JPH0230462B2 - MOREKENSASOCHI - Google Patents

MOREKENSASOCHI

Info

Publication number
JPH0230462B2
JPH0230462B2 JP20141685A JP20141685A JPH0230462B2 JP H0230462 B2 JPH0230462 B2 JP H0230462B2 JP 20141685 A JP20141685 A JP 20141685A JP 20141685 A JP20141685 A JP 20141685A JP H0230462 B2 JPH0230462 B2 JP H0230462B2
Authority
JP
Japan
Prior art keywords
pressure
tank
leak
measured
tanks
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20141685A
Other languages
Japanese (ja)
Other versions
JPS6262241A (en
Inventor
Akio Furuse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Instruments Co Ltd
Original Assignee
Cosmo Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cosmo Instruments Co Ltd filed Critical Cosmo Instruments Co Ltd
Priority to JP20141685A priority Critical patent/JPH0230462B2/en
Publication of JPS6262241A publication Critical patent/JPS6262241A/en
Publication of JPH0230462B2 publication Critical patent/JPH0230462B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は気密性を必要とする製品の内部気密
性を検出する漏れ検査装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a leak testing device for detecting internal airtightness of a product that requires airtightness.

〔従来の技術〕[Conventional technology]

防水時計或いは自動車のヘツドライトなど、そ
の内部を外部から遮断しておく必要のある製品の
気密性を検出する装置に漏れ検査装置がある。第
3図はその内部気密性を検出するための容積検出
方式の漏れ検査装置の原理を示すためのブロツク
図である。
2. Description of the Related Art Leakage testing devices are used to detect the airtightness of products that need to be sealed off from the outside, such as waterproof watches or automobile headlights. FIG. 3 is a block diagram showing the principle of a volumetric detection type leak testing device for detecting internal airtightness.

この検査装置により気密性をテストする原理を
簡単に説明する。
The principle of testing airtightness using this testing device will be briefly explained.

この容積検出方式の漏れ検査装置では、マスタ
ーと呼ぶ基準品とワークと呼ぶ被測定体との2つ
の物体をそれぞれ同じ条件下に曝して試験を行
い、その気密性の差を測定して被測定体が基準品
に対して相対的に劣つているか否かを判定する。
This volumetric detection type leak testing device performs a test by exposing two objects, a reference product called a master and a measured object called a workpiece, under the same conditions, and measures the difference in airtightness between the two objects to be measured. Determine whether the product is relatively inferior to the reference product.

基準品は気密性の程度が予め判つている物で被
測定体と同質の製品が用いられる。まず、被測定
体1及び基準品2をそれぞれ同じ内容積をもつ各
別の測定部3,4に収納する。各測定部3,4に
は高圧タンク5から高圧の空気がチヤージされ、
各測定部3,4内の圧力が所定の同じ圧力Vに高
められた時点でバルブ6,7が閉じられる。所定
の時間が経過してから、各測定部3,4に接続さ
れている差圧計8により、各測定部3,4内の気
体圧力の差を測定する。
The reference product is a product whose degree of airtightness is known in advance and is the same as the product to be measured. First, the object to be measured 1 and the reference product 2 are housed in separate measuring sections 3 and 4 having the same internal volume. High-pressure air is charged from a high-pressure tank 5 to each measuring section 3, 4,
The valves 6, 7 are closed when the pressure in each measuring section 3, 4 is increased to the same predetermined pressure V. After a predetermined period of time has elapsed, the differential pressure gauge 8 connected to each measuring section 3, 4 measures the difference in gas pressure within each measuring section 3, 4.

被測定体1の気密性が悪い場合は測定部3内の
高圧空気が被測定体1の内部へ侵入する。従つ
て、測定部3内空間の圧力は降下し、気密性が悪
いほど圧力降下の程度は大きい。2つの測定部
3,4内の圧力降下の差ΔVを観測し、被測定体
1の方の圧力降下が大きい場合は、被測定体1の
気密性は基準品2より劣ると判定され、被測定体
1の圧力降下が基準品2の圧力降下と同等か或い
は小さければ、被測定体1は基準品2より気密性
が優れていると判定できる。
If the airtightness of the object 1 to be measured is poor, the high-pressure air within the measuring section 3 will enter the object 1 to be measured. Therefore, the pressure in the internal space of the measuring section 3 decreases, and the worse the airtightness, the greater the degree of pressure drop. The difference ΔV between the pressure drops in the two measurement parts 3 and 4 is observed, and if the pressure drop in the measured object 1 is larger, the airtightness of the measured object 1 is determined to be inferior to the reference product 2, and the measured object If the pressure drop of the measurement object 1 is equal to or smaller than the pressure drop of the reference product 2, it can be determined that the measurement object 1 has better airtightness than the reference product 2.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このように、容積検出方式の漏れ検査装置は基
準品さえ準備できれば、その基準品に対する相対
性能を比較的容易に、且つ正確に検査測定するこ
とが可能である。
In this way, as long as a reference product is prepared, the volume detection type leak test device can relatively easily and accurately inspect and measure the relative performance with respect to the reference product.

