application.
Since it is possible to return to the initial state, it can be used as a rewritable optical recording medium. Therefore, it is also possible to reverse each state of first non-scattering and light scattering to set the recording mode.
本発明においては、記録材料中に酸化防止剤や造核剤等
の添加剤を添加して用いてもよい。In the present invention, additives such as antioxidants and nucleating agents may be added to the recording material.
本発明において記録層中には光吸収色素が添加されてい
る。光吸収色素は記録光及び消去光を吸収して、記録層
中の記録材料の光透過率又は光反射率を変化させる。こ
れは、光吸収色素か吸収した光エネルギーを熱に転換し
、その結果記録層が局所的に加熱されるために起こる場
合が最も多く、この加熱による手法が、材料安定性ある
いは素子、装置構成の簡素化のためには好ましい手法で
ある。In the present invention, a light-absorbing dye is added to the recording layer. The light-absorbing dye absorbs recording light and erasing light to change the light transmittance or light reflectance of the recording material in the recording layer. This most often occurs because the optical energy absorbed by the light-absorbing dye is converted into heat, resulting in local heating of the recording layer. This is the preferred method for simplifying the process.
また、光吸収色素にある特定の光、特に量子エネルギー
の高い、すなわち紫外光などの波長の短い光を照射する
と、光分解反応によって分解され退色することがある。Furthermore, when a light-absorbing dye is irradiated with a certain type of light, particularly light with a high quantum energy, that is, with a short wavelength such as ultraviolet light, it may be decomposed and discolored by a photodecomposition reaction.
この際、吸収された光の一部は、前記と同様に記録層を
加熱するが照射光量を調整し、記録層の放熱とバランス
をとることにより、記録層を実質的に加熱することなく
、光吸収色素の退色を行うことが可能である。従って、
記録層中の記録材料の光学特性を変えることなく、光吸
収色素を退色させることが可能である。At this time, part of the absorbed light heats the recording layer in the same way as above, but by adjusting the amount of irradiation light and keeping a balance with the heat dissipation of the recording layer, it is possible to heat the recording layer without substantially heating it. It is possible to perform bleaching of light-absorbing dyes. Therefore,
It is possible to bleach the light-absorbing dye without changing the optical properties of the recording material in the recording layer.
また、光吸収色素の退色の他の手法としては、例えば、
オンジ等による化学的な作用を利用することか可能であ
る。In addition, other methods for fading light-absorbing dyes include, for example,
It is possible to use the chemical action of onge etc.
本発明において、記録光、再生光および消去光としては
、そのコヒーレント性、単色性、直進性等を考えると、
レーザー光か好ましい。In the present invention, the recording light, the reproduction light, and the erasing light are as follows, considering their coherent property, monochromaticity, linearity, etc.
Laser light is preferred.
さらに、光源のコンパクト性、経済性などから半導体レ
ーサーか好ましい。半導体レーザーの発振波長は、赤〜
近赤外域てあり、例えば、近赤外波長域に吸収を有する
光吸収色素には、以下のものか挙げられる。Furthermore, a semiconductor laser is preferable from the viewpoint of compactness and economic efficiency of the light source. The oscillation wavelength of semiconductor lasers is from red to
Examples of light-absorbing dyes that have absorption in the near-infrared wavelength range include the following.
\
/
+・
へ
\
/
(注)但し、nは正の整数、またRは芳香族シアミン残
基、Aは芳香族テトラカルボン酸残基を表わし、aおよ
びbはそれぞれ独立に0または1〜50の整数で、かつ
a+bは1〜100の整数である。\ / +・ \ / (Note) However, n is a positive integer, R is an aromatic cyamine residue, A is an aromatic tetracarboxylic acid residue, and a and b are each independently 0 or 1 to is an integer of 50, and a+b is an integer of 1 to 100.
なお、He−Neレーザー光、Arイオンレーザ−光等
を用いれば、それぞれの波長に吸収を有する光吸収色素
を用いることがてきる。特に、高分子液晶中に添加する
場合は相溶性の点て二色性色素を用いるのか好ましい。Note that if He--Ne laser light, Ar ion laser light, etc. are used, light-absorbing dyes having absorption at the respective wavelengths can be used. In particular, when adding it to a polymeric liquid crystal, it is preferable to use a dichroic dye from the viewpoint of compatibility.
