JP2696696B2 - Information recording medium - Google Patents

Information recording medium

Info

Publication number
JP2696696B2
JP2696696B2 JP62194429A JP19442987A JP2696696B2 JP 2696696 B2 JP2696696 B2 JP 2696696B2 JP 62194429 A JP62194429 A JP 62194429A JP 19442987 A JP19442987 A JP 19442987A JP 2696696 B2 JP2696696 B2 JP 2696696B2
Authority
JP
Japan
Prior art keywords
group
alkyl group
general formula
hydrogen atom
recording medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62194429A
Other languages
Japanese (ja)
Other versions
JPS6438288A (en
Inventor
健 宮崎
芳弘 小口
敏一 大西
和夫 吉永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62194429A priority Critical patent/JP2696696B2/en
Priority to EP88112724A priority patent/EP0302497B1/en
Priority to DE3854934T priority patent/DE3854934T2/en
Priority to EP94102428A priority patent/EP0597826B1/en
Priority to DE3856472T priority patent/DE3856472T2/en
Publication of JPS6438288A publication Critical patent/JPS6438288A/en
Application granted granted Critical
Publication of JP2696696B2 publication Critical patent/JP2696696B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/245Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/249Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing organometallic compounds
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/25Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing liquid crystals
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/247Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes methine or polymethine dyes
    • G11B7/2472Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes methine or polymethine dyes cyanine
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/24Record carriers characterised by shape, structure or physical properties, or by the selection of the material
    • G11B7/241Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
    • G11B7/242Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
    • G11B7/244Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
    • G11B7/246Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
    • G11B7/248Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes porphines; azaporphines, e.g. phthalocyanines

