JPH02304341A - Measuring device for concentration of ozone - Google Patents

Measuring device for concentration of ozone

Info

Publication number
JPH02304341A
JPH02304341A JP12289089A JP12289089A JPH02304341A JP H02304341 A JPH02304341 A JP H02304341A JP 12289089 A JP12289089 A JP 12289089A JP 12289089 A JP12289089 A JP 12289089A JP H02304341 A JPH02304341 A JP H02304341A
Authority
JP
Japan
Prior art keywords
ozone
resistance value
sensor
concentration
concn
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12289089A
Other languages
Japanese (ja)
Inventor
Choji Nagamine
長峯 長次
Rumi Sasai
笹井 るみ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP12289089A priority Critical patent/JPH02304341A/en
Publication of JPH02304341A publication Critical patent/JPH02304341A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PURPOSE:To measure the concn. of ozone over a wide range at the rapid speed of response by calculating the concn. of ozone from the degree of rise of resistance value when the degree of rise exceeds the preset value in a thin film type ozone sensor of an n-type semiconductor. CONSTITUTION:The resistance of an n-type semiconductor ozone sensor 1 changes by the concn. of ozone. The change in the resistance value is measured in a measuring circuit 3 and A/D-converted 4 and inputted to a CPU 6 constituted of a microcomputer. The CPU 6 detects that ozone is attracted to a sensor 1 and the resistance value starts to be raised. The concn. of ozone is calculated by the degree of increase in the resistance at every constant short time while keeping both the resistance value and the time as a reference. Further when the resistance value reaches equilibrium, the concn. of ozone is calculated on the basis of this resistance value. Thereby the measured value of the concn. of ozone in a wide range is obtained at the rapid speed of response.

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、雰囲気中のオゾン濃度を検知するオゾン濃
度測定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an ozone concentration measuring device for detecting ozone concentration in an atmosphere.

[従来の技術] 従来からオゾンは種々の利用法があり、例えば冷蔵庫の
におい消しに用いることが知られている。
[Prior Art] Ozone has been used in various ways, for example, it is known to be used to eliminate odors from refrigerators.

これは冷蔵庫内に殺閑灯を設け、その放射する紫外線に
よって庫内にオゾンを生成させて、このオゾンの働きに
より庫内のにおいを除去するものである。このようなオ
ゾンの利用においては、オゾンの毒性を考慮するとその
発生量の制御が必要であり、このためにオゾン濃度をセ
ンサによって検知しオゾン発生量を制御することが考え
られる。
This is a method in which a deadlight is installed inside the refrigerator, and the ultraviolet light it emits generates ozone inside the refrigerator, and this ozone removes odors inside the refrigerator. In such use of ozone, it is necessary to control the amount of ozone generated in consideration of the toxicity of ozone, and for this purpose, it is possible to detect the ozone concentration with a sensor and control the amount of ozone generated.

このような場合に必要となるオゾンセンサとして半導体
薄膜を利用する手段がある。
There is a means of using a semiconductor thin film as an ozone sensor that is necessary in such a case.

第5図は例えば特開昭63−298148号公報に示さ
れたIn2O3(酸化インジューム)を生成物とするn
型半導体薄膜型オゾンセンサの正面図である。また、第
6図は第5図に示したA−・A線に沿う断面図である。
Figure 5 shows, for example, the n
FIG. 2 is a front view of a semiconductor thin film ozone sensor. Further, FIG. 6 is a sectional view taken along line A--A shown in FIG. 5.

第5図及び第6図において(101)はA I 20 
a等の耐熱性と絶縁性を有する基板、(102)は基板
(101)上にくし型に印刷成形された一対のセンサ電
極、(103)は基板表面に形成されたn型半導体薄膜
よりなる感オゾン膜である。なお、(105)は感オゾ
ン膜(103)を加熱するため基板(101)の裏側に
取付けた発熱体であり、(106)はその電極である。
In Figures 5 and 6, (101) is A I 20
(102) is a pair of sensor electrodes printed in a comb shape on the substrate (101), and (103) is an n-type semiconductor thin film formed on the surface of the substrate. It is an ozone-sensitive membrane. Note that (105) is a heating element attached to the back side of the substrate (101) to heat the ozone-sensitive film (103), and (106) is its electrode.