たたし、本発明では、光吸収色素の退色性を考慮すると
D−4のようなシアニン系色素が好ましい。However, in the present invention, a cyanine dye such as D-4 is preferable in consideration of the fading property of the light absorption dye.
一方、本発明において、これらの光吸収色素を退色させ
る方法としては、記録光あるいは消去光よりも短波長で
ある、すなわち量子エネルギーの高い光を照射する方法
か挙げられ、主に紫外光照射によって行われる。紫外光
は、記録や消去光等と同様にレーザー光であることか好
ましく、紫外領域に発振波長を有するレーザー光ても良
いし、ロ
ア
非線形光学素子によって長波長域に発振波長を有するレ
ーザー光を高次高調波に変換して得られる光ても良い。On the other hand, in the present invention, methods for fading these light-absorbing dyes include irradiating them with light that has a shorter wavelength than recording light or erasing light, that is, has a higher quantum energy, and is mainly irradiated with ultraviolet light. It will be done. It is preferable that the ultraviolet light is a laser beam, similar to recording and erasing light, etc., and it may be a laser beam with an oscillation wavelength in the ultraviolet region, or a laser beam with an oscillation wavelength in a long wavelength region can be emitted by a lower nonlinear optical element. Light obtained by converting into higher harmonics may also be used.
ここて、光吸収色素を退色させるために照射される光は
、光照射によって、記録材料の光学特性が変化しないよ
うに、その強度や繰り返し照射周期等の適正化か必要と
なる。Here, it is necessary to optimize the intensity and repeated irradiation period of the light irradiated to discolor the light-absorbing dye so that the optical properties of the recording material do not change due to the light irradiation.
記録情報の再生のためには、記録材料の光学特性が変化
しないように微弱な光を照射し、記録層の光透過率ある
いは光反射率を検出することによって行われる。再生光
もやはりレーザー光であることか好ましい。再生光波長
か記録光あるいは消去光と同し波長である場合には、光
退色した領域の記録層ては、光吸収強度が減少するので
、検出される光量も変化する。従って、記録状態および
消去状態と検出する光量レベルを光退色前後で変化しな
いように設定する必要かある
再生光に記録光あるいは消去光と異なる波長の光を用い
る際には、再生光波長での光吸収色素の吸収強度か、記
録光あるいは消去光波長での吸収強度より小さい方か好
ましく、再生光波長での吸収がほとんどないことかさら
に好ましい。このような場合は、退色によって再生光の
検出光量レベルは影響されにくい。In order to reproduce recorded information, weak light is irradiated so as not to change the optical properties of the recording material, and the light transmittance or light reflectance of the recording layer is detected. Preferably, the reproduction light is also a laser light. If the wavelength of the reproducing light is the same as that of the recording light or erasing light, the light absorption intensity of the recording layer in the photobleached area decreases, and the amount of detected light also changes. Therefore, it is necessary to set the recording state and erasing state and the detected light level so that they do not change before and after photobleaching.When using light of a wavelength different from the recording light or erasing light as the reproduction light, it is necessary to It is preferable that the absorption intensity is smaller than the absorption intensity of the light-absorbing dye or the absorption intensity at the recording light or erasing light wavelength, and it is more preferable that there is almost no absorption at the reproduction light wavelength. In such a case, the detected light amount level of the reproduction light is not easily affected by the fading.
また、散乱強度の差を再生光て検出する場合は、記録光
あるいは消去光より短波長側の光を再生光として用いる
ことがコントラスト向上のためには好ましい。Further, when detecting the difference in scattering intensity using reproduction light, it is preferable to use light with a shorter wavelength than the recording light or erasing light as the reproduction light in order to improve contrast.
また、本発明ては、光吸収性色素の退色によって各ビッ
トの記録状態及び消去状態のいずれの状態の固定化も可
能であるため、情報の記録領域(数ビットの記録状態と
消去状態の組合せから成っていてもよい)の固定化のみ
ならず、情報が記録されていない、あるいは消去された
領域の固定化も行なうことかてきる。これらの固定化は
、記録層上の特定領域あるいは全領域について行なうこ
とかできる。In addition, in the present invention, it is possible to fix each bit in either the recorded state or the erased state by fading the light-absorbing dye. It is possible to perform not only fixation of areas (which may consist of . These fixings can be performed on a specific area or the entire area on the recording layer.