しかし、比較的に被測定体群の品質が良好であ
ることが判つている場合には、検査を早く行うた
めに基準品を用いることなく、双方の測定部に被
測定体を収め、それら双方の被測定体の相対的な
比較検査試験を行うことがある。このような時
に、たまたま被測定体の双方に大リークがある場
合がある。
However, if it is known that the quality of the group of objects to be measured is relatively good, in order to perform the inspection quickly, the objects to be measured are placed in both measuring sections without using the reference product. Comparative inspection tests may be conducted on the objects to be measured. At such times, it may happen that there is a large leak on both of the objects to be measured.

即ち、著しく気密性を欠くと、漏れ検査試験の
所定時間が経過した時には気密性製品の内部と外
部との圧力が等しくなつてしまう。つまり、大リ
ークがあると、測定部内の気体圧力は最も低下し
ている最終状態になつている。従つて、このよう
な場合には、各測定部内の圧力は最も低下する。
つまり、双方の被測定体は物理的形状が同質の品
物であり、各測定部内の圧力低下は等しくなる。
このように双方の被測定体に同時に大リークがあ
ると、各測定部内の気体圧力の低下の程度の差を
検出する差圧検出器は2つの測定部の圧力の差を
検出することはなく、その結果、被測定体の気密
性は良好であると判定してしまう過ちを犯すこと
になる。
That is, if the airtightness is significantly lacking, the pressure inside and outside the airtight product will become equal when the predetermined time of the leakage test has elapsed. In other words, when there is a large leak, the gas pressure within the measuring section is at its final state where it is lowest. Therefore, in such a case, the pressure within each measuring section will be the lowest.
In other words, both objects to be measured have the same physical shape, and the pressure drop in each measuring section is equal.
If there is a large leak in both objects to be measured at the same time, the differential pressure detector that detects the difference in the degree of decrease in gas pressure within each measuring section will not detect the difference in pressure between the two measuring sections. As a result, the user makes the mistake of determining that the airtightness of the object to be measured is good.

この発明はこのような同時大リークを、空圧源
からのチヤージ圧の変動に影響されずに検出する
手段を提供する。
The present invention provides a means for detecting such simultaneous large leaks without being affected by fluctuations in charge pressure from a pneumatic source.

〔問題点を解決するための手段〕[Means for solving problems]

空圧源から正又は負の空気圧を分岐管により、
2つの分流管に取り出し、その分流管の端部にそ
れぞれ測定部を設ける。一方、分岐管から第1制
御弁を介して空気圧を蓄えるタンクを各分流管に
設け、これらのタンクと測定部との間に第2制御
弁を設け、第1制御弁を閉にしてから、測定部に
タンクの空気圧を供給する。
Positive or negative air pressure is supplied from the air pressure source through a branch pipe,
The sample is taken out into two separate flow tubes, and a measuring section is provided at each end of the separate flow tubes. On the other hand, a tank for storing air pressure from the branch pipe via a first control valve is provided in each branch pipe, a second control valve is provided between these tanks and the measuring section, and after closing the first control valve, Supply tank air pressure to the measurement unit.

一方、各測定部内の空気圧を取り出し、その差
の圧力を検出する差圧検出器を設け、その圧力差
が所定値以上に成つたことを検出する手段を設け
る。
On the other hand, a differential pressure detector is provided for extracting the air pressure in each measuring section and detecting the pressure difference therebetween, and means for detecting that the pressure difference has exceeded a predetermined value is provided.

更に、一方のタンクにそのタンク内圧力を検出
する圧力検出器を設け、この圧力検出器からタン
ク内圧力の初期圧力信号を得ると共に、この初期
圧力信号を保持する記憶保持手段を設ける。この
記憶保持手段から得られるタンク内圧力の初期圧
力信号と、タンクから測定部に空気圧を与えたと
き得られる圧力検出信号の圧力信号との差を演算
し、その減算出力が所定値以上に成つたことを検
出して同時大リークが存在したと判断する大リー
ク検出手段を設ける。
Furthermore, one of the tanks is provided with a pressure detector for detecting the tank internal pressure, an initial pressure signal of the tank internal pressure is obtained from this pressure sensor, and a memory holding means is provided for holding this initial pressure signal. The difference between the initial pressure signal of the tank internal pressure obtained from this memory holding means and the pressure signal of the pressure detection signal obtained when air pressure is applied from the tank to the measuring section is calculated, and the subtracted output reaches a predetermined value or more. A large leak detection means is provided for detecting the presence of a simultaneous large leak and determining that a simultaneous large leak exists.

この発明の構成によれば、タンクから測定部に
空気圧を与える場合、タンク内圧力の初期値と、
タンクから測定部に空気圧を与えた後の状態のタ
ンク内圧力値とを比較することができる。よつ
て、被測定体に大リークが存在する場合にはタン
ク内圧力は大きく減少し、その差の値は大きく出
力される。
According to the configuration of the present invention, when applying air pressure from the tank to the measuring section, the initial value of the tank internal pressure,
It is possible to compare the pressure value inside the tank after applying air pressure from the tank to the measuring section. Therefore, if there is a large leak in the object to be measured, the pressure inside the tank will decrease significantly, and the value of the difference will be outputted as a large value.