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)
  • Liquid Crystal Substances (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は高分子液晶を含有する記録層を有する情報記
録媒体に関する。 [従来の技術] 近年、大容量メモリーやディスプレー等の用途として
の書き換え可能な記録媒体の開発が活発に行われてい
る。その1つに液晶の相転位を利用したものが知られて
いる。 例えば、1対の透明電極あるいは、適当な基板によっ
てサンドイッチされた配向状態を保っている液晶層は光
学的に透明である。そこで、この液晶層の温度を上げ、
相転移温度(ネマティック相→液相、またはスメクティ
ック相→ネマティック相)以上にし、急冷すると液晶層
はもとの透明状態に戻らず光散乱状態を示す。つまり、
このコントラスト差により、記録、読み出しを行うもの
である。 さらに書き込み後、記録媒体の電極間に電場を印加す
るか、あるいは加熱・徐冷することによりもとのスメク
チック相等への転移が行われ、消去できる。 その他に、電圧を印加しながら、加熱を行ったり、電
圧を印加しないで加熱して消去を行うこともできる。ま
た最近、ガラス転移点をもち、メモリー性の優れた高分
子液晶が注目されてきた。 通常、高分子液晶層の加熱には、小型でしかも低コス
トな半導体レーザを利用することが多いが、このレーザ
の発振波長は通常650nm以上であり、又一般にアルゴン
レーザ、ヘリウム・ネオンレーザなどのガスレーザに比
べレーザ光パワーが小さい。通常の液晶は、そのような
近赤外域に吸収がないため、液晶中に光吸収性色素を含
有させることが知られている。 しかし一般に近赤外域に吸収をもつ色素は、液晶中で
熱的に十分に安定でなく、書き込み消去を繰返すと一部
分解し、十分なコントラストが得られなくなるという問
題があった。 [発明が解決しようとする問題点] 本発明は、上記の様な従来技術の問題を解決するため
になされたものであり、近赤外域の波長に吸収特性をも
ち、かつ液晶中に溶解または分散された状態で安定で、
書き込み消去を繰返しても、記録特性が劣化しない情報
記録媒体を提供することを目的とするものである。 [問題点を解決するための手段]および[作用] 本発明のかかる目的は、本発明者等の研究の結果、高
分子液晶中に以下の少なくとも1種の金属キレート化合
物を含有させることで達成することが判明した。 すなわち、本発明は、高分子液晶を含有する記録層を
有する情報記録媒体であって、該記録層中に下記の一般
式[1]乃至[6]で表わされる化合物からなる群より
選ばれた少なくとも1種の金属キレート化合物が溶解も
しくは分散されていることを特徴とする情報記録媒体で
ある。 また、本発明は、カイラル不斉炭素を持つ高分子液晶
を含有する記録層を有する情報記録媒体であって、該記
録層中に金属キレート化合物が溶解もしくは分散されて
いることを特徴とする情報記録媒体である。 本発明で使用される金属キレート化合物の例を挙げる
と下記の一般式[1]〜[7]で表わされる。 一般式[1] (式中、R15は水素原子、ヒドロキシル基、アルキル
基、アリール基でもう一方のR15と結合しても良い。R16
はアルキル基、ハロゲン原子、水素原子、ニトロ基又は
ベンゾ縮合系基を表わし、中心金属MはCu,Ni,Co又はPd
を表わす。) 一般式[2] (式中、R17は水素原子、水酸基、アルキル基、アリー
ル基でもう一方のR17と結合しても良い。R18は水素原
子、ハロゲン原子、アルキル基、ニトロ基又はベンゾ縮
合系基を表わし、MはCu,Ni,Co又はPdを表わす。) 一般式[3] (式中、R19はアルキル基、アリール基、R20は水素原
子、ハロゲン原子、アルキル基、アリール基、ニトロ基
又はベンゾ縮合系基を表わし、MはCu,Ni又はPdを表わ
す。) 一般式[4] (式中、R21はアルキル基、アリール基、R22は水素原
子、ハロゲン原子、アルキル基又はベンゾ縮合系基を表
わし、MはCu,Ni,又はPdを表わす。) 一般式[5] (式中、R23は水素原子、ハロゲン原子又はアルキル基
を表わし、MはCu又はNiを表わす。) 一般式[6] (式中、R24は水素原子、又はアルキル基を表わし、M
はCu,Ni,Co又はMnを表わす。) 一般式[7] (式中、R25,R26は、置換ないし非置換のアルキル基、
アシル基又はアリール基またはR25,R26で芳香族環を形
成しても良い。MはCu,Ni,Co又はPdを表わす。この場
合、Mは電荷を持ち、カウンターイオンを持っても良
い。) 次に、前記一般式[1]〜[7]で示される金属キレ
ート化合物の具体的な化合物例を下記の表1に挙げる
が、本発明はこれらに限定されるものではない。 上記金属キレート化合物は近赤外域に吸収をもち、安
定な光吸収色素として有用でありかつ、高分子液晶に対
して相溶性もしくは分散性がよい。又中には二色性を有
するものもあり、これら二色性を有する化合物を高分子
液晶中に溶解すれば、熱的に安定なホスト−ゲスト型の
メモリー及び表示媒体を得ることもできる。 また高分子液晶中には金属キレート化合物が二種類以
上含有されていてもよい。 また、この金属キレート化合物と他の近赤外吸収色素
や2色性色素を組み合せてもよい。好適に組み合せられ
る近赤外吸収色素の代表的な例としては、シアニン、メ
ロシアニン、フタロシアニン、テトラヒドロコリン、ジ
オキサジン、アントラキノン、トリフェノジチアジン、
キサンテン、トリフェニルメタン、ピリリウム、クロコ
ニウム、アズレンおよびトリフェニルアミン等の色素が
挙げられる。 なお、液晶に対する金属キレート化合物の添加量は重
量%で、0.01%〜5%程度、好ましくは、0.05〜1%が
よい。本発明で用いる液晶は高分子サーモトロピック液
晶であり、中間相であるネマチックやスメクチックやカ
イラルスメクチックやコレステリックの相を利用する。 本発明において利用できる高分子サーモトロピック液
晶の一次的基本構造としては、次の2つに分類される。 メソーゲン基あるいは、比較的剛直で長い原子団が
屈曲性鎖で結ばれたもの。 側鎖にメソーゲン基あるいは、比較的剛直で長い原
子団を有するもの。 またカイラル不斉炭素をもつ強誘電性高分子液晶も利
用することができ、本発明に示すものと、該金属キレー
ト化合物との相溶性あるいは分散性はよいことが確かめ
られた。 これら高分子サーモトロピック液晶の具体例を表2に
示す。 本発明において、高分子液晶は異なる数種の高分子液
晶と混合して用いることも可能である。また高分子液晶
と低分子液晶との混合物として用いることも可能で、そ
の場合の重量比は高分子液晶1に対して低分子液晶は、
好ましくは10以下である。低分子液晶は特に限定するこ
とはなく、通常の低分子量の液晶を用いることができ
る。 高分子液晶中には必要により通常のポリマー(例えば
オレフィン系樹脂、アクリル系樹脂、ポリスチレン系樹
脂、ポリエステル系樹脂、ポリウレタン系樹脂、ポリカ
ーボネート樹脂等)や、オリゴマー、各種酸化防止剤、
各種可塑剤、各種紫外線吸収剤、クエンチャー等が含有
されていてもよい。 高分子液晶の薄膜化は高分子液晶を溶媒中に溶解し基
板上でスピンコートやディッピング等のコーティングを
したのち、乾燥させたり、基板間に高分子液晶を挟さみ
加熱加圧成形したり、あらかじめフィルム化しておきそ
れを用いてもよい。なお液晶層の厚さは0.01〜100μ程
度が好ましい。 また、前記高分子液晶を一定方向に均一配向させるに
は、一般に知られているような配向方法を用いることが
できる。 例えば、その配向方法として、ラビング法や斜方蒸着
法や2枚の基板に挟んでずり応力をかける方法や磁界を
印加しながらゆっくり相転移させる方法、スペーサーエ
ッヂで配向させる方法などが利用できる。 又、第1図及び第2図は本発明の情報記録媒体の一実
施例を示す断面図である。第1図において、符号1は基
板を、2は配向膜を、3は本発明の記録層を、4は反射
層を表わす。 又、第2図では符号1,2及び3は第1図の符号と同様
である。符号5は透明電極を又、6は電極兼反射層を示
す。 第3図は記録媒体にレーザを照射して、書き込み及び
読み取りを行なう装置の概略図を示す。第3図におい
て、書き込みはレーザ発振器である半導体レーザ8より
出たレーザ光を光学系11により焦点をあわせて記録媒体
10へ入射する。 読み取りはレーザ発振器である半導体レーザ8より出
たレーザ光を光学系11及びビームスプリッター7を通し
て記録媒体10へ照射し、その反射光を利用して再びビー
ムスプリッター7を通して光検出装置9にて読み取りを
行う。 [作 用] 本発明の情報記録媒体は高分子液晶を含有する記録層
中に金属キレート化合物を含有するが、該金属キレート
化合物が高分子液晶中で安定な理由は明らかではない
が、分解温度が高いことや、吸光係数が低いことが、高
分子液晶中で安定し、光吸収能を発揮するものと推定さ
れる。 [実施例] 以下、実施例に基づき本発明をより詳細に説明する。 実施例1 直径130mm、厚さ1.2mmのディスク状ガラス基板にポリ
アミック酸溶液(日立化成工業製、PIQ)を塗布し、加
熱後、ラビング処理をして、ポリイミドの配向膜を付与
した。 この上に下記の側鎖型高分子液晶と金属キレート化合
物(表1の化合物No.3)を1,1,2−トリクロロエタンに
混合し、スピンナー法により塗布し、乾燥後厚み3μm
の高分子液晶層を形成した。金属キレート化合物の添加
量は、液晶に対し、0.15wt%である。 さらにこの高分子液晶層の上に外周部にスペーサー
(厚み3μm)を介して、反射膜(アルミ蒸着膜)を形
成したガラス基板上に前述と同様の方法でポリイミド配
向膜を設けた基板を重ね合せた。その断面構成の1部を
第1図に示す。上述の積層体を90℃に加熱して、徐冷す
ることにより、液晶層をネマチック層状態にし、情報記
録媒体を作製した。 この記録媒体を第3図に示すように830nmの半導体レ
ーザ8により、記録パワー3.0mWで、記録部を透明基板
側から照射したところ、照射部の配向が乱れ、散乱状態
になった。次に読み出しパワー0.3mWで再生し、再生光
を光検出装置9で測定し、そのコントラスト比 A→未記録部分の信号強度、B→記録部の信号強度)を
算出した。 また、記録を行った基板を90℃に加熱し徐冷して、記
録部の配向により、消去を行った。 さらに記録・消去を繰返し、300回繰返した時点で再
生しコントラスト比を測定した。 実施例2〜10 高分子液晶中に混合する金属キレート化合物を下記の
表3に示すものを用いた以外は全て実施例1と同様にし
て、情報記録媒体を作製した。 また同様にしてコントラスト比を測定した。 比較例1 高分子液晶中に混合した色素として下記に示すものを
用いた以外は、全て実施例1と同様にして情報記録媒体
を作製した。ただし、色素含有量は高分子液晶に対し0.
1wt%である。実施例11 透明電極層としてITOを蒸着した直径130mm、厚さ1.2m
mのガラス基板上にポリアミック酸溶液(日立化成工業
製PIQ)を塗布し、加熱後、ラビング処理をして、ポリ
イミド配向膜を形成した。 この上に下記に示す強誘電高分子液晶と金属キレート
化合物(表1の化合物No.3)を1,1,2−トリクロロエタ
ンに溶解し、スピンナー法により塗布し、乾燥して厚み
3μmの液晶層を形成した。 実施例1と同様にスペーサーを介して、電極層兼反射
層(アルミ蒸着膜)を形成したガラス基板上に前述と同
様の方法でポリイミド配向膜を設けた基板を重ね合せ
た。その断面構成の1部を第2図に示す。 上述の積層体を90℃まで加熱して、その後徐冷するこ
とにより、液晶層を一軸配向したスメクテックティック
相状態にして、電極間に電圧を印加し分極方向方向を一
定方向にそろえ情報記録媒体を作製した。この記録媒体
において透明電極(ITO)とAI電極との間に逆電界を印
加しつつ、830nmの半導体レーザで記録パワー3.0mWで透
明電極側から記録部を照射することにより加熱し、自発
分極の向きを反転することにより、記録の書き込みを行
った。 次に電界を印加しないで、再生出力0.3mWで偏光子を
通してレーザ光を照射し、反射光には分極の方向の違い
による複屈折の差が含まれるので、光検出装置に入射す