次に、本発明の記録再生方法の一例を示す。Next, an example of the recording/reproducing method of the present invention will be described.
光記録媒体の素子構成を第1図に示す。第1図において
、lは基板、2は高分子材料と光吸収色素を含有する記
録層である。FIG. 1 shows the element configuration of the optical recording medium. In FIG. 1, 1 is a substrate, and 2 is a recording layer containing a polymeric material and a light-absorbing dye.
光散乱状態が可逆的に変化し、かつその状態が保持でき
る高分子材料と光色吸収性色素を含有する高分子組成物
を基板上に塗工する。次に、記録層全面を加熱後徐冷し
て光散乱状態で固定する。A polymer composition containing a polymer material whose light scattering state can be reversibly changed and which can maintain that state and a light color absorbing dye is coated on a substrate. Next, the entire surface of the recording layer is heated and then slowly cooled to fix it in a light scattering state.
このようにして得られた光記録媒体を第2図に示す構成
の装置て記録、再生、消去を行う。The optical recording medium thus obtained is recorded, reproduced, and erased using an apparatus having the configuration shown in FIG.
第2図において、3は光記録媒体、4はレーザー光源、
5,5aはレンズ、15はハーフミラ6は再生光検出装
置である。In FIG. 2, 3 is an optical recording medium, 4 is a laser light source,
5 and 5a are lenses, and 15 is a half mirror 6 which is a reproduction light detection device.
レーザー光源4からの記録用レーザーパルス光を光記録
媒体3に照射し、記録層を加熱後急冷することにより光
散乱強度を減少させる。次に、レーザー光源4からのレ
ーザー光の出力を低くして光記録媒体3に照射し、記録
層の光散乱強度の差を透過光量で検出することにより記
録の再生を行う。The optical recording medium 3 is irradiated with recording laser pulse light from the laser light source 4, and the recording layer is heated and then rapidly cooled to reduce the light scattering intensity. Next, the laser light from the laser light source 4 is lowered in output and irradiated onto the optical recording medium 3, and the recording is reproduced by detecting the difference in the light scattering intensity of the recording layer based on the amount of transmitted light.
また、レーザー光源4からのレーザー光のスポット径を
大きくして、光記録媒体に照射することて記録層を加熱
後徐冷し、再度、光散乱強度な増大されることて記録の
消去を行う。In addition, the spot diameter of the laser beam from the laser light source 4 is increased and the laser beam is irradiated onto the optical recording medium to heat the recording layer and then slowly cool it, and the light scattering intensity is increased again to erase the recording. .
次に、この消去した領域以外の記録層上の特定領域にレ
ーザー光源4aからの紫外光を照射することにより、光
吸収色素を退色させる。Next, a specific area on the recording layer other than the erased area is irradiated with ultraviolet light from the laser light source 4a to fade the light-absorbing dye.
光退色された領域で同様に再生を行ったところ、光退色
前後で再生情報に変化はなく、また記録光あるいは消去
光を照射しても、この領域の光学特性は変化せず、情報
の固定化を行うことがてきる。When similar reproduction was performed on the photobleached area, there was no change in the reproduced information before and after photobleaching, and even when irradiated with recording light or erasing light, the optical characteristics of this area did not change, indicating that the information was fixed. It is possible to perform conversion.
[実施例]
実施例1
第3図に示す構成の光記録媒体(以下、光カードと記す
)を作製した。[Examples] Example 1 An optical recording medium (hereinafter referred to as an optical card) having the configuration shown in FIG. 3 was produced.
まず、つオレットサイズてブレクル−ツを有する1mm
厚のガラス基板9上にAI1反射膜8を設け、その上に
下記の構造式(I)で表わされる高分子液晶100重量
部と、
(I)
下記の構造式(11)て表わされる光吸収性色素1重量
部
C211510C2H5
(II )
とをジクロロエタン500重量部に溶解させた溶液をス
ピンコ−1へ法によって塗工した。1】0°Cて加熱乾
燥し、そのまま室温まて徐冷することにより、記録層2
中の高分子液晶をネマチック相のポリドメイン状態(光
散乱状態)で保持した。First of all, the size is 1mm with bleed roots.