このようなn型半導体薄膜で形成された感オゾン膜(1
03)はオゾンのような酸化性の強い気体を吸着すると
、その電気抵抗が増加する性質を有するので、オゾン濃
度に応じて増大した一対のセンサ電極(102)間の抵
抗値をリード線(104)を介して測定することにより
オゾン濃度の検出を行なうことができる。なお、感オゾ
ン膜(103)には上記In  OのほかにS n O
2(酸化スズ)などのn型半導体を使用してもよい。
An ozone-sensitive film (1
03) has a property that its electrical resistance increases when it adsorbs a strongly oxidizing gas such as ozone, so the resistance value between the pair of sensor electrodes (102), which increases according to the ozone concentration, is measured by the lead wire (104). ) The ozone concentration can be detected by measuring the ozone concentration. In addition to the above-mentioned InO, the ozone-sensitive film (103) also contains SnO.
An n-type semiconductor such as 2 (tin oxide) may also be used.

[発明が解決しようとする課題] 上記のようなn型半導体オゾンセンサのオゾン濃度とセ
ンサ抵抗値の関係は、第7図のセンサにオゾンが接触し
た後の経過時間とセンサ抵抗値との関係線図に示される
ように、オゾン濃度の増加に対して抵抗値は大きく増加
し、比較的高いオゾン濃度雰囲気中では抵抗値は測定で
きないほどに大きくなる。一般には、回路の基板などが
吸湿によって絶縁抵抗が減少した場合に、センサの抵抗
値はこれらの抵抗値よりも高くなって正しいオゾン濃度
の測定は不可能である。この場合センサの膜厚を厚くす
ることによってオゾン濃度に対応するセンサの抵抗値を
下げることができるが、一方センサの応答は鈍くなって
、抵抗値がオゾン濃度に対応した値に達するまでの時間
と抵抗値変化との関係は、第7図に示したものより遅く
緩やかになる。したがって、このセンサを用いた従来の
オゾン濃度測定装置では高濃度における測定の正確さと
応答速度とが互いに両立しないという問題があった。
[Problems to be Solved by the Invention] The relationship between the ozone concentration and the sensor resistance value of the n-type semiconductor ozone sensor as described above is the relationship between the elapsed time after ozone comes into contact with the sensor and the sensor resistance value as shown in Fig. 7. As shown in the diagram, the resistance value increases greatly as the ozone concentration increases, and in an atmosphere with a relatively high ozone concentration, the resistance value becomes so large that it cannot be measured. Generally, when the insulation resistance of a circuit board or the like decreases due to moisture absorption, the resistance value of the sensor becomes higher than these resistance values, making it impossible to accurately measure ozone concentration. In this case, by increasing the film thickness of the sensor, the resistance value of the sensor corresponding to the ozone concentration can be lowered, but on the other hand, the response of the sensor becomes slower and it takes a longer time for the resistance value to reach the value corresponding to the ozone concentration. The relationship between the resistance value change and the resistance value change is slower and gentler than that shown in FIG. Therefore, the conventional ozone concentration measuring device using this sensor has a problem in that measurement accuracy and response speed at high concentrations are not compatible with each other.

この発明は上記のような課題を解決するためになされた
もので、応答が速くかつ広い測定レンジを有するオゾン
濃度測定装置を得ることを目的とするものである。
This invention was made to solve the above-mentioned problems, and aims to provide an ozone concentration measuring device that has a quick response and a wide measurement range.

[課題を解決するための手段] この発明に係るオゾン濃度測定装置は、n型半導体オゾ
ンセンサとその抵抗値を13定する回路とを設けるとと
もに、マイクロコンピュータによってこの測定抵抗値が
上昇し始めた時点を認識し、さらにこの時の時間と抵抗
値とを基準として、その後一定時間ごとに抵抗値の増加
率を認識し、その都度演算によってオゾン濃度を測定表
示する手段を備えるようにしたものである。
[Means for Solving the Problems] The ozone concentration measuring device according to the present invention is provided with an n-type semiconductor ozone sensor and a circuit for determining its resistance value, and a microcomputer is used to increase the measured resistance value. It is equipped with a means for recognizing a time point, using the time and resistance value at this time as a reference, recognizing the rate of increase in the resistance value at regular intervals thereafter, and measuring and displaying the ozone concentration by calculation each time. be.

