JPH02304810A - Hyaline conductive film and manufacture thereof - Google Patents

Hyaline conductive film and manufacture thereof

Info

Publication number
JPH02304810A
JPH02304810A JP12383489A JP12383489A JPH02304810A JP H02304810 A JPH02304810 A JP H02304810A JP 12383489 A JP12383489 A JP 12383489A JP 12383489 A JP12383489 A JP 12383489A JP H02304810 A JPH02304810 A JP H02304810A
Authority
JP
Japan
Prior art keywords
transparent conductive
layer
hyaline
conductive film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12383489A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kinoshita
木下 宏行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP12383489A priority Critical patent/JPH02304810A/en
Publication of JPH02304810A publication Critical patent/JPH02304810A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Crystal (AREA)
  • Non-Insulated Conductors (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE:To have the improved quality of a low-resistance liquid crystal display body being excellent in durability by forming a metallic layer of less than 150 angstrom thickness on a substrate, and then forming a stannic oxide system hyaline conductive layer on the metallic layer. CONSTITUTION:In the formation of a stannic oxide system hyaline conductive layer on a substrate, as its ground film a metallic layer of less than 150 angstrom thickness is first formed. Although the metallic layer improves the crystallizability of the stannic oxide system hyaline conductive layer and therefore reduces the resistance thereof, a film thickness in excess of, 150 angstrom makes the transmissivity of such film lower to be unpractical. Such laminate structure as to be prepared through the process of forming the stannic oxide system hyaline conductive layer on the metallic layer may bring about lower resistance as compared with conventional films. Thus, a hyaline conductive film of low resistance can be obtained through formation of the metallic layer with less than the 150 angstrom thickness as the ground film for the conductive layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は透明導電膜およびその製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a transparent conductive film and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

従来より液晶表示体、エレクトロルミネッセンス、太陽
電池などの電極材料として透明導電膜が利用されており
、この透明導電膜には金、銀、銅、白金、パラジウム、
アルミニウムなどの金属薄膜と酸化第二スズ、酸化イン
ジウム、酸化亜鉛などの酸化物半導体がある。
Transparent conductive films have traditionally been used as electrode materials for liquid crystal displays, electroluminescence, solar cells, etc., and these transparent conductive films include gold, silver, copper, platinum, palladium,
There are metal thin films such as aluminum and oxide semiconductors such as stannic oxide, indium oxide, and zinc oxide.

金属薄膜は低い基板温度で容易に低抵抗の膜を作製する
ことができるが、高い透過率を得るためには膜厚を非常
に薄くしなければならず機械的強度が劣るという欠点を
持っている。一方散化物半導体は優れた透光性と膜強度
を有しており導電性も良いことから実用的であり広く応
用されている。
Metal thin films can be easily fabricated with low resistance at low substrate temperatures, but in order to obtain high transmittance, the film must be extremely thin, which has the disadvantage of poor mechanical strength. There is. On the other hand, dispersion semiconductors have excellent light transmittance, film strength, and good conductivity, so they are practical and widely applied.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、液晶表示体の高品質化が近年急速に進ん
でいることに伴って表示体を大型化、大容量化した場合
、現状の透明導電膜では抵抗が高く表示にむらが出て表
示品質が低下してしまうという課題が生じている。そこ
で本発明の目的とするところは液晶表示体の高品質化を
実現させる、耐久性の優れた低抵抗な透明導電膜を提供
することにある。
However, as the quality of liquid crystal displays has progressed rapidly in recent years, when displays have become larger and have larger capacities, the current transparent conductive films have high resistance, resulting in uneven display and poor display quality. The problem has arisen that it is declining. Therefore, an object of the present invention is to provide a highly durable and low-resistance transparent conductive film that can improve the quality of a liquid crystal display.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の透明導電膜は、基板上に金属層が150Å以下
の厚さで形成され、その金属層上に酸化スズ系透明導電
層が形成された積層構造を持つことを特徴としている。
The transparent conductive film of the present invention is characterized by having a laminated structure in which a metal layer is formed on a substrate with a thickness of 150 Å or less, and a tin oxide-based transparent conductive layer is formed on the metal layer.

また、本発明の透明導電膜の製造方法は、基板上に酸化
スズ系透明導電層を形成する際、その下地膜として15
0Å以下の厚さの金属層を設けることを特徴としている
Further, in the method for manufacturing a transparent conductive film of the present invention, when forming a tin oxide-based transparent conductive layer on a substrate, 15%
It is characterized by providing a metal layer with a thickness of 0 Å or less.