この結果、2つの測定部間の差圧値が殆どゼロ
で、然も前記差の値が所定値以上の場合には2つ
の測定部に装着した2つの被測定体の双方に「大
リークが存在する」と判定することができる。
As a result, if the differential pressure value between the two measuring parts is almost zero, and the value of the difference is greater than a predetermined value, a "large leak" will occur in both of the two objects to be measured attached to the two measuring parts. It can be determined that "exists".

〔実施例〕〔Example〕

第1図はこの発明の実施例を示す構成図であ
る。
FIG. 1 is a block diagram showing an embodiment of the present invention.

気密性を試験するためには気密性製品の内部と
外部とに圧力差を与え、その圧力差により空気が
品物の内部へ侵入する程度、或いは外部へ漏れ出
した程度を測定する。そのために、一般の試験環
境よりも正圧或いは負圧の空圧源11が必要とさ
れる。空圧源11から正圧又は負圧の漏れ試験用
空気が制御弁12を介し、分岐管13により2つ
に分岐して取り出される。
To test airtightness, a pressure difference is applied between the inside and outside of an airtight product, and the extent to which air enters the product or leaks to the outside is measured based on the pressure difference. Therefore, a pneumatic source 11 with a more positive or negative pressure than in a general test environment is required. Leak test air of positive or negative pressure is branched into two by a branch pipe 13 and taken out from an air pressure source 11 via a control valve 12 .

この2つに分岐した分岐管13の分岐端13
A,13Bにはそれぞれ各別の分流管14,15
が接続され、その分流管14,15内に空圧源1
1からの正圧又は負圧の漏れ試験用空気圧が供給
される。
Branch end 13 of the branch pipe 13 branched into two parts
Separate flow pipes 14 and 15 are installed in A and 13B, respectively.
is connected, and a pneumatic source 1 is connected to the branch pipes 14 and 15.
1 is supplied with positive or negative leak test air pressure.

分流管14,15のそれぞれの端部14A,1
5Aには2つの測定部16,17が設けられる。
これら測定部16,17は互いに同じ内容積Vを
もち、その中に被測定体18,19が収納され
る。これら被測定体18,19が収納されると、
測定部16,17は密閉されその内部は外部と完
全に遮断可能とされる。
End portions 14A, 1 of branch pipes 14, 15, respectively
Two measurement units 16 and 17 are provided in 5A.
These measurement units 16 and 17 have the same internal volume V, and objects to be measured 18 and 19 are housed therein. When these objects to be measured 18 and 19 are stored,
The measurement parts 16 and 17 are sealed and the inside thereof can be completely isolated from the outside.

各測定部16,17と分岐管13の分岐端13
A,13Bとの間には、それぞれにタンク21,
22を設ける。これらタンク21,22は測定部
16,17の内容積Vとほぼ同じ内容積をもつよ
うに構成するのが好ましい。
Each measurement part 16, 17 and the branch end 13 of the branch pipe 13
Between A and 13B, there are tanks 21 and 13B, respectively.
22 is provided. It is preferable that these tanks 21 and 22 are configured to have approximately the same internal volume as the internal volume V of the measuring sections 16 and 17.

これらタンク21,22は分流管14,15と
第1制御弁23,24を通じて、分岐端13A,
13Bに連通する。よつて、第1制御弁23,2
4を操作することにより、タンク21,22には
空圧源11から正圧または負圧の空気圧がチヤー
ジされる。
These tanks 21 and 22 are connected to branch ends 13A and 22 through branch pipes 14 and 15 and first control valves 23 and 24, respectively.
Connects to 13B. Therefore, the first control valves 23, 2
4, the tanks 21 and 22 are charged with positive or negative air pressure from the air pressure source 11.

また、タンク21,22と測定部16,17と
の間には第2制御弁25,26が設けられる。こ
の第2制御弁25,26と第1制御弁23,24
とは開閉操作が全く逆の関係に操作される。つま
り、第1制御弁23,24が開のとき第2制御弁
は閉に制御される。この状態でタンク21,22
が正圧または負圧の試験用の空気圧にチヤージさ
れる。次に第1制御弁23,24が閉じられ、第
2制御弁25,26が開に制御されると、タンク
21,22から測定部16,17に漏れ試験用空
気圧が与えられる。
Further, second control valves 25 and 26 are provided between the tanks 21 and 22 and the measurement units 16 and 17. These second control valves 25, 26 and first control valves 23, 24
The opening and closing operations are performed in a completely opposite manner. That is, when the first control valves 23 and 24 are open, the second control valve is controlled to be closed. In this state, tanks 21 and 22
is charged to positive or negative test air pressure. Next, when the first control valves 23 and 24 are closed and the second control valves 25 and 26 are opened, leak test air pressure is applied from the tanks 21 and 22 to the measurement units 16 and 17.

第2制御弁25,26と測定部16,17との
間の各分流管14,15に分岐管s1,s2を設け、
この分岐管s1,s2によつて差圧検出器27の両方
の入力端子に分岐管14と15の双方を結合させ
る。つまり測定部16,17の圧力の差を差圧検
出器27に与え、その差圧値を検出するように構
成されている。
Branch pipes s 1 and s 2 are provided in each of the branch pipes 14 and 15 between the second control valves 25 and 26 and the measurement units 16 and 17,
Both the branch pipes 14 and 15 are connected to both input terminals of the differential pressure detector 27 by the branch pipes s 1 and s 2 . In other words, the pressure difference between the measuring sections 16 and 17 is applied to the differential pressure detector 27, and the differential pressure value is detected.