[作 用] この発明においては、センサにオゾンが吸着してその抵
抗値が上昇し始めたことを演算装置が検知し、この時の
抵抗値と時間を基準にして、一定の短い時間後ごとにそ
の抵抗値の増加率によってオゾン濃度が検出される。、
また、抵抗値が平衡に達すると、その抵抗値に基づいて
オゾン濃度の検出を行うように演算を切換える。
[Function] In this invention, the arithmetic unit detects that ozone is adsorbed to the sensor and its resistance value starts to rise, and the sensor detects the resistance value and the resistance value at regular intervals after a certain short period of time. The ozone concentration is detected by the rate of increase in the resistance value. ,
Furthermore, when the resistance value reaches equilibrium, the calculation is switched to detect the ozone concentration based on the resistance value.

[実施例] 第1図はこの発明の一実施例によるオゾン濃度測定装置
の構成を示すブロック図、第2図はセンサの測定回路を
示す図である。第1図及び第2図において、(1)はオ
ゾンセンサで、例えばIn2O3系のn型半導体を用い
た半導体ガスセンサ素子が使用され、上記従来装置の第
4図、第5図と同様のものである。(2)はセンサ用直
流電g、(3)は測定回路、(4)はオゾンセンサ(1
)の出力電圧をアナログからデジタル信号に変換するA
/D変換器、(5)はA/D変換器(4)の出力信号を
処理する入力回路、(6)は内部に時計機能を有し、入
力回路(5)からの信号を演算処理する中央処理装置(
CPU)、(7)は中央処理装置(6)の直流電源、(
8)は中央処理装置(6)からの出力信号を次段の回路
等への入力信号に変換する出力回路、(9)は中央処理
装置(6)で得た出力信号を記憶するメモリー(記憶装
置)、(10)は出力回路(8)によってオゾン濃度を
表示する濃度表示部である。
[Embodiment] FIG. 1 is a block diagram showing the configuration of an ozone concentration measuring device according to an embodiment of the present invention, and FIG. 2 is a diagram showing a measurement circuit of a sensor. In Figures 1 and 2, (1) is an ozone sensor, which uses a semiconductor gas sensor element using, for example, an In2O3-based n-type semiconductor, and is similar to the conventional device shown in Figures 4 and 5 above. be. (2) is the DC current g for the sensor, (3) is the measurement circuit, and (4) is the ozone sensor (1
) to convert the output voltage from analog to digital signal A
/D converter, (5) is an input circuit that processes the output signal of the A/D converter (4), and (6) has an internal clock function and processes the signal from the input circuit (5). Central processing unit (
CPU), (7) is the DC power supply of the central processing unit (6), (
8) is an output circuit that converts the output signal from the central processing unit (6) into an input signal to the next stage circuit, etc., and (9) is a memory that stores the output signal obtained from the central processing unit (6). (device), (10) is a concentration display section that displays ozone concentration by an output circuit (8).

上記のような構成に基づき、第3図の一実施例によるオ
ゾン濃度検出装置の動作フローを示すフローチャートに
よって動作を説明する。
Based on the above configuration, the operation will be explained with reference to a flowchart showing the operation flow of the ozone concentration detection device according to one embodiment of FIG. 3.

まず、測定開始ステップ(L2)で測定を開始すると、
オゾンセンサ(1)には規定の電圧が印加されるととも
に、オゾンセンサ(1)の基準抵抗Rsの初期値として
無限大のRs−■がRsの初期値設定ステップ(13)
において演算回路に設定される。
First, when you start measurement in the measurement start step (L2),
A prescribed voltage is applied to the ozone sensor (1), and the initial value of Rs - ■ is set as the initial value of the reference resistance Rs of the ozone sensor (1).
is set in the arithmetic circuit.

次に、待機ステップ(14)でW秒(ここではW−1と
する)待った後に、Rm測定ステップ(15)に進んで
オゾンセンサ(1)の抵抗値Rmを測定する。
Next, after waiting W seconds (here W-1) in a standby step (14), the process proceeds to an Rm measurement step (15) to measure the resistance value Rm of the ozone sensor (1).