金属層は酸化スズ系透明導電層の結晶性を向上させ抵抗
を低減させるものであるが、膜厚が150人を超えると
透光率が低くなり実用的でない。
The metal layer improves the crystallinity of the tin oxide-based transparent conductive layer and reduces the resistance, but if the thickness exceeds 150 mm, the light transmittance becomes low and it is not practical.

従って上述の範囲が望ましい。Therefore, the above range is desirable.

〔実施例〕〔Example〕

真空チャンバー内を5X10−’Torrの圧力まで排
気した後、アルゴンガスをチャンバー内の圧力が2xl
O−”Torrになるように導入し、300 ’Cに加
熱したガラス基板上にDCマグネトロンスパッタ法で金
属層を形成、その後、酸素が4X10−’Torr、ア
ルゴンと酸素の和が5×10−3になるようにガスを導
入して、DCマグネトロンスパッタ法でATO膜を作製
した。サンプルの構成は第1表のとうりである。また、
比較例として、金属層のないものと金属層の厚さが上述
の範囲外になるように作製したものについても第1表に
示し、各サンプルおよび比較例の比抵抗値と透過率を測
定した結果を第2表に示す。なお、抵抗値は4探針法で
測定した値、透光率は分光光度計で測定した波長550
nmにおける値である。
After evacuating the vacuum chamber to a pressure of 5X10-'Torr, argon gas was pumped until the pressure inside the chamber was 2XL.
A metal layer was formed by DC magnetron sputtering on a glass substrate heated to 300'C, then oxygen was introduced at 4X10'Torr and the sum of argon and oxygen was 5x10'Torr. An ATO film was produced by DC magnetron sputtering by introducing a gas such that the amount of the sample was 3. The composition of the sample was as shown in Table 1.
As comparative examples, those without a metal layer and those manufactured with a metal layer thickness outside the above range are also shown in Table 1, and the resistivity and transmittance of each sample and comparative example were measured. The results are shown in Table 2. The resistance value is the value measured using the 4-probe method, and the light transmittance is the value measured using a spectrophotometer at a wavelength of 550.
The value is in nm.

第1表 第2表 第2表かられかるとおり、本発明の透明導電膜は抵抗が
低く、透光率も77%以上と実用的である。これに対し
、金属層のないものは抵抗値が高く、金属層が厚いもの
は透光率が悪い。
As can be seen from Table 1 and Table 2, the transparent conductive film of the present invention has a low resistance and a light transmittance of 77% or more, making it practical. On the other hand, those without a metal layer have a high resistance value, and those with a thick metal layer have poor light transmittance.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の透明導電膜は基板上に金属
層が150Å以下の厚さで形成され、その金属層上に酸
化スズ系透明導電層が形成された積層構造であるので、
従来より抵抗の低いものとなっている。この膜は、ディ
スプレイデバイスの大型化・大容量化など高品質化に大
きな効果を有するものである。なお本発明の透明導電膜
は真空蒸着法、イオンブレーティング法など様々な手法
により成膜可能でありその応用分野も各種表示デバイス
、太陽電池、撮像素子などの透明電極や発熱膜、帯電防
止膜、熱線反射膜、選択透過膜など広い分野で応用可能
である。また、本発明の透明導電膜の製造方法は、基板
上に酸化スズ系透明導電層を形成する際、その下地膜と
して150Å以下の厚さの金属層を設けたので抵抗の低
い透明導電膜を得ることができる。
As described above, the transparent conductive film of the present invention has a laminated structure in which a metal layer is formed on a substrate with a thickness of 150 Å or less, and a tin oxide-based transparent conductive layer is formed on the metal layer.
It has lower resistance than the conventional one. This film has a great effect on increasing the quality of display devices, such as increasing their size and capacity. The transparent conductive film of the present invention can be formed by various methods such as vacuum evaporation and ion blating, and its application fields include transparent electrodes, heat-generating films, and antistatic films for various display devices, solar cells, image pickup devices, etc. It can be applied in a wide range of fields such as , heat ray reflective film, selective transmission film, etc. Furthermore, in the method for manufacturing a transparent conductive film of the present invention, when forming a tin oxide-based transparent conductive layer on a substrate, a metal layer with a thickness of 150 Å or less is provided as a base film, so that a transparent conductive film with low resistance can be formed. Obtainable.

なお、金属層は酸化スズの結晶構造に寄与するものであ
り、酸化スズへドーピングされた不純物に関係なく上述
の効果が得られる。
Note that the metal layer contributes to the crystal structure of tin oxide, and the above-mentioned effect can be obtained regardless of the impurity doped into the tin oxide.