この差圧検出器27は供給された各測定部1
6,17間の圧力の差を電気信号eに変換し、こ
の電気信号eは増幅器28を介してその差圧出力
を例えばメータ29等で表示する。
This differential pressure detector 27 is connected to each supplied measuring section 1.
The difference in pressure between 6 and 17 is converted into an electric signal e, and this electric signal e is passed through an amplifier 28 and the differential pressure output is displayed on a meter 29 or the like.

この発明では2つのタンク21,22のうちの
何れか一方のタンク、この例では被測定体18側
のタンク21に、そのタンク21内の空気圧力P
を検出する圧力検出器31を設け、タンク21内
の圧力に応じた電気信号Eに変換して出力する。
In this invention, one of the two tanks 21 and 22, in this example, the tank 21 on the side of the object to be measured 18, is connected to the air pressure P in the tank 21.
A pressure detector 31 is provided to detect the pressure inside the tank 21, and converts it into an electric signal E corresponding to the pressure inside the tank 21 and outputs it.

この圧力検出信号Eは信号処理のための電気回
路32に与えられる。第2図は電気回路の例を示
す図である。この電気回路32には記憶保持手段
33が設けられ、圧力検出信号EはスイツチSW1
を通つてその記憶保持手段33に与えられる。記
憶保持手段33にはタンク21にチヤージした初
期圧力P0を記憶させる。この例では記憶保持手
段33はコンデンサ34と演算増幅器35とから
成り、コンデンサ34に初期圧力P0が保持され、
演算増幅器35から保持値が出力される。
This pressure detection signal E is given to an electric circuit 32 for signal processing. FIG. 2 is a diagram showing an example of an electric circuit. This electric circuit 32 is provided with a memory holding means 33, and the pressure detection signal E is sent to the switch SW1.
It is applied to the memory holding means 33 through. The initial pressure P 0 charged to the tank 21 is stored in the memory storage means 33. In this example, the memory holding means 33 consists of a capacitor 34 and an operational amplifier 35, and the initial pressure P 0 is held in the capacitor 34.
The operational amplifier 35 outputs the held value.

一方、圧力検出信号Eは増幅回路36により増
幅され、その出力E1は係数回路37を介して減
算手段38に与えられる。減算手段38はこの例
では演算増幅器39から成り、その一方の入力端
39Aに、係数回路37からの出力信号αE1と共
に、記憶保持手段33からの記憶信号E0とが供
給されていて、この記憶信号E0から圧力検出信
号αE1を減算して出力する。
On the other hand, the pressure detection signal E is amplified by the amplifier circuit 36, and its output E1 is given to the subtraction means 38 via the coefficient circuit 37. In this example, the subtraction means 38 consists of an operational amplifier 39, and one input terminal 39A of the subtraction means 38 is supplied with the output signal αE 1 from the coefficient circuit 37 as well as the storage signal E 0 from the memory holding means 33. The pressure detection signal αE 1 is subtracted from the stored signal E 0 and output.

減算手段38の出力は信号切換え回路41を通
つて大リーク検出手段42に与えられ、大リーク
検出手段42は大リークが有つたか否かを判定し
て出力する。この例では、大リーク検出手段とし
てメータ42が用いられ、信号切換え回路41を
構成するスイツチSW3がオン、スイツチSW2
SW4がオフのときメータ42に減算手段38から
の出力信号が表示される。つまり、表示器42の
表示値が所定値以上の場合には被測定体19に大
リークが存在すると判定することができる。
The output of the subtraction means 38 is given to the large leak detection means 42 through the signal switching circuit 41, and the large leak detection means 42 determines whether or not there is a large leak and outputs the result. In this example, the meter 42 is used as a large leak detection means, the switch SW 3 constituting the signal switching circuit 41 is on, the switch SW 2 ,
When SW 4 is off, the meter 42 displays the output signal from the subtraction means 38. In other words, if the value displayed on the display 42 is equal to or greater than a predetermined value, it can be determined that a large leak exists in the object 19 to be measured.

信号切換え回路41の可変抵抗器R0は出力E0
E1の校正用に利用される。この信号切換え回路
41は、例えば漏れ検査装置が休止中はタンク2
1のチヤージ圧力Ptに対応した信号E0を、大リ
ーク検出時には減算手段38からの信号E2を、
小リークの有無を検査している間は測定部16,
17のチヤージ圧Pwの信号E1をメータ42で表
示するようにSW2,SW3,SW4が制御される。
The variable resistor R 0 of the signal switching circuit 41 has an output E 0 ,
Used for E 1 calibration. This signal switching circuit 41 is connected to the tank 2 when the leakage inspection device is inactive, for example.
The signal E 0 corresponding to the charge pressure Pt of 1, and the signal E 2 from the subtraction means 38 when a large leak is detected.
While inspecting for the presence or absence of a small leak, the measurement unit 16,
SW 2 , SW 3 , and SW 4 are controlled so that the signal E 1 of the charge pressure Pw of No. 17 is displayed on the meter 42 .