Re設定ステップ(IB)でRm / RsをReとし
、判定ステップ(17)に進んでReが1.1より大き
いか否かを判定してNOであればRe設定ステップ(1
8)に進み、RsをRmと同じ値に再設定し、一般的な
演算式C−A+BIog Rm (A、  Bは定数)
の式(1)により濃度算出ステップ(19)においてR
mの値からオゾン濃度Cを算出し、濃度表示ステップ(
20)でこれを表示する。次いで、基準時間設定ステッ
プ(21)で内臓時計の時間を1(W)秒に設定して待
機ステップ(14)に戻る。
In the Re setting step (IB), Rm/Rs is set to Re, and the process proceeds to the determination step (17), where it is determined whether or not Re is greater than 1.1. If NO, the Re setting step (1
Proceed to step 8), reset Rs to the same value as Rm, and use the general formula C-A+BIog Rm (A and B are constants)
In the concentration calculation step (19) using the formula (1), R
The ozone concentration C is calculated from the value of m, and the concentration display step (
20) to display this. Next, in the reference time setting step (21), the time of the internal clock is set to 1 (W) seconds, and the process returns to the standby step (14).

以上のようにステップ(17)でRe > 1.Lでな
ければ(オゾンがほとんど存在しない場合)、ステップ
(14)からステップ(21)までのループ■を約1(
W)秒サイクルで動作し、オゾン濃度の測定と表示がそ
の都度行なわれる。
As described above, in step (17) Re > 1. If it is not L (when there is almost no ozone), the loop ■ from step (14) to step (21) is approximately 1 (
W) It operates on a second cycle, and the ozone concentration is measured and displayed each time.

次にこの状態のオゾンセンサ(1)を例えばオシ゛/濃
度1 ppmの雰囲気中に入れた場合の動作を説明する
。オゾンセンサ(1)自体の抵抗はその直後から後述す
る第7図に示すように変化するので、1(W)秒後には
Rm/ Rs >1.1  (10%以上の増大)とな
り、判定ステップ(17)でYESとなりTの条件付き
設定ステップ(22)に進んで、これまでのT−1(W
)をT−2と改め、W>2ならばTの再設定は不要とし
、濃度算出ステップ(23)においてC−exp (A
log Re/log T) /Bの式(2)よりオゾ
ン濃度Cを算出し、濃度表示ステップ(24)でこれを
表示する。次に、待機ステップ(25)でW(1)秒待
つことにより待機ステップ(2B)を経てTmT+Wを
設定し、Rn測定ステップ(27)でオゾンセンサ(1
)の抵抗を測定し、この値をRnとする。このRnがR
n判定ステップ(28)で無限大(測定可能、な最大抵
抗値でここでは100 MΩ−Rooとする)か否かの
判定をし、第7図で見られるようにT−T+W−2秒の
ときRnはR−に満たないのでYESを選択し、Rn/
Rm判定ステップ(29)に進む。Rn / Rm判定
ステップ(29)におけるR n / Rmが1.03
より大きいか否かの判定で、抵抗の上昇率が大きい場合
はYESが選択され、T判定ステップ(30)でTが6
0×Wより大きいか否かの判定の結果、YESであれば
Rm判定ステップ(31)においてRm−Rnと設定し
、Re設定ステップ(16)に戻りで以後ループ■のス
テップを繰返し実行する。また、第7図に見られるよう
にオゾン濃度lppmの雰囲気中にこのオゾンセンサ(
1)を入れると、18秒後にはRnが仮りに設定したR
ooの100MΩを超えるため、Rn判定ステップ(2
8)においてNoとなり、濃度は1(W)秒前に算出し
たCを濃度表示ステップ(24)により表示し、Rnの
値が測定の可能なR==0より小さくなるまでループ■
を繰返し実行する。
Next, the operation when the ozone sensor (1) in this state is placed in an atmosphere with an osmosis/concentration of 1 ppm, for example, will be described. Immediately after that, the resistance of the ozone sensor (1) itself changes as shown in FIG. If the answer is YES in (17), the process proceeds to the conditional setting step (22) for T, and the previous T-1 (W
) is changed to T-2, and if W>2, it is not necessary to reset T, and in the concentration calculation step (23), C-exp (A
The ozone concentration C is calculated from the equation (2) of log Re/log T) /B, and is displayed in the concentration display step (24). Next, in the standby step (25), TmT+W is set by waiting W (1) seconds through the standby step (2B), and the ozone sensor (1) is set in the Rn measurement step (27).
) and set this value as Rn. This Rn is R
In the n judgment step (28), it is judged whether or not it is infinite (the maximum measurable resistance value, here 100 MΩ-Roo), and as shown in Figure 7, the Since Rn is less than R-, select YES and set Rn/
Proceed to Rm determination step (29). Rn/Rm in Rn/Rm determination step (29) is 1.03
If the rate of increase in resistance is large, YES is selected in the T determination step (30), and T is 6.
If the result of the determination is YES, Rm-Rn is set in the Rm determination step (31), and the process returns to the Re setting step (16), whereupon the steps in loop (2) are repeatedly executed. Also, as shown in Figure 7, this ozone sensor (
1), Rn will change to the temporarily set R after 18 seconds.
Since oo exceeds 100MΩ, Rn judgment step (2
8), the concentration C calculated 1 (W) seconds ago is displayed in the concentration display step (24), and the loop continues until the value of Rn becomes smaller than measurable R==0.
Execute repeatedly.