以  上that's all

Claims (6)

【特許請求の範囲】[Claims] (1)基板上に金属層が150Å以下の厚さで形成され
、その金属層上に酸化スズ系透明導電層が形成された積
層構造を持つことを特徴とする透明導電膜。
(1) A transparent conductive film characterized by having a laminated structure in which a metal layer is formed on a substrate with a thickness of 150 Å or less, and a tin oxide-based transparent conductive layer is formed on the metal layer.
(2)酸化スズ系透明導電層がSbがドーピングされた
酸化スズ(ATO)層であることを特徴とする請求項1
記載の透明導電膜。
(2) Claim 1, wherein the tin oxide-based transparent conductive layer is a tin oxide (ATO) layer doped with Sb.
The transparent conductive film described above.
(3)金属層がAu、Pt、Ru、Cr、Al、In、
Sn、Sbの内の少なくとも1つを含む単金属層あるい
は合金層であることを特徴とする請求項1または請求項
2記載の透明導電膜。
(3) The metal layer is Au, Pt, Ru, Cr, Al, In,
3. The transparent conductive film according to claim 1, wherein the transparent conductive film is a single metal layer or an alloy layer containing at least one of Sn and Sb.
(4)基板上に酸化スズ系透明導電層を形成する際、そ
の下地膜として150Å以下の厚さの金属層を設けるこ
とを特徴とする透明導電膜の製造方法。
(4) A method for manufacturing a transparent conductive film, which comprises providing a metal layer with a thickness of 150 Å or less as a base film when forming a tin oxide-based transparent conductive layer on a substrate.
(5)酸化スズ系透明導電層がATO層であることを特
徴とする請求項4記載の透明導電膜の製造方法。
(5) The method for producing a transparent conductive film according to claim 4, wherein the tin oxide-based transparent conductive layer is an ATO layer.
(6)金属層がAu、Pt、Ru、Cr、Al、In、
Sn、Sbの内の少なくとも1つを含む単金属層あるい
は合金層であることを特徴とする請求項4または請求項
5記載の透明導電膜の製造方法。
(6) The metal layer is Au, Pt, Ru, Cr, Al, In,
6. The method of manufacturing a transparent conductive film according to claim 4, wherein the transparent conductive film is a single metal layer or an alloy layer containing at least one of Sn and Sb.
JP12383489A 1989-05-17 1989-05-17 Hyaline conductive film and manufacture thereof Pending JPH02304810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12383489A JPH02304810A (en) 1989-05-17 1989-05-17 Hyaline conductive film and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12383489A JPH02304810A (en) 1989-05-17 1989-05-17 Hyaline conductive film and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH02304810A true JPH02304810A (en) 1990-12-18

Family

ID=14870530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12383489A Pending JPH02304810A (en) 1989-05-17 1989-05-17 Hyaline conductive film and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH02304810A (en)

Similar Documents

Publication Publication Date Title
US6329044B1 (en) Transparent conductive film and method of making the film
US5045235A (en) Transparent conductive film
JP3453805B2 (en) Transparent conductive film
US6146765A (en) Transparent conductive film and method for its production, and sputtering target
JP3031224B2 (en) Transparent conductive film
WO2008105597A1 (en) Transparent electrode for solar cell and manufacturing method thereof
JP4067141B2 (en) Transparent conductive film, method for producing the same, and sputtering target
US6579624B2 (en) Functional film having optical and electrical properties
GB2372042A (en) Functional film with concentration gradient
JP4168689B2 (en) Thin film laminate
JP4137254B2 (en) Method for producing transparent conductive laminate
JPH04272612A (en) Transparent electrode
KR101884643B1 (en) Zinc-doped tine oxide based transparent conducting oxide, multilayered transparent conducting film using the same and method for preparing the same
JP2000108244A (en) Transparent conductive film, its manufacture, and base having transparent conductive film
JPH02304810A (en) Hyaline conductive film and manufacture thereof
JPH02304812A (en) Hyaline conductive film and manufacture thereof
JP3318142B2 (en) Transparent conductive film
JPH02304811A (en) Transparent conductive film and manufacture thereof
JPH0468315A (en) Transparent conductive film and production thereof
JPH04277408A (en) Transparent electrode
JPH06160876A (en) Transparent electrode plate and its production
JPH11262968A (en) Transparent conductive film
JPH01272755A (en) Electrically conductive transparent film and production thereof
US5994748A (en) Two-terminal nonlinear device, method for manufacturing the same, and liquid-crystal display panel
JPS647445B2 (en)