〔作用〕[Effect]

次に、以上のように構成された漏れ検査装置に
関し、この発明の作用を説明する。
Next, the operation of the present invention will be explained regarding the leakage testing device configured as described above.

被測定体を測定部16,17内に収め、測定
物挿入口を密閉する。
The object to be measured is placed in the measuring sections 16 and 17, and the object insertion opening is sealed.

第2制御弁25,26を閉とし第1制御弁2
3,24を開に制御して、空圧源11からタン
ク21,22へ空気圧Ptをチヤージする。但
し、空気圧は正圧として説明する。
The second control valves 25 and 26 are closed and the first control valve 2
3 and 24 are opened to charge air pressure Pt from the air pressure source 11 to the tanks 21 and 22. However, air pressure will be explained as positive pressure.

第1制御弁23,24を閉とし第2制御弁2
5,26を開に制御し、タンク21,22内に
チヤージした空気圧Ptで測定部16,17を
チヤージする。
The first control valves 23 and 24 are closed, and the second control valve 2
5, 26 are controlled to be open, and the measurement units 16, 17 are charged with the air pressure Pt charged in the tanks 21, 22.

通常の測定器、つまり表示器29により測定
体に大リークが在るか否かを確認する。つまり
被測定体18,19のどちらかに、大リークが
在る時は、チヤージされた空気圧は速やかに被
測定体18又は19の内部へ漏れ込み、大リー
クが無かつた方の測定部の圧力との間に大きな
圧力差が生ずるので、その圧力差の値が表示器
29に表示され観測することができる。
A normal measuring device, ie, the display 29, is used to confirm whether or not there is a large leak in the measuring body. In other words, if there is a large leak in either of the objects to be measured 18 or 19, the charged air pressure will immediately leak into the object to be measured 18 or 19, and the measuring portion that does not have a large leak will leak into the object to be measured. Since a large pressure difference occurs between the two pressures, the value of the pressure difference is displayed on the display 29 and can be observed.

表示器29により、どちらの測定体18又は
19に大リークが無いことが確かめられたら、
第2制御弁25,26を閉にし、所定の時間、
例えば1〜2秒程度放置しておき、測定部16
及び17の空気の移動がおさまるのを待つて、
増幅器28の利得を上げ感度を上げた状態で2
つの測定部16,17の圧力の差を検出する。
これにより小リークの有無を検出することがで
きる。
If it is confirmed by the display 29 that there is no major leak in either measuring body 18 or 19,
Close the second control valves 25 and 26 for a predetermined period of time,
For example, leave it for about 1 to 2 seconds, and then
and 17, wait for the air movement to subside,
2 with the gain of the amplifier 28 increased and the sensitivity increased.
The difference in pressure between the two measurement units 16 and 17 is detected.
This makes it possible to detect the presence or absence of a small leak.

被測定体18及び基準品19の両方に同時に大
リークがある場合も、2つの測定部16,17の
圧力には差が生じないことを前に説明した。
As described above, even if there is a large leak in both the object to be measured 18 and the reference product 19 at the same time, there is no difference in the pressures between the two measurement parts 16 and 17.

次に、この発明の要部となる同時大リークを検
出することに関して説明する。
Next, detection of simultaneous large leaks, which is the main part of the present invention, will be explained.

(1) 先に説明したステツプで空圧源11からタ
ンク21,22に空気圧をチヤージしたときの
タンク内のチヤージ圧力を初期圧力Ptとして
圧力検出器31で検出し、その検出信号E0
スイツチSW1を介して記憶保持手段33に与
え、検出信号E0を初期値として記憶保持手段
33に記憶する。
(1) When pneumatic pressure is charged from the pneumatic source 11 to the tanks 21 and 22 in the step described above, the charge pressure in the tank is detected as the initial pressure Pt by the pressure detector 31, and the detection signal E 0 is detected by the switch. It is applied to the memory holding means 33 via SW 1 , and the detection signal E 0 is stored in the memory holding means 33 as an initial value.

(2) ステツプでタンク21,22から測定部1
6,17にタンクの空気圧Ptをチヤージした
ときのタンク21内の圧力Pw、この圧力Pwに
対応した圧力検出器31の出力をE1とする。
(2) Measurement part 1 from tanks 21 and 22 with steps
Let E1 be the pressure Pw in the tank 21 when the air pressure Pt in the tank is charged at times 6 and 17, and the output of the pressure detector 31 corresponding to this pressure Pw.