An AI1 reflective film 8 is provided on a thick glass substrate 9, and 100 parts by weight of a polymer liquid crystal represented by the following structural formula (I) is placed thereon, and (I) a light absorbing film represented by the following structural formula (11) A solution prepared by dissolving 1 part by weight of the coloring matter C211510C2H5 (II) in 500 parts by weight of dichloroethane was applied onto Spinco-1 by a method. 1) The recording layer 2 is dried by heating at 0°C and then slowly cooled to room temperature.
The polymer liquid crystal inside was maintained in a nematic phase polydomain state (light scattering state).
以」二のようにして得られた光カートの構成図を第3図
に示す。FIG. 3 shows a configuration diagram of the optical cart obtained as described above.
次に、この光カートの記録、再生、消去並びに固定され
た記録領域の形成を第4図に示す装置て行った。Next, recording, reproducing, erasing, and forming a fixed recording area on this optical cart were carried out using the apparatus shown in FIG. 4.
レーサー光源には入max 83[1nmの半導体レー
ザー10を用いる。半導体レーザー1oからのレーザー
光は174波長板13を通り、レンズ5によって集光さ
れ、適当なスポット径て光カートの記録層に照射される
。A semiconductor laser 10 with a maximum input of 83 [1 nm] is used as a laser light source. Laser light from the semiconductor laser 1o passes through a 174-wavelength plate 13, is focused by a lens 5, and is irradiated onto the recording layer of the optical cart with an appropriate spot diameter.
A2反射膜からの反射光は、再度レンズ5及び174波
長板13を通過し、偏光ビームスプリッタ−]]で入射
光と分離され、フォトタイオート12て検出される。The reflected light from the A2 reflective film passes through the lens 5 and the 174-wave plate 13 again, is separated from the incident light by the polarizing beam splitter, and is detected by the photodiode 12.
光カートに書き換え可能な記録を形成するためには、半
導体レーザー光の出力を8mWとして、記録層上に約1
wl11のスポット径で照射した。この時、記録層中の
高分子液晶は等吉相を示す温度域まて加熱された後急冷
されるため、等吉相状態て保持され光の散乱強度が減少
し、記録を行うことかてきた。In order to form a rewritable record on the optical cart, the output of the semiconductor laser light is 8 mW, and about 1
Irradiation was performed with a spot diameter of wl11. At this time, the polymeric liquid crystal in the recording layer is heated to a temperature range in which it exhibits the iso-kissed phase and then rapidly cooled, so that it is maintained in the iso-kissed phase state and the scattering intensity of light decreases, making it possible to perform recording.
光カート上の記録の再生は、半導体レーザーの出力を0
.2 mWにして照射を行ない、記録層の光散乱強度に
対応したAI!反射膜からの反射光強度をフォトタイオ
ート]2て検出して行い、再生コントラスト比は1.2
てあった。To play back the recording on the optical cart, the output of the semiconductor laser is reduced to 0.
.. Irradiation was performed at 2 mW, and the AI! This was done by detecting the intensity of reflected light from the reflective film using a photo-taper.The reproduction contrast ratio was 1.2.
There was.
■o :非記録部(光散乱強度大)の反射光強度I :
記録部(光散乱強度小)の反射光強度である。■o: Reflected light intensity I of non-recorded area (high light scattering intensity):
This is the reflected light intensity of the recording section (low light scattering intensity).
このようにして得られた光カート上の記録は以下の方法
て消去することかできる。The records thus obtained on the optical cart can be erased using the following method.
半導体レーザー光の出力を1.5mWとして記録層上に
約1.3 pmのスポット径て記録部に照射した。The output of semiconductor laser light was 1.5 mW, and the recording layer was irradiated with a spot diameter of about 1.3 pm onto the recording section.
この時、記録部の高分子液晶は等吉相を示す温度域まて
加熱された後徐冷されるため、ネマチック相のポリドメ
イン状態て保持され、光散乱強度か増大し、消去を行う
ことかできた。At this time, the polymeric liquid crystal in the recording area is heated to a temperature range that exhibits an isotonic phase and then slowly cooled, so it is maintained in a nematic phase polydomain state, and the light scattering intensity increases, causing erasure. did it.
次に、この消去された領域を除いた光カートの記録層上
の特定領域の光吸収色素を以下の手法て退色させ、記録
情報の固定化を行った。Next, the light-absorbing dye in a specific area on the recording layer of the optical cart excluding the erased area was bleached using the following method to fix the recorded information.