る、光強度を測定しコントラスト比を算出した。 また再度ITO−Al電極間に順方向電界を印加しなが
ら、3.5mWのレーザパワーで照射し記録された部分又は
全面を消去した。 再び記録、消去を繰返し300回繰返した時点で再生
し、コントラスト比を測定した。 実施例12〜18 強誘電性高分子液晶中に混合する金属キレート化合物
を下記の表4に示すものを用いた以外は全て実施例11と
同様にして情報記録媒体を作製した。 比較例2 有機色素として比較例1で用いた色素を使用する以外
は、実施例11と全く同様にして情報記録媒体を作製し
た。 以上の実施例および比較例のコントラスト比を測定し
た結果を表5にまとめて示す。 [発明の効果] 上述のように構成された本発明の情報記録媒体によれ
ば、熱的に安定で、記録・消去を繰返しても、記録のコ
ントラスト比が低下することがない優れた効果が得られ
る。
Description: TECHNICAL FIELD The present invention relates to an information recording medium having a recording layer containing a polymer liquid crystal. [Related Art] In recent years, rewritable recording media for applications such as large-capacity memories and displays have been actively developed. As one of them, a device utilizing phase transition of liquid crystal is known. For example, a pair of transparent electrodes or a liquid crystal layer that is maintained in an orientation sandwiched by a suitable substrate is optically transparent. Therefore, raise the temperature of this liquid crystal layer,
The liquid crystal layer does not return to its original transparent state but shows a light scattering state when the temperature is raised to a phase transition temperature (nematic phase → liquid phase or smectic phase → nematic phase) or higher and rapidly cooled. That is,
Recording and reading are performed based on this contrast difference. Further, after writing, by applying an electric field between the electrodes of the recording medium or by heating / cooling, the transition to the original smectic phase or the like is performed and the data can be erased. In addition, heating can be performed while applying a voltage, or erasing can be performed by heating without applying a voltage. Recently, polymer liquid crystals having a glass transition point and excellent memory properties have been attracting attention. Usually, a small and inexpensive semiconductor laser is often used to heat the polymer liquid crystal layer, but the oscillation wavelength of this laser is usually 650 nm or more, and in general, such as argon laser, helium-neon laser, etc. Laser light power is smaller than gas laser. Since ordinary liquid crystals have no absorption in such a near-infrared region, it is known that a liquid crystal contains a light-absorbing dye. However, dyes having absorption in the near-infrared region are generally not sufficiently thermally stable in liquid crystal, and have a problem in that, when writing and erasing are repeated, a part of the dye is decomposed and a sufficient contrast cannot be obtained. [Problems to be Solved by the Invention] The present invention has been made in order to solve the above-mentioned problems of the prior art, and has an absorption characteristic at a wavelength in a near-infrared region and dissolves in a liquid crystal. Stable in a dispersed state,
An object of the present invention is to provide an information recording medium in which recording characteristics are not deteriorated even when writing and erasing are repeated. [Means for Solving the Problems] and [Action] The object of the present invention has been achieved by including at least one of the following metal chelate compounds in a polymer liquid crystal as a result of the study by the present inventors. It turned out to be. That is, the present invention relates to an information recording medium having a recording layer containing a polymer liquid crystal, wherein the recording layer is selected from the group consisting of compounds represented by the following general formulas [1] to [6]. An information recording medium comprising at least one metal chelate compound dissolved or dispersed therein. Further, the present invention relates to an information recording medium having a recording layer containing a polymer liquid crystal having a chiral asymmetric carbon, wherein the metal chelate compound is dissolved or dispersed in the recording layer. It is a recording medium. Examples of the metal chelate compound used in the present invention are represented by the following general formulas [1] to [7]. General formula [1] (Wherein, R 15 is a hydrogen atom, a hydroxyl group, an alkyl group, may be combined with other R 15 with an aryl group .R 16
Represents an alkyl group, a halogen atom, a hydrogen atom, a nitro group or a benzo-condensed group, and the central metal M is Cu, Ni, Co or Pd.
Represents ) General formula [2] (In the formula, R 17 may be a hydrogen atom, a hydroxyl group, an alkyl group, or an aryl group and may be bonded to another R 17. R 18 is a hydrogen atom, a halogen atom, an alkyl group, a nitro group, or a benzo-condensed group. And M represents Cu, Ni, Co or Pd.) General formula [3] (In the formula, R 19 represents an alkyl group, an aryl group, R 20 represents a hydrogen atom, a halogen atom, an alkyl group, an aryl group, a nitro group or a benzo-condensed group, and M represents Cu, Ni or Pd.) Equation [4] (In the formula, R 21 represents an alkyl group, an aryl group, R 22 represents a hydrogen atom, a halogen atom, an alkyl group or a benzo-condensed group, and M represents Cu, Ni, or Pd.) General formula [5] (In the formula, R 23 represents a hydrogen atom, a halogen atom or an alkyl group, and M represents Cu or Ni.) General formula [6] (Wherein, R 24 represents a hydrogen atom or an alkyl group;