タンク21,22の内容積をVt、測定部16,
17の内容積から被測定体18,19の体積を引
いた空隙容積をVwで表すと、被測定体は理想的
気密性を有し漏洩がゼロであるとして、次の式(1) Pt×Vt=Pw(Vt+Vw) ……(1) が成り立つ。但し、タンク・チヤージ圧Ptは検
査を始める前(被測定体を収納している時点)の
測定部内に比べて充分に大きいとした。この式(1)
を変形して Pt={(Vt+Vw)/Vt}・Pw ……(1)′ を得る。ここで、 (Vt+Vw)/Vt=α ……(2) とおくと、式(1)′は Pt=α・Pw ……(3) となる。被測定体18に大リークが無い場合は Pt−αPw≒0となる。
The internal volumes of the tanks 21 and 22 are Vt, and the measurement unit 16,
The void volume obtained by subtracting the volume of the objects to be measured 18 and 19 from the internal volume of the object 17 is expressed as Vw. Assuming that the objects to be measured have ideal airtightness and no leakage, the following equation (1) Pt× Vt=Pw (Vt+Vw) ...(1) holds true. However, it was assumed that the tank charge pressure Pt was sufficiently higher than that inside the measurement section before the inspection started (at the time when the object to be measured was stored). This formula (1)
By transforming, we obtain Pt={(Vt+Vw)/Vt}・Pw...(1)′. Here, if we set (Vt+Vw)/Vt=α...(2), equation (1)' becomes Pt=α・Pw...(3). If there is no large leak in the object to be measured 18, Pt−αPw≈0.

以上では、被測定体18に大リークが無いとし
てきた。今、被測定体18に大リークがあり、従
つて、測定部16にチヤージされた空気が被測定
体等の内部に侵入すると、測定部内のチヤージ圧
つまり弁25を開いたときのタンク21内の圧力
Pwは低下し、Pw′になる。Pw>Pw′であるから
明かに、 Pt−αPw′>0 ……(4) である。即ち、この発明では、このタンク内圧力
の変化を測定することにより、被測定体18と1
9の双方に同時に大リークが存在した場合、その
同時大リークを検出することができる。
In the above, it has been assumed that there is no major leak in the object to be measured 18. Now, if there is a large leak in the object to be measured 18 and the air charged in the measuring section 16 enters the object to be measured, the charge pressure inside the measuring section, or the inside of the tank 21 when the valve 25 is opened, will increase. pressure of
Pw decreases to Pw′. Since Pw>Pw', it is clear that Pt−αPw'>0...(4). That is, in the present invention, by measuring the change in the pressure inside the tank, the object to be measured 18 and the
9, the simultaneous large leak can be detected.

ここで、Ptはタンク21のチヤージ圧力であ
り、その時、圧力検出器31からは圧力信号E0
が出力される。この圧力信号E0は記憶保持手段
33に記憶される。減算手段38は記憶保持手段
から出力される信号E0と、係数回路37から与
えられるαE1の差E2=E0−αE1を演算する。被測
定体18にリークがないときE2=E0−αE1=0と
なるように係数回路37において係数値αの値を
規定する。つまり、抵抗器R3を設定する。
Here, Pt is the charge pressure of the tank 21, and at that time, the pressure signal E 0 from the pressure detector 31 is
is output. This pressure signal E 0 is stored in the memory holding means 33. The subtraction means 38 calculates the difference between the signal E 0 outputted from the memory holding means and αE 1 given from the coefficient circuit 37, E 2 =E 0 −αE 1 . The coefficient value α is defined in the coefficient circuit 37 so that E 2 =E 0 −αE 1 =0 when there is no leak in the measured object 18 . That is, set the resistor R 3 .

大リークが無い場合には式(2)から、明らかに
E2=0である。大リークが存在する場合にはタ
ンク21内の圧力は初期値PtからPw′に変化す
る。この時の減算はE2=E0−αE1となる。Pt−
αPw′>0であるからE0>αE1となり、E2>0と
なる。従つて、同時大リークの検出が可能とな
る。
If there is no large leak, it is clear from equation (2) that
E 2 =0. If a large leak exists, the pressure within the tank 21 changes from the initial value Pt to Pw'. The subtraction at this time is E 2 =E 0 −αE 1 . Pt−
Since αPw′>0, E 0 >αE 1 and E 2 >0. Therefore, it is possible to detect simultaneous large leaks.

今、ここで、空圧源11内の圧力変動があり、
例えばタンク21,22へのチヤージ圧が変化
し、テスト圧がPt′=Pt+ΔPに変動した場合につ
いて説明する。
Now, here, there is a pressure fluctuation in the pneumatic source 11,
For example, a case will be explained in which the charge pressure to the tanks 21 and 22 changes and the test pressure changes to Pt'=Pt+ΔP.

被測定体18の気密性が良く、漏れがない場合
は、式(3)と同様に、 Pw′=(1/α)Pt′ ……(3)′ 即ち、αPw′−Pt′=0である。漏れがあつて
Pw′が変化して大リークのためにPw″に変動した
とすれば、 αPw′−αPw″>0 である。従つて、テスト圧Ptの変動に影響され
ることなく、大リークを検出することができる。
If the measured object 18 has good airtightness and there is no leakage, Pw' = (1/α)Pt' ... (3)', that is, αPw' - Pt' = 0, as in equation (3). be. There is a leak
If Pw′ changes and changes to Pw″ due to a large leak, αPw′−αPw″>0. Therefore, a large leak can be detected without being affected by fluctuations in test pressure Pt.