He −Cdレーザー16によって入max 325n
m 、出力0.1mWの紫外レーザー光を記録層の特定
領域に、スポット径約IILIlで10回繰り返し照射
を行い、この領域の光吸収色素を退色させた。この時、
記録層は、実質的に加熱されず記録材料の光散乱強度は
変化しなかった。退色後、この領域の光吸収強度の減少
て光反射率は増加したか、第7図に示すように、記録状
態と消去状態を識別するフォトタイオートのレベルを起
えて変化することはないため、情報の再生を行うことか
てきた。再生コントラスト比は、0.9てあった。Input by He-Cd laser 16 max 325n
A specific region of the recording layer was repeatedly irradiated 10 times with ultraviolet laser light having a power of 0.1 m and an output of 0.1 mW, and the light-absorbing dye in this region was bleached. At this time,
The recording layer was not substantially heated and the light scattering intensity of the recording material remained unchanged. After fading, the light absorption intensity in this area decreased and the light reflectance increased, or as shown in Figure 7, the level of the phototiode that distinguishes between the recorded state and the erased state does not change. , it has been possible to reproduce information. The reproduction contrast ratio was 0.9.
また、光退色を行った領域に対し、前述の記録光あるい
は消去光を照射しても、記録層中の高分子液晶の光散乱
強度は変化せず、記録あるいは消去することかできなか
った。Further, even when the above-mentioned recording light or erasing light was irradiated onto the photobleached area, the light scattering intensity of the polymer liquid crystal in the recording layer did not change, and recording or erasing could not be performed.
さらに、固定化されていない記録層領域ては、103回
繰り返し記録、消去を行ってもその再生コントラスト比
に変化はなかった。Furthermore, in the unfixed recording layer area, there was no change in the reproduction contrast ratio even after repeated recording and erasing 103 times.
実施例2
実施例1と同様な構成の光カートを用い、第4図の装置
に再生用のHe−Neレーザー17を新たに加えた装置
(第5図)によって、記録、再生、消去および記録情報
の固定化を行った。Example 2 Using an optical cart having the same configuration as in Example 1, recording, reproducing, erasing, and recording were performed using a device (FIG. 5) in which a He-Ne laser 17 for reproduction was added to the device shown in FIG. Information was fixed.
再生コントラスト比は光退色前後てほとんど差かなく、
1.1であり、光退色によって固定化された領域に記録
および消去手法を行ってもその光学特性は変化しなかっ
た。また、固定化されていない記録層領域ては、103
回繰り返し記録、消去を行ってもその再生コントラスト
比に変化はなかった。There is almost no difference in the reproduction contrast ratio before and after photobleaching.
1.1, and even if recording and erasing techniques were performed on the area fixed by photobleaching, its optical properties did not change. In addition, the unfixed recording layer area is 103
Even after repeated recording and erasing, there was no change in the reproduction contrast ratio.
実施例3
実施例1と同様な構成の光カードを用い、また第6図に
示すように、 YAGレーザ−18(入wax1064
n■)の基本波をKDPから成る非線形光学素子19に
よりて第3高調波(入量aX〜355n票、出力0.2
mW )に変換し、得られた第3高調波を実施例1と同
様に光カート上に照射することによって、記録層中の光
吸収色素を退色させ、記録情報の固定化を行った。Example 3 An optical card having the same configuration as in Example 1 was used, and as shown in FIG.
The fundamental wave of n■) is converted into the third harmonic (input a
mW ), and the obtained third harmonic was irradiated onto the optical cart in the same manner as in Example 1, thereby bleaching the light-absorbing dye in the recording layer and fixing the recorded information.
記録、再生、消去は実施例1と同様に行ったところ、再
生コントラスト比は光退色前で1.2、光退色後で0.
9てあり、光退色によって固定化された領域に記録およ
び消去の手法を行ってもその光学特性は変化しなかった
。Recording, reproduction, and erasing were carried out in the same manner as in Example 1, and the reproduction contrast ratio was 1.2 before photobleaching and 0.00 after photobleaching.
9, and even if recording and erasing techniques were performed on the area fixed by photobleaching, its optical properties did not change.
また、固定化されていない記録層領域では103回繰り
返し記録消去を行っても、その再生コントラスト比に変
化はなかった。Furthermore, even if recording and erasing were repeated 103 times in the unfixed recording layer area, there was no change in the reproduction contrast ratio.