Represents Cu, Ni, Co or Mn. ) General formula [7] (Wherein R 25 and R 26 are a substituted or unsubstituted alkyl group,
An acyl ring, an aryl group, or an aromatic ring may be formed by R 25 and R 26 . M represents Cu, Ni, Co or Pd. In this case, M has a charge and may have a counter ion. Next, specific examples of the metal chelate compounds represented by the general formulas [1] to [7] are shown in Table 1 below, but the present invention is not limited thereto. The metal chelate compound has absorption in the near infrared region, is useful as a stable light-absorbing dye, and has good compatibility or dispersibility with a polymer liquid crystal. Some of them have dichroism, and if these dichroic compounds are dissolved in a polymer liquid crystal, a thermally stable host-guest type memory and display medium can be obtained. The polymer liquid crystal may contain two or more metal chelate compounds. Further, the metal chelate compound may be combined with another near-infrared absorbing dye or dichroic dye. Representative examples of near-infrared absorbing dyes suitably combined include cyanine, merocyanine, phthalocyanine, tetrahydrocholine, dioxazine, anthraquinone, triphenodithiazine,
Dyes such as xanthene, triphenylmethane, pyrylium, croconium, azulene and triphenylamine. The amount of the metal chelate compound added to the liquid crystal is about 0.01% to 5% by weight, preferably 0.05% to 1%. The liquid crystal used in the present invention is a polymer thermotropic liquid crystal, and utilizes a nematic, smectic, chiral smectic, or cholesteric phase as an intermediate phase. The primary basic structures of the polymer thermotropic liquid crystal that can be used in the present invention are classified into the following two. Mesogen groups or relatively rigid and long atomic groups connected by flexible chains. Those having a mesogen group or a relatively rigid and long atomic group in the side chain. Further, a ferroelectric polymer liquid crystal having a chiral asymmetric carbon can also be used, and it has been confirmed that the compound shown in the present invention and the metal chelate compound have good compatibility or dispersibility. Table 2 shows specific examples of these polymer thermotropic liquid crystals. In the present invention, the polymer liquid crystal can be used as a mixture with several different kinds of polymer liquid crystals. It is also possible to use a mixture of a high-molecular liquid crystal and a low-molecular liquid crystal.
Preferably it is 10 or less. The low-molecular liquid crystal is not particularly limited, and ordinary low-molecular liquid crystals can be used. If necessary, ordinary polymers (for example, olefin resin, acrylic resin, polystyrene resin, polyester resin, polyurethane resin, polycarbonate resin, etc.), oligomers, various antioxidants, etc.
Various plasticizers, various ultraviolet absorbers, quencher and the like may be contained. Polymer liquid crystal thinning can be achieved by dissolving the polymer liquid crystal in a solvent, coating it on a substrate by spin coating, dipping, etc., and then drying it. Alternatively, a film may be used in advance and used. Note that the thickness of the liquid crystal layer is preferably about 0.01 to 100 μm. Further, in order to uniformly align the polymer liquid crystal in a certain direction, an alignment method generally known can be used. For example, as the orientation method, a rubbing method, an oblique deposition method, a method of applying shear stress between two substrates, a method of slowly performing a phase transition while applying a magnetic field, and a method of aligning with a spacer edge can be used. FIGS. 1 and 2 are sectional views showing an embodiment of the information recording medium of the present invention. In FIG. 1, reference numeral 1 denotes a substrate, 2 denotes an alignment film, 3 denotes a recording layer of the present invention, and 4 denotes a reflective layer. In FIG. 2, reference numerals 1, 2 and 3 are the same as those in FIG. Reference numeral 5 indicates a transparent electrode, and reference numeral 6 indicates an electrode / reflection layer. FIG. 3 is a schematic view of an apparatus for writing and reading by irradiating a recording medium with laser. In FIG. 3, writing is performed by focusing a laser beam emitted from a semiconductor laser 8 as a laser oscillator by an optical system 11 on a recording medium.
It is incident on 10. Reading is performed by irradiating a laser beam emitted from a semiconductor laser 8 which is a laser oscillator to a recording medium 10 through an optical system 11 and a beam splitter 7, and using the reflected light to read again by a photodetector 9 through a beam splitter 7. Do. [Operation] The information recording medium of the present invention contains a metal chelate compound in a recording layer containing a polymer liquid crystal. The reason why the metal chelate compound is stable in the polymer liquid crystal is not clear, It is presumed that a high molecular weight and a low extinction coefficient are stable in a polymer liquid crystal and exhibit a light absorbing ability. EXAMPLES Hereinafter, the present invention will be described in more detail based on examples. Example 1 A polyamic acid solution (manufactured by Hitachi Chemical Co., Ltd., PIQ) was applied to a disk-shaped glass substrate having a diameter of 130 mm and a thickness of 1.2 mm. After heating, a rubbing treatment was performed to provide a polyimide alignment film. A side chain type polymer liquid crystal and a metal chelate compound (compound No. 3 in Table 1) shown below were mixed with 1,1,2-trichloroethane, applied by a spinner method, and dried to a thickness of 3 μm.