オゾンセンサ(1)の抵抗値の上昇率が小さくなりRn
の値が1(W)秒前に測定したRmの値の1.03倍以
下になった場合、Rn / Rm判定ステップ(29)
でNOが選択されてRm設定ステップ(32)に進んで
RmとRnを等しくシ、次いでRe設定ステップ(18
)によりRsを改め、一般的な濃度を算出する濃度算出
ステップ(19)によりオゾン濃度CJE:算出して、
この濃度Cを濃度表示ステップ(20)で表示し、Re
が判定ステップ(17)により1.1を超えるまでルー
プIを繰返し実行する。
The rate of increase in the resistance value of the ozone sensor (1) becomes smaller and Rn
If the value of Rm becomes 1.03 times or less the value of Rm measured 1 (W) seconds ago, Rn/Rm determination step (29)
If NO is selected in the step, the process proceeds to the Rm setting step (32), sets Rm and Rn equally, and then sets the Re setting step (18).
) to calculate the ozone concentration CJE: according to the concentration calculation step (19) in which the general concentration is calculated.
This concentration C is displayed in the concentration display step (20), and Re
Loop I is repeatedly executed until the value exceeds 1.1 according to the determination step (17).

また、Rn判定ステップ(28)でRnがRoOを超え
てNOが選択されると、ループ■の手順となってRnが
減少するまで濃度Cの表示が継続する。
Further, when Rn exceeds RoO and NO is selected in the Rn determination step (28), the display of the concentration C continues until Rn decreases in the procedure of loop (3).

また、Rn / Rmが1603以上でRn / Rm
判定ステップ(29)がYESを選んでも、Tが80(
60xW)秒を超えるような場合にはループ■やループ
■の実行が繰り返えされる間に新たな濃度変化があった
ものと考えられるので、T判定ステップ(30)により
Rm設定ステップ(32)を介してRe設定ステップ(
18)に至り、ループIを実行させてRm。
Also, if Rn/Rm is 1603 or more, Rn/Rm
Even if the determination step (29) selects YES, T is 80 (
If the time exceeds 60xW) seconds, it is considered that a new concentration change occurred while loop ■ and loop ■ were repeated, so the T determination step (30) causes the Rm setting step (32) to be performed. via the Re configuration step (
18), execute loop I and Rm.

Rs、Tを新たに設定し、Reが判定ステップ(17)
により判定してループIによる通常の濃度計算が適当か
否かの選択を行うこととなる。
Newly set Rs and T, and Re is the determination step (17)
A decision is made as to whether or not normal concentration calculation using loop I is appropriate.