[発明の効果]
本発明は光透過率又は光反射率が可逆的に変化し、その
光学特性の保持か可能である材料と光吸収色素とを含有
する記録層を有する書き換え型光記録媒体において、光
吸収色素を退色せしめて、記録情報の固定化を行うこと
により、誤記録、誤消去を防止するとともに、記録、消
去の繰り返し耐久性にも優れた効果が得られる。[Effects of the Invention] The present invention provides a rewritable optical recording medium having a recording layer containing a material whose light transmittance or light reflectance is reversibly changed and whose optical properties can be maintained, and a light-absorbing dye. By fading the light-absorbing dye and fixing recorded information, it is possible to prevent erroneous recording and erasing, and to obtain excellent durability against repeated recording and erasing.
第1図は本発明に用いられる光記録媒体の一例を示す構
成図、第2図は本発明に係る記録、再生、消去及び記録
情報の固定化に用いられる装置の一例を示す構成図、第
3図は実施例1,2.3の光記録媒体の構成図、第4図
は実施例1の記録、再生、消去及び記録情報の固定化に
用いられる装置を示す構成図、第5図は実施例2の記録
、再生、消去及び記録情報の固定化に用いられる装置を
示す構成図、第6図は実施例3の記録、再生、消去及び
記録情報の固定化に用いられる装置を示す構成図および
第7図は各実施例で光吸収色素の退色前後の記録状態お
よび消去状態と検出光量との関係を示すグラフである。
1・・・基板 2・・・記録層3・・・光記
録媒体 4・・・レーザー光源5.5a・・・レン
ズ 6・・・光検出装置7・・・xYステージ 8
・・・A4反射膜9・・・ガラス基板 lO・・・
半導体レーザー11・・・偏光ビームスプリッタ
12・・・フオトダ′イオート
13・・・1/4波長板 14・・・フィルター1
5−・・ハーフミラ−16−He−Cdレーザー17−
He−Ne レーザー 18−YAG レーザー19
・・・KDP非線形光学素子
20・・・フィルターFIG. 1 is a block diagram showing an example of an optical recording medium used in the present invention; FIG. 2 is a block diagram showing an example of a device used for recording, reproducing, erasing, and fixing recorded information according to the present invention; 3 is a block diagram of the optical recording medium of Examples 1 and 2.3, FIG. 4 is a block diagram showing a device used for recording, reproducing, erasing, and fixing recorded information in Example 1, and FIG. FIG. 6 is a configuration diagram showing a device used for recording, reproducing, erasing, and fixing recorded information in Example 2, and FIG. 6 is a configuration diagram showing a device used for recording, reproducing, erasing, and fixing recorded information in Example 3. FIG. 7 and FIG. 7 are graphs showing the relationship between the recording state and erasing state of the light-absorbing dye before and after fading and the amount of detected light in each example. 1... Substrate 2... Recording layer 3... Optical recording medium 4... Laser light source 5.5a... Lens 6... Photodetector 7... xY stage 8
...A4 reflective film 9...Glass substrate lO...
Semiconductor laser 11...Polarizing beam splitter 12...Photodiode 13...1/4 wavelength plate 14...Filter 1
5- Half mirror-16-He-Cd laser 17-
He-Ne laser 18-YAG laser 19
...KDP nonlinear optical element 20...filter
Claims (10)
学特性の保持が可能である材料と光吸収色素とを含有す
る記録層を有する書き換え型光記録媒体上の記録及び消
去状態を固定化する方法において、光吸収色素を退色さ
せることにより記録層の光学特性を固定化することを特
徴とする記録及び消去状態の固定化方法。(1) Recording and erasing conditions on a rewritable optical recording medium having a recording layer containing a material whose light transmittance or light reflectance changes reversibly and which can maintain its optical properties and a light-absorbing dye A method for fixing recording and erasing states, the method comprising fixing the optical properties of a recording layer by fading a light-absorbing dye.
度の可逆的変化である請求項1記載の固定化方法。(2) The immobilization method according to claim 1, wherein the reversible change in light transmittance or light reflectance is a reversible change in light scattering intensity.
学特性の保持が可能である材料が高分子材料を含有して
いる請求項1記載の固定化方法。(3) The immobilization method according to claim 1, wherein the material whose light transmittance or light reflectance changes reversibly and whose optical properties can be maintained contains a polymeric material.