Was formed. The addition amount of the metal chelate compound is 0.15 wt% with respect to the liquid crystal. Further, a substrate having a polyimide alignment film provided in the same manner as described above on a glass substrate having a reflective film (aluminum vapor-deposited film) formed on the polymer liquid crystal layer via a spacer (thickness of 3 μm) on the outer periphery. I combined. FIG. 1 shows a part of the cross-sectional configuration. The above-described laminate was heated to 90 ° C. and gradually cooled to bring the liquid crystal layer into a nematic layer state, thereby producing an information recording medium. As shown in FIG. 3, when the recording medium was irradiated from the transparent substrate side with a recording power of 3.0 mW by a semiconductor laser 8 of 830 nm as shown in FIG. 3, the orientation of the irradiated part was disturbed, and the recording medium was scattered. Next, reproduction was performed with a read power of 0.3 mW, the reproduction light was measured by the photodetector 9, and its contrast ratio was measured. A → signal intensity of unrecorded portion, B → signal intensity of recorded portion) were calculated. Further, the substrate on which the recording was performed was heated to 90 ° C. and gradually cooled, and erasing was performed according to the orientation of the recording portion. Further, recording and erasing were repeated, and at the time of repeating 300 times, reproduction was performed and the contrast ratio was measured. Examples 2 to 10 Information recording media were produced in the same manner as in Example 1 except that the metal chelate compounds to be mixed into the polymer liquid crystal were those shown in Table 3 below. The contrast ratio was measured in the same manner. Comparative Example 1 An information recording medium was produced in the same manner as in Example 1 except that the following dyes were mixed in the polymer liquid crystal. However, the dye content is 0.
1 wt%. Example 11 130 mm in diameter and 1.2 m thick in which ITO was deposited as a transparent electrode layer
A polyamic acid solution (PIQ manufactured by Hitachi Chemical Co., Ltd.) was applied onto a glass substrate having a thickness of m, heated, and rubbed to form a polyimide alignment film. A ferroelectric polymer liquid crystal and a metal chelate compound (compound No. 3 in Table 1) shown below are dissolved in 1,1,2-trichloroethane, applied by a spinner method, dried and dried to form a liquid crystal layer having a thickness of 3 μm. Was formed. In the same manner as in Example 1, a substrate provided with a polyimide alignment film was superposed on a glass substrate on which an electrode layer and a reflective layer (aluminum vapor-deposited film) had been formed via a spacer in the same manner as described above. FIG. 2 shows a part of the sectional configuration. The above-mentioned laminated body is heated to 90 ° C., and then gradually cooled, so that the liquid crystal layer is in a uniaxially oriented smectic phase state, a voltage is applied between the electrodes, the polarization direction is aligned in a certain direction, and information is recorded. A medium was prepared. The recording medium is heated by irradiating the recording section from the transparent electrode side with a recording power of 3.0 mW with a 830 nm semiconductor laser while applying a reverse electric field between the transparent electrode (ITO) and the AI electrode in this recording medium, thereby causing the spontaneous polarization. Recording was performed by reversing the direction. Next, without applying an electric field, a laser beam is irradiated through a polarizer at a reproduction output of 0.3 mW, and the reflected light includes a difference in birefringence due to a difference in polarization direction. Was measured and the contrast ratio was calculated. Further, while applying a forward electric field again between the ITO-Al electrodes, irradiation was performed with a laser power of 3.5 mW to erase the recorded portion or the entire surface. When recording and erasing were repeated 300 times again, reproduction was performed and the contrast ratio was measured. Examples 12 to 18 Information recording media were produced in the same manner as in Example 11 except that the metal chelate compounds to be mixed in the ferroelectric polymer liquid crystal were those shown in Table 4 below. Comparative Example 2 An information recording medium was produced in exactly the same manner as in Example 11, except that the dye used in Comparative Example 1 was used as the organic dye. Table 5 summarizes the results of the measurement of the contrast ratio of the above Examples and Comparative Examples. [Effects of the Invention] According to the information recording medium of the present invention configured as described above, an excellent effect that is thermally stable and does not lower the contrast ratio of recording even when recording / erasing is repeated is provided. can get.