第7図の経過時間とセンサ抵抗の関係を示す曲線を例に
とると、C−exp (Alog Re/logT)/
Bで示される式(2)中の定数としてA−1,643、
B−252が得られるので、Cmexp(1,643l
og Re / log T ) / 252によって
、図中の各濃度、各時間においてオゾン濃度(補正濃度
)を算出した結果を第4図に示す。すなわち、上式の濃
度計算および第3図のフローチャートによれば、定数A
、Bを適切な値に設定することにより、第7図のように
オゾンセンサの応答が遅い場合、あるいは真の抵抗が測
定できないほどに高い抵抗値になった場合でも、応答が
速くかつ高精度のDI定を行うことが可能となる。
Taking the curve showing the relationship between elapsed time and sensor resistance in FIG. 7 as an example, C-exp (Alog Re/logT)/
A-1,643 as a constant in formula (2) denoted by B,
Since B-252 is obtained, Cmexp(1,643l
FIG. 4 shows the results of calculating the ozone concentration (corrected concentration) at each concentration and time in the figure using og Re / log T ) / 252. That is, according to the concentration calculation using the above formula and the flowchart in FIG.
By setting , B to appropriate values, even if the ozone sensor response is slow as shown in Figure 7, or the resistance value is so high that the true resistance cannot be measured, the response is fast and highly accurate. It becomes possible to perform DI determination.

なお、上記実施例では抵抗値が上昇するときのみの濃度
補正計算およびその判断などについて説明したが、抵抗
下降時においても同様なステップで的確な濃度表示を行
うことが可能となる。
In the above embodiment, the concentration correction calculation and its judgment were explained only when the resistance value increases, but it is possible to accurately display the concentration using the same steps even when the resistance value decreases.

また、オゾン濃度を酸化還元指示薬の色の変化で検出し
、この変化を受光素子の抵抗(出力電圧)変化に変換し
て検知する方式の測定器に適用することもできる。
Furthermore, the present invention can be applied to a measuring device that detects ozone concentration by a change in the color of a redox indicator, and converts this change into a change in resistance (output voltage) of a light receiving element.

[発明の効果] 以上のように、この発明によれば、応答の遅いn型半導
体センサによるオゾン濃度検出において、雰囲気中のオ
ゾン濃度が高い場合やまた例えば急変したときであって
も、これに対するセンサ抵抗値の変化を検知し、その変
化率からオゾン濃度を逐次演算表示するようにしたので
、速い応答速度でかつ広い範囲のオゾン濃度の測定値が
得られる効果がある。
[Effects of the Invention] As described above, according to the present invention, in ozone concentration detection using a slow-response n-type semiconductor sensor, even when the ozone concentration in the atmosphere is high or, for example, when there is a sudden change, Since the change in the sensor resistance value is detected and the ozone concentration is calculated and displayed sequentially from the rate of change, it is possible to obtain measured values of the ozone concentration over a wide range with a fast response speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例によるオゾン濃度測定装置
の構成を示すブロック図、第2図はこの発明で使用する
オゾン検知回路図、第3図はこの発明の詳細な説明する
ためのフローチャート、第4図はこの発明によって得ら
れるオゾン濃度(補正濃度)と経過時間との関係を示す
線図、第5図は通常のオゾンセンサの一例を示す正面図
、第6図はそのA−A断面図、第7図は従来のオゾンセ
ンサの各オゾン濃度雰囲気における抵抗値、時間及び濃
度の関係を示す線図である。 図において、(1)はオゾンセンサ、(3)は測定用回
路、(4)はA/D変換器、(5)は入力回路、(6)
は中央処理装置(CPU) 、(8)は出力回路、(9
)はメモリー、(10)は濃度処理部、(15)、(2
7)はオゾンセンサ(1)の抵抗測定ステップ、(17
) 。 (29)はW秒前の抵抗値と現在の抵抗値を比較する判
定ステップ、(101)は基板、(102)は電極、(
103)は感オゾン膜、(105)は全体加熱用の発熱
体、(106)は発熱体の電極である。 なお、図中同一符号は同−又は相当部分を示す。 代理人 弁理士 佐々木 宗 治 第1図 第2図 第5図 第7図 第4図
FIG. 1 is a block diagram showing the configuration of an ozone concentration measuring device according to an embodiment of the present invention, FIG. 2 is a diagram of an ozone detection circuit used in the present invention, and FIG. 3 is a flowchart for explaining the present invention in detail. , FIG. 4 is a diagram showing the relationship between ozone concentration (corrected concentration) obtained by the present invention and elapsed time, FIG. 5 is a front view showing an example of a normal ozone sensor, and FIG. The cross-sectional view and FIG. 7 are diagrams showing the relationship between resistance value, time, and concentration in each ozone concentration atmosphere of a conventional ozone sensor. In the figure, (1) is the ozone sensor, (3) is the measurement circuit, (4) is the A/D converter, (5) is the input circuit, and (6)
is the central processing unit (CPU), (8) is the output circuit, (9
) is the memory, (10) is the density processing section, (15), (2
7) is the resistance measurement step of the ozone sensor (1), (17)
). (29) is a determination step that compares the resistance value W seconds ago and the current resistance value, (101) is the substrate, (102) is the electrode, (
103) is an ozone-sensitive film, (105) is a heating element for heating the entire body, and (106) is an electrode of the heating element. Note that the same reference numerals in the figures indicate the same or equivalent parts. Agent Patent Attorney Muneharu Sasaki Figure 1 Figure 2 Figure 5 Figure 7 Figure 4