である請求項3記載の固定化方法。(4) The immobilization method according to claim 3, wherein the polymer material is a phase-separated polymer or a polymer liquid crystal.
層にレーザー光の再生光を照射する工程を有し、該再生
光は記録光および消去光のいずれとも波長が異なり、し
かも再生光波長における光吸収色素の吸収強度が記録光
波長および消去光波長での光吸収色素の吸収強度より小
さい請求項1記載の固定化方法。(5) Recording, reproduction, and erasing of a rewritable optical recording medium include the step of irradiating the recording layer with a reproduction light of a laser beam, and the reproduction light has a different wavelength from both the recording light and the erasing light, and the reproduction light 2. The immobilization method according to claim 1, wherein the absorption intensity of the light-absorbing dye at a wavelength is smaller than the absorption intensity of the light-absorbing dye at a recording light wavelength and an erasing light wavelength.
とによって行われる請求項1記載の固定化方法。(6) The immobilization method according to claim 1, wherein the color fading of the light-absorbing dye is performed by irradiating the recording layer with bleaching light.
なる波長成分を有する請求項6記載の固定化方法。(7) The immobilization method according to claim 6, wherein the fading light has a wavelength component different from any of the recording light, reproduction light, and erasing light.
定化方法。(8) The immobilization method according to claim 6, wherein the fading light includes light in the ultraviolet wavelength range.
方法。(9) The immobilization method according to claim 6, wherein the bleaching light is laser light.
調波である請求項6記載の固定化方法。(10) The immobilization method according to claim 6, wherein the bleaching light is a high-order harmonic obtained by a nonlinear optical element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63179263A JPH0230588A (en) | 1988-07-20 | 1988-07-20 | Stabilization of recording and erasing states |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63179263A JPH0230588A (en) | 1988-07-20 | 1988-07-20 | Stabilization of recording and erasing states |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH0230588A true JPH0230588A (en) | 1990-01-31 |
Family
ID=16062795
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63179263A Pending JPH0230588A (en) | 1988-07-20 | 1988-07-20 | Stabilization of recording and erasing states |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0230588A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2285991A (en) * | 1994-01-27 | 1995-08-02 | Merck Patent Gmbh | Polymeric liquid crystalline based composite material with thermally effected variable UV-transmittance |
-
1988
- 1988-07-20 JP JP63179263A patent/JPH0230588A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2285991A (en) * | 1994-01-27 | 1995-08-02 | Merck Patent Gmbh | Polymeric liquid crystalline based composite material with thermally effected variable UV-transmittance |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Seto et al. | Macrocyclic functional dyes: Applications to optical disk media, photochemical hole burning and non-linear optics | |
EP0302497B1 (en) | Data recording medium | |
KR20010007502A (en) | Optical recording medium and recording and/or reproducing method and apparatus employing the optical recording medium | |
Sabi et al. | Photoaddressable polymers for rewritable optical disc systems | |
JPH0246538A (en) | Optical memory element | |
JP5819934B2 (en) | Reversible recording medium by optical recording of information and reversible recording method on such medium | |
JPH0230588A (en) | Stabilization of recording and erasing states | |
JP4132930B2 (en) | Optical recording medium and optical recording / reproducing method | |
JP3141299B2 (en) | Recording method and recording device | |
US5164287A (en) | Photochromic material and rewritable optical recording medium | |
JP2678219B2 (en) | Method of fixing data to optical recording medium, optical recording medium, and data recording device | |
JP2512446B2 (en) | Optical information recording method | |
JPH02280116A (en) | Information storage device | |
JP2810379B2 (en) | Information recording medium | |
JP2004535036A (en) | Multilayer composite liquid crystal optical memory system with information recording and reading means | |
KR940006131B1 (en) | Information saving method using liquid crystalline polymer | |
JP2696697B2 (en) | Information recording medium | |
JPH0210520A (en) | Recording and reproducing method | |
JPH01281447A (en) | Method for fixing recording and erasing states | |
JP2732942B2 (en) | Photochromic material and rewritable optical recording medium using the same | |
JP3030425B2 (en) | Recording method and recording device | |
JP2696696B2 (en) | Information recording medium | |
JPH03122623A (en) | Recording and reproducing method and color display method | |
US20040063006A1 (en) | Optical memory device and process for operating the same | |
JP3675696B2 (en) | Optical recording medium |