【図面の簡単な説明】 第1図、第2図は本発明の情報記録媒体の断面図、第3
図は記録、再生、消去の光学系の模式図を示す。 1……基板、2……配向膜 3……記録層、4……反射層 5……透明電極、6……電極兼反射層 7……ビームスプリッター 8……半導体レーザ、9……光検出装置 10……記録媒体、11……光学系 12……反射鏡、13……偏光子
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a sectional view of an information recording medium according to the present invention, and FIG.
The figure shows a schematic diagram of an optical system for recording, reproducing, and erasing. DESCRIPTION OF SYMBOLS 1 ... Substrate 2 ... Alignment film 3 ... Recording layer 4 ... Reflection layer 5 ... Transparent electrode 6 ... Electrode / reflection layer 7 ... Beam splitter 8 ... Semiconductor laser 9 ... Light detection Device 10: Recording medium, 11: Optical system 12, Reflecting mirror, 13: Polarizer

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G11B 7/24 516 B41M 5/26 102 (72)発明者 吉永 和夫 東京都大田区下丸子3丁目30番2号 キ ヤノン株式会社内 (56)参考文献 特開 昭60−165293(JP,A) 特開 昭60−165294(JP,A) 特開 昭60−166487(JP,A) 特開 昭60−168691(JP,A) 特開 昭62−157341(JP,A)──────────────────────────────────────────────────の Continuation of the front page (51) Int.Cl. 6 Identification number Agency reference number FI Technical display location G11B 7/24 516 B41M 5/26 102 (72) Inventor Kazuo Yoshinaga 3-30 Shimomaruko, Ota-ku, Tokyo No. 2 Canon Inc. (56) References JP-A-60-165293 (JP, A) JP-A-60-165294 (JP, A) JP-A-60-166487 (JP, A) JP-A-60-165 -168691 (JP, A) JP-A-62-157341 (JP, A)