Claims (1)

【特許請求の範囲】[Claims] n型半導体の薄膜型オゾンセンサと、このオゾンセンサ
の抵抗値を検出してオゾン濃度を周期的に算出する演算
装置と、上記周期内での上記抵抗値の上昇率が設定値を
超えたときに、その時点を基準として上記上昇率を上記
周期ごとに検出してオゾン濃度を算出する演算装置とを
具備したことを特徴とするオゾン濃度測定装置。
An n-type semiconductor thin film ozone sensor, a calculation device that detects the resistance value of this ozone sensor and periodically calculates the ozone concentration, and when the rate of increase in the resistance value within the period exceeds a set value. and an arithmetic device that calculates the ozone concentration by detecting the rate of increase at each cycle based on that point in time.
JP12289089A 1989-05-18 1989-05-18 Measuring device for concentration of ozone Pending JPH02304341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12289089A JPH02304341A (en) 1989-05-18 1989-05-18 Measuring device for concentration of ozone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12289089A JPH02304341A (en) 1989-05-18 1989-05-18 Measuring device for concentration of ozone

Publications (1)

Publication Number Publication Date
JPH02304341A true JPH02304341A (en) 1990-12-18

Family

ID=14847167

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12289089A Pending JPH02304341A (en) 1989-05-18 1989-05-18 Measuring device for concentration of ozone

Country Status (1)

Country Link
JP (1) JPH02304341A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8060541B2 (en) 2003-03-17 2011-11-15 Be-Centric, Llc Network-based database communication system
CN103293566A (en) * 2013-06-08 2013-09-11 中国科学院大气物理研究所 Signal detection circuit of atmospheric ozone sonde

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8060541B2 (en) 2003-03-17 2011-11-15 Be-Centric, Llc Network-based database communication system
CN103293566A (en) * 2013-06-08 2013-09-11 中国科学院大气物理研究所 Signal detection circuit of atmospheric ozone sonde

Similar Documents

Publication Publication Date Title
US20040113802A1 (en) Gas detection instrument and method for its operation
KR102223882B1 (en) An apparatus for detecting low amount of gas leak
KR100358576B1 (en) Gas detector
JPH02304341A (en) Measuring device for concentration of ozone
KR970071000A (en) Meat-line measuring device using gas sensor
JP3167798B2 (en) Gas sensor
JP4573514B2 (en) Constant potential electrolytic gas measurement method
JPS6225988B2 (en)
JP2850514B2 (en) PH meter with life expectancy display
JP4791644B2 (en) Gas detection output correction method and gas detection device
JP2000046779A (en) Gas sensor controller
JP4497658B2 (en) Gas detection method and apparatus
JP3318432B2 (en) Environmental sensor output correction device
JP5893982B2 (en) Gas detector
JP4248126B2 (en) Gas detection method and apparatus
JP2000329722A (en) Apparatus and method for detection of carbon dioxide
JP3466426B2 (en) Smoothing device for changing reference values
JP3998367B2 (en) Deterioration judgment method and apparatus for gas detector
JP2000283943A (en) Gas detector
JPH08101156A (en) Sensing device for atmospheric gas
JP6444781B2 (en) Gas detection device and control method thereof
US20200309723A1 (en) Sensor module
KR100796285B1 (en) Gas sensing method using a thin film type gas sensor
JP2000074876A (en) Method for preventing deterioration of gas sensor and carbon dioxide gas sensor
JP2003279540A (en) Aerial ion measuring apparatus