〔発明の効果〕〔Effect of the invention〕

以上に説明したように、1対の等しい測定部を
有する容積検出方式の漏れ検査装置では2つの被
測定体を同時に試験をして、相対的に漏れの有無
を判定するが、この検査装置の欠点として、2つ
の被測定体の双方が共に著しくその気密性が悪
く、チヤージされた空気がほぼ一気に侵入して、
従つて双方の被測定体がその最終状態に落ち着い
てしまう場合は、測定部の相互において差圧が発
生しないため双方を良品と判定してしまつたが、
この発明によれば、このような容積検出方式の重
大欠点を解決することができる。しかも、テスト
圧の変動に影響されることがなく、その効果は大
である。
As explained above, in a volume detection type leak testing device that has a pair of equal measuring parts, two objects to be measured are tested simultaneously and the presence or absence of a leak is determined relative to each other. The disadvantage is that both of the two objects to be measured have extremely poor airtightness, allowing charged air to enter almost all at once.
Therefore, if both objects to be measured settle down to their final state, no differential pressure will occur between the measuring parts, so both will be judged as good.
According to the present invention, the serious drawbacks of such volume detection methods can be solved. Moreover, it is not affected by fluctuations in test pressure, and its effects are great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の容積検出式漏れ検査装置の
例を示す構成図、第2図はこの発明の大リーク検
出回路の構成例を示す図、第3図は容積検出方式
の漏れ検査装置の原理を説明するための図であ
る。 1:基準品、2:被測定体、3,4:測定部、
5:空圧源、6,7:制御弁、8:差圧検出器、
11:空圧源、12:制御弁、13:分岐管、1
4,15:分流管、16,17:測定部、18:
被測定体、19:基準品、21:タンク、22:
タンク、23,24:第1制御弁、25,26:
第2制御弁、27:差圧検出器、28:増幅器、
29:メータ、31:圧力検出器、32:電気回
路、33:記憶保持手段、34:コンデンサ、3
5:演算増幅器、36:増幅回路、37:係数回
路、38:減算手段、39:演算増幅器、41:
信号切換え回路、42:大リーク検出手段、P1
P2:各分流管の圧力検出点、e:差圧検出器の
出力、E0:タンク内の初期圧力、Vt:タンクの
内容積、Vw:測定部の内容積から被測定体の体
積を引いた空隙容積、Pt:タンク内のテスト圧
力、Pw:タンクから測定部へチヤージ後のタン
クと測定部との圧力。
FIG. 1 is a configuration diagram showing an example of a volumetric leak detection system according to the present invention, FIG. 2 is a diagram showing a configuration example of a large leak detection circuit according to the invention, and FIG. FIG. 3 is a diagram for explaining the principle. 1: Reference product, 2: Measured object, 3, 4: Measuring part,
5: Air pressure source, 6, 7: Control valve, 8: Differential pressure detector,
11: Air pressure source, 12: Control valve, 13: Branch pipe, 1
4, 15: Diversion tube, 16, 17: Measurement part, 18:
Measured object, 19: Reference product, 21: Tank, 22:
Tank, 23, 24: First control valve, 25, 26:
2nd control valve, 27: differential pressure detector, 28: amplifier,
29: Meter, 31: Pressure detector, 32: Electric circuit, 33: Memory holding means, 34: Capacitor, 3
5: operational amplifier, 36: amplifier circuit, 37: coefficient circuit, 38: subtraction means, 39: operational amplifier, 41:
Signal switching circuit, 42: Large leak detection means, P 1 ,
P 2 : Pressure detection point of each branch pipe, e: Output of differential pressure detector, E 0 : Initial pressure in the tank, Vt: Internal volume of the tank, Vw: Volume of the object to be measured from the internal volume of the measuring part. Subtracted void volume, Pt: Test pressure inside the tank, Pw: Pressure between the tank and the measuring section after charging from the tank to the measuring section.

Claims (1)

【特許請求の範囲】 1 A 空圧源により発生する正又は負の空気圧
を2分岐する分岐管と、 B この分岐管の一方と他方の分岐端に接続した
二本の分流管と、 C この分流管のそれぞれの端部に接続した二つ
の測定部と、 D この二つの測定部と上記分岐管の各分岐端と
の間に設けられ上記測定部の容積に近い容積を
持つ二つのタンクと、 E このタンクと上記分岐端との間のそれぞれに
設けられ上記タンクに上記空圧源からの空気圧
を与える第1制御弁と、 F 上記二つのタンクと上記測定部の間のそれぞ
れに設けられ上記二つのタンクに等量の空気圧
が蓄えられた状態で上記第1制御弁が閉じられ
た後に開に制御される第2制御弁と、 G この第2制御弁と測定部の間の分流管の相互
間に接続された差圧検出器と、 H この差圧検出器から出力される電気信号によ
り上記測定部における圧力差が所定値以上にな
つた状態を検出し、測定部に装着した被測定体
に漏れが存在することを検出する漏れ検出手段
と、 I 上記タンクの何れか一方の圧力を検出する圧
力検出器と、 J 上記第1制御弁が開の状態で上記タンクに空
圧源から与えられた空気圧が蓄積された状態に
おいて上記圧力検出器から出力される検出信号
を記憶保持する記憶保持手段と、 K 上記第2制御弁が開けられ上記タンクから測
定部に空気圧が与えられた状態において上記圧
力検出器から出力される検出信号を上記記憶保
持手段に保持された値から減算する減算手段
と、 L この減算手段の減算結果が所定値以上か否か
を判定し測定部に装着した被測定体に大きな漏
れが存在することを検出する大リーク検出手段
と、 から成る漏れ検査装置。
[Claims] 1. A branch pipe that branches positive or negative air pressure generated by a pneumatic source into two parts, B. Two branch pipes connected to one branch end and the other branch end of this branch pipe, and C. D: two measuring sections connected to respective ends of the branch pipe; D; two tanks provided between the two measuring sections and each branch end of the branch pipe and having a volume close to the volume of the measuring section; , E: a first control valve provided between the tank and the branch end for supplying air pressure from the pneumatic source to the tank; F: a first control valve provided between the two tanks and the measuring section. a second control valve that is controlled to open after the first control valve is closed with equal amounts of air pressure stored in the two tanks; A differential pressure detector connected between the A leak detection means for detecting the presence of a leak in the measurement object; I A pressure detector for detecting the pressure in either one of the tanks; J A pneumatic source for the tank when the first control valve is open. memory holding means for storing and holding a detection signal output from the pressure detector in a state in which air pressure given by K is accumulated; subtracting means for subtracting the detection signal output from the pressure detector from the value held in the memory holding means in the state; A leak testing device comprising: large leak detection means for detecting the presence of a large leak in a measured object.
JP20141685A 1985-09-11 1985-09-11 MOREKENSASOCHI Expired - Lifetime JPH0230462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20141685A JPH0230462B2 (en) 1985-09-11 1985-09-11 MOREKENSASOCHI

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20141685A JPH0230462B2 (en) 1985-09-11 1985-09-11 MOREKENSASOCHI

Publications (2)

Publication Number Publication Date
JPS6262241A JPS6262241A (en) 1987-03-18
JPH0230462B2 true JPH0230462B2 (en) 1990-07-06

Family

ID=16440718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20141685A Expired - Lifetime JPH0230462B2 (en) 1985-09-11 1985-09-11 MOREKENSASOCHI

Country Status (1)

Country Link
JP (1) JPH0230462B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235002A (en) * 1991-01-09 1992-08-24 Kyokuto Kogyo Kk Floating concrete structure having approximately u-shaped cross section and fabrication thereof
JP2014163754A (en) * 2013-02-22 2014-09-08 Koito Mfg Co Ltd Inspection device of vehicle lighting fixture

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110108420B (en) * 2019-06-02 2021-02-05 重庆科荣达航空科技有限公司 Pneumatic element quality detection equipment

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4049618B2 (en) * 2002-05-31 2008-02-20 大日本印刷株式会社 Printed wiring board, metal plate with relief pattern for printed wiring board, and method for manufacturing printed wiring board
JP2004179575A (en) * 2002-11-29 2004-06-24 Ngk Spark Plug Co Ltd Core board for wiring board, its manufacturing method, and build-up wiring board using the same
JP4337358B2 (en) * 2003-02-17 2009-09-30 日立化成工業株式会社 Intermediate wiring member for stacking, wiring board, and manufacturing method thereof
JP2009016818A (en) * 2007-07-04 2009-01-22 Samsung Electro-Mechanics Co Ltd Multilayer printed circuit board and method of manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04235002A (en) * 1991-01-09 1992-08-24 Kyokuto Kogyo Kk Floating concrete structure having approximately u-shaped cross section and fabrication thereof
JP2014163754A (en) * 2013-02-22 2014-09-08 Koito Mfg Co Ltd Inspection device of vehicle lighting fixture

Also Published As

Publication number Publication date
JPS6262241A (en) 1987-03-18

Similar Documents

Publication Publication Date Title
US4675834A (en) Pressure variation detecting type leakage inspection system with temperature compensation
US4686638A (en) Leakage inspection method with object type compensation
EP0139752B1 (en) Pressure variation detecting type leakage inspection equipment
US7752891B2 (en) Method for testing containers, use of the method, and a testing device
US3504528A (en) Fluid pressure leak detector system for closed containers and the like
JPH01142430A (en) Seal degree testing method and apparatus for hollow container
KR20090003195A (en) Leakage inspecting method and leakage inspecting device for pipe lines
US3839900A (en) Air leakage detector
RU99125617A (en) METHOD FOR CHECKING THE LEAKAGE OF CLOSED VESSELS, A TEST CHAMBER, A TEST DEVICE AND A TEST INSTALLATION FOR THIS
CN114812972A (en) Differential pressure double-channel leakage detection method and device and differential pressure double-channel leakage detector
JPS63261114A (en) Method and device for measuring volume of liquid in tank
US3893332A (en) Leakage test system
JPH0230462B2 (en) MOREKENSASOCHI
JP3715543B2 (en) Airtight performance test method
JPH0222666Y2 (en)
RU2426080C1 (en) Method of measuring pressure in fluid transfer pipeline and device to this end
JP3143299B2 (en) How to measure gas leaks from containers
JP3382727B2 (en) Leak test equipment
JPH0240515Y2 (en)
JP3186644B2 (en) Gas leak inspection method
JPH07117474B2 (en) Leak test method and device
JP3422348B2 (en) Leak inspection method and device
JP3132710B2 (en) Leak inspection equipment
JPH02306133A (en) Inspecting apparatus for leakage
JPH0134333B2 (en)