Claims (1)

(57)【特許請求の範囲】 1.高分子液晶を含有する記録層を有する情報記録媒体
であって、該記録層中に下記の一般式[1]乃至[6]
で表わされる化合物からなる群より選ばれた少なくとも
1種の金属キレート化合物が溶解もしくは分散されてい
ることを特徴とする情報記録媒体。 一般式[1] (式中、R15は水素原子、ヒドロキシル基、アルキル
基、アリール基でもう一方のR15と結合しても良い。R16
はアルキル基、ハロゲン原子、水素原子、ニトロ基又は
ベンゾ縮合系基を表わし、中心金属MはCu,Ni,Co又はPd
を表わす。) 一般式[2] (式中、R17は水素原子、水酸基、アルキル基、アリー
ル基でもう一方のR17と結合しても良い。R18は水素原
子、ハロゲン原子、アルキル基、ニトロ基又はベンゾ縮
合系基を表わし、MはCu,Ni,Co又はPdを表わす。) 一般式[3] (式中、R19はアルキル基、アリール基、R20は水素原
子、ハロゲン原子、アルキル基、アリール基、ニトロ基
又はベンゾ縮合系基を表わし、MはCu,Ni又はPdを表わ
す。) 一般式[4] (式中、R21はアルキル基、アリール基、R22は水素原
子、ハロゲン原子、アルキル基又はベンゾ縮合系基を表
わし、MはCu,Ni,又はPdを表わす。) 一般式[5] (式中、R23は水素原子、ハロゲン原子又はアルキル基
を表わし、MはCu又はNiを表わす。) 一般式[6] (式中、R24は水素原子、又はアルキル基を表わし、M
はCu,Ni,Co又はMnを表わす。) 2.カイラル不斉炭素を持つ高分子液晶を含有する記録
層を有する情報記録媒体であって、該記録層中に金属キ
レート化合物が溶解もしくは分散されていることを特徴
とする情報記録媒体。 3.金属キレート化合物が下記の一般式[1]で表わさ
れる化合物である特許請求の範囲第2項記載の情報記録
媒体。 一般式[1] (式中、R15は水素原子、ヒドロキシル基、アルキル
基、アリール基でもう一方のR15と結合しても良い。R16
はアルキル基、ハロゲン原子、水素原子、ニトロ基又は
ベンゾ縮合系基を表わし、中心金属MはCu,Ni,Co又はPd
を表わす。) 4.金属キレート化合物が下記の一般式[2]で表わさ
れる化合物である特許請求の範囲第2項記載の情報記録
媒体。 一般式[2] (式中、R17は水素原子、水酸基、アルキル基、アリー
ル基でもう一方のR17と結合しても良い。R18は水素原
子、ハロゲン原子、アルキル基、ニトロ基又はベンゾ縮
合系基を表わし、MはCu,Ni,Co又はPdを表わす。) 5.金属キレート化合物が下記の一般式[3]で表わさ
れる化合物である特許請求の範囲第2項記載の情報記録
媒体。 一般式[3] (式中、R19はアルキル基、アリール基、R20は水素原
子、ハロゲン原子、アルキル基、アリール基、ニトロ基
又はベンゾ縮合系基を表わし、MはCu,Ni又はPdを表わ
す。) 6.金属キレート化合物が下記の一般式[4]で表わさ
れる化合物である特許請求の範囲第2項記載の情報記録
媒体。 一般式[4](式中、R21はアルキル基、アリール基、R22は水素原
子、ハロゲン原子、アルキル基又はベンゾ縮合系基を表
わし、MはCu,Ni,又はPdを表わす。) 7.金属キレート化合物が下記の一般式[5]で表わさ
れる化合物である特許請求の範囲第2項記載の情報記録
媒体。 一般式[5] (式中、R23は水素原子、ハロゲン原子又はアルキル基
を表わし、MはCu又はNiを表わす。) 8.金属キレート化合物が下記の一般式[6]で表わさ
れる化合物である特許請求の範囲第2項記載の情報記録
媒体。 一般式[6] (式中、R24は水素原子、又はアルキル基を表わし、M
はCu,Ni,Co又はMnを表わす。) 9.金属キレート化合物が下記の一般式[7]で表わさ
れる化合物である特許請求の範囲第2項記載の情報記録
媒体。 一般式[7] (式中、R25,R26は、置換ないし非置換のアルキル基、
アシル基又はアリール基またはR25,R26で芳香族環を形
成しても良い。MはCu,Ni,Co又はPdを表わす。この場
合、Mは電荷を持ち、カウンターイオンを持っても良
い。) 10.前記高分子液晶が強誘電性高分子液晶である特許
請求の範囲第2項記載の情報記録媒体。
(57) [Claims] An information recording medium having a recording layer containing a polymer liquid crystal, wherein the recording layer has the following general formulas [1] to [6]
An information recording medium characterized in that at least one metal chelate compound selected from the group consisting of compounds represented by the formula is dissolved or dispersed. General formula [1] (Wherein, R 15 is a hydrogen atom, a hydroxyl group, an alkyl group, may be combined with other R 15 with an aryl group .R 16
Represents an alkyl group, a halogen atom, a hydrogen atom, a nitro group or a benzo-condensed group, and the central metal M is Cu, Ni, Co or Pd.
Represents ) General formula [2] (In the formula, R 17 may be a hydrogen atom, a hydroxyl group, an alkyl group, or an aryl group and may be bonded to another R 17. R 18 is a hydrogen atom, a halogen atom, an alkyl group, a nitro group, or a benzo-condensed group. And M represents Cu, Ni, Co or Pd.) General formula [3] (In the formula, R 19 represents an alkyl group, an aryl group, R 20 represents a hydrogen atom, a halogen atom, an alkyl group, an aryl group, a nitro group or a benzo-condensed group, and M represents Cu, Ni or Pd.) Equation [4] (In the formula, R 21 represents an alkyl group, an aryl group, R 22 represents a hydrogen atom, a halogen atom, an alkyl group or a benzo-condensed group, and M represents Cu, Ni, or Pd.) General formula [5] (In the formula, R 23 represents a hydrogen atom, a halogen atom or an alkyl group, and M represents Cu or Ni.) General formula [6] (Wherein, R 24 represents a hydrogen atom or an alkyl group;
Represents Cu, Ni, Co or Mn. ) 2. An information recording medium having a recording layer containing a polymer liquid crystal having chiral asymmetric carbon, wherein a metal chelate compound is dissolved or dispersed in the recording layer. 3. 3. The information recording medium according to claim 2, wherein the metal chelate compound is a compound represented by the following general formula [1]. General formula [1] (Wherein, R 15 is a hydrogen atom, a hydroxyl group, an alkyl group, may be combined with other R 15 with an aryl group .R 16
Represents an alkyl group, a halogen atom, a hydrogen atom, a nitro group or a benzo-condensed group, and the central metal M is Cu, Ni, Co or Pd.
Represents ) 4. 3. The information recording medium according to claim 2, wherein the metal chelate compound is a compound represented by the following general formula [2]. General formula [2] (In the formula, R 17 may be a hydrogen atom, a hydroxyl group, an alkyl group, or an aryl group and may be bonded to another R 17. R 18 is a hydrogen atom, a halogen atom, an alkyl group, a nitro group, or a benzo-condensed group. And M represents Cu, Ni, Co or Pd.) 3. The information recording medium according to claim 2, wherein the metal chelate compound is a compound represented by the following general formula [3]. General formula [3] (In the formula, R 19 represents an alkyl group, an aryl group, R 20 represents a hydrogen atom, a halogen atom, an alkyl group, an aryl group, a nitro group or a benzo-condensed group, and M represents Cu, Ni or Pd.) . 3. The information recording medium according to claim 2, wherein the metal chelate compound is a compound represented by the following general formula [4]. General formula [4] (In the formula, R 21 represents an alkyl group, an aryl group, R 22 represents a hydrogen atom, a halogen atom, an alkyl group or a benzo-condensed group, and M represents Cu, Ni, or Pd.) 3. The information recording medium according to claim 2, wherein the metal chelate compound is a compound represented by the following general formula [5]. General formula [5] (In the formula, R 23 represents a hydrogen atom, a halogen atom or an alkyl group, and M represents Cu or Ni.) 3. The information recording medium according to claim 2, wherein the metal chelate compound is a compound represented by the following general formula [6]. General formula [6] (Wherein, R 24 represents a hydrogen atom or an alkyl group;
Represents Cu, Ni, Co or Mn. ) 9. 3. The information recording medium according to claim 2, wherein the metal chelate compound is a compound represented by the following general formula [7]. General formula [7] (Wherein R 25 and R 26 are a substituted or unsubstituted alkyl group,
An acyl ring, an aryl group, or an aromatic ring may be formed by R 25 and R 26 . M represents Cu, Ni, Co or Pd. In this case, M has a charge and may have a counter ion. ) 10. 3. The information recording medium according to claim 2, wherein the polymer liquid crystal is a ferroelectric polymer liquid crystal.
JP62194429A 1987-08-05 1987-08-05 Information recording medium Expired - Fee Related JP2696696B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP62194429A JP2696696B2 (en) 1987-08-05 1987-08-05 Information recording medium
EP88112724A EP0302497B1 (en) 1987-08-05 1988-08-04 Data recording medium
DE3854934T DE3854934T2 (en) 1987-08-05 1988-08-04 Data recording medium
EP94102428A EP0597826B1 (en) 1987-08-05 1988-08-04 Data recording medium
DE3856472T DE3856472T2 (en) 1987-08-05 1988-08-04 Data recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62194429A JP2696696B2 (en) 1987-08-05 1987-08-05 Information recording medium

Publications (2)

Publication Number Publication Date
JPS6438288A JPS6438288A (en) 1989-02-08
JP2696696B2 true JP2696696B2 (en) 1998-01-14

Family

ID=16324452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62194429A Expired - Fee Related JP2696696B2 (en) 1987-08-05 1987-08-05 Information recording medium

Country Status (1)

Country Link
JP (1) JP2696696B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10851302B2 (en) * 2014-10-20 2020-12-01 Gauzy Ltd. Metal organic liquid crystal dyes

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60165293A (en) * 1984-02-08 1985-08-28 Tdk Corp Optical recording medium
JPS60165294A (en) * 1984-02-09 1985-08-28 Tdk Corp Optical recording medium
JPS60166487A (en) * 1984-02-10 1985-08-29 Tdk Corp Optical recording medium
JPS60168691A (en) * 1984-02-11 1985-09-02 Tdk Corp Optical recording medium
JPS62157341A (en) * 1985-12-27 1987-07-13 Nec Corp Optical recording medium
DE3704146A1 (en) * 1987-02-11 1988-09-29 Basf Ag LASER OPTICAL WRITING AND READING PROCESS

Also Published As

Publication number Publication date
JPS6438288A (en) 1989-02-08

Similar Documents

Publication Publication Date Title
US4995705A (en) Device, method and apparatus for optical modulation using ferroelectric polymer liquid crystals
EP0392531B1 (en) Recording medium
EP0597826B1 (en) Data recording medium
US5339306A (en) Detecting interferential diffraction of a reflected beam from a polymer liquid crystal recording medium
JPS58125247A (en) Optical recording medium
EP0461619A2 (en) Information memory medium and information recording/holding process making use of the medium
JPH0741573A (en) Homeotropically aligned liquid crystal polymer film containing dichroic dye
JP2696696B2 (en) Information recording medium
US5976638A (en) Optical recording medium comprising a homeotropically oriented liquid crystalline polymer film comprising dichroic dye
JP2810379B2 (en) Information recording medium
JP2515566B2 (en) Storage media
JPS6351494A (en) Liquid crystal optical element
JP3080454B2 (en) Card type optical recording medium and manufacturing method thereof
JP3141299B2 (en) Recording method and recording device
JP2696697B2 (en) Information recording medium
JPH02280116A (en) Information storage device
JP2678219B2 (en) Method of fixing data to optical recording medium, optical recording medium, and data recording device
WO1996016402A1 (en) Digital storage medium based on fabry-perot principle
Fuhrmann et al. Optical storage
JPS63259623A (en) High molecular liquid crystal element
JPS63301027A (en) Liquid crystal element
KR20050012801A (en) Optimized medium with anisotropic dipole emission for fluorescent single or multi layer storage
JP3030425B2 (en) Recording method and recording device
JP2762863B2 (en) Optical modulation element and method for reading optical memory using the same
JP2632920B2 (en) Recording method, recording medium and recording device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees