JPH02304033A - Hydrogenation dealkylation process - Google Patents

Hydrogenation dealkylation process

Info

Publication number
JPH02304033A
JPH02304033A JP1125364A JP12536489A JPH02304033A JP H02304033 A JPH02304033 A JP H02304033A JP 1125364 A JP1125364 A JP 1125364A JP 12536489 A JP12536489 A JP 12536489A JP H02304033 A JPH02304033 A JP H02304033A
Authority
JP
Japan
Prior art keywords
catalyst
hydrogenation
vanadium
membrane
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1125364A
Other languages
Japanese (ja)
Other versions
JP2716523B2 (en
Inventor
Osamu Kubota
修 久保田
Toshio Tsutsui
俊雄 筒井
Toshihito Nakamura
中村 利人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Oil Co Ltd
Original Assignee
Fuji Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Oil Co Ltd filed Critical Fuji Oil Co Ltd
Priority to JP1125364A priority Critical patent/JP2716523B2/en
Priority to US07/475,213 priority patent/US5132480A/en
Publication of JPH02304033A publication Critical patent/JPH02304033A/en
Application granted granted Critical
Publication of JP2716523B2 publication Critical patent/JP2716523B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the objective substance in high yield and selectivity by using a catalyst composed of vanadium supported on alumina particles and contacting the catalyst with an alkylaromatic compound or a stock oil containing the compound in the presence of hydrogen. CONSTITUTION:An aromatic compound having high utility value can be produced by contacting (A) an alkylaromatic compound or a stock oil containing the compound with (B) a catalyst composed of alumina carrier and 0.1 to 30wt.% of vanadium in the presence of hydrogen at 450 to 680 deg.C (preferably 500 to 650 deg.C) under a hydrogen partial pressure of 2 to 30kg/cm<2>, thereby effecting hydrogenation dealkylation reaction of the starting compound. Vanadium is present in the catalyst in the form of an oxide such as V2O3 or V2O4 and forms a catalyst particle having a weight-average particle diameter of 25 to 250mum, a bulk density of 0.3 to 1.5g/cm<3> and a pore volume of 0.1 to 1.5m<3>/g by using gamma-alumina, etc., as a carrier. Preferably, the hydrogenation dealkylation process and the regeneration of the catalyst are alternately performed by using a pair of fluidized bed columns.

Description

【発明の詳細な説明】 〔発明の背景〕 く技術分野〉 従、来、アルキル芳香族化合物を水素化膜アルキルして
利用価値の高い芳香族化合物を製造する方法として、熱
的方法と接触的方法が行なわれている。
[Detailed Description of the Invention] [Background of the Invention] Technical Field Heretofore, thermal methods and catalytic methods have been used to produce aromatic compounds with high utility value by alkyl hydrogenation of alkyl aromatic compounds. method is being carried out.

熱的方法では、700℃以上の高温、かつ高圧の過酷な
反応条件が必要なため、高価な耐熱性祠料を使用し、ま
た反応熱による反応装置内の温度上昇を防ぐための複雑
な装置構造や操作を必要とする。
Thermal methods require harsh reaction conditions at high temperatures of 700°C or higher and high pressure, which requires the use of expensive heat-resistant abrasives and complicated equipment to prevent the temperature inside the reactor from rising due to reaction heat. Requires structure and manipulation.

接触的方法では、触媒を用いて、700℃よりも低温で
反応を進めることができるが、従来知られている方法轄
、本発明者の知る限りでは、以下に述べるように様々な
問題点がある。
In the catalytic method, the reaction can be carried out at a temperature lower than 700°C using a catalyst, but as far as the inventors know, conventional methods have various problems as described below. be.

酸化クロムや酸化モリブデン等をアルミナなどに担持さ
せた触媒を用いる方法は、トルエンなどの水素化膜アル
キル法として工業的に実施されている。しかし、これら
の触媒の活性は充分でなく、また高転化率を得るために
反応温度や水素圧を高めると、芳香環の水素化分解など
の副反応が増大してしまう。
A method using a catalyst in which chromium oxide, molybdenum oxide, or the like is supported on alumina or the like is industrially implemented as a membrane alkyl hydrogenation method such as toluene. However, the activity of these catalysts is not sufficient, and when the reaction temperature and hydrogen pressure are increased to obtain a high conversion rate, side reactions such as hydrogenolysis of aromatic rings increase.

また、Rh5Pt、I rなどの遷移金属成分をアルミ
ナなどに担持させた触媒を用いる方法が知られているが
、これらの金属成分は高価であって経済的でなく、また
活性も不安定である。また、原料油に含まれるイオウに
よる被毒やコーク析出による失活が著しいという問題も
ある。
Additionally, a method using a catalyst in which a transition metal component such as Rh5Pt or Ir is supported on alumina or the like is known, but these metal components are expensive and uneconomical, and their activity is unstable. . Further, there are also problems in that poisoning due to sulfur contained in the feedstock oil and deactivation due to coke precipitation are significant.

一方、シリカ・アルミナ、ゼオライトなどの固体酸触媒
を用いる方法も知られているが、その活性は充分でなく
、またアルキル芳香族化合物の不均化やコークの生成な
ど副反応が多い欠点がある。
On the other hand, methods using solid acid catalysts such as silica, alumina, and zeolite are known, but their activity is not sufficient and they also have the disadvantage of causing many side reactions such as disproportionation of alkyl aromatic compounds and formation of coke. .

アルミナもまた公知の水素化膜アルキル化用触媒である
が、水素化膜アルキル反応の選択性は高いとしても、活
性が充分高くはない。
Alumina is also a known catalyst for hydrogenation membrane alkylation, but although the selectivity of the hydrogenation membrane alkyl reaction is high, the activity is not sufficiently high.

〔発明の概要〕[Summary of the invention]

く要 旨〉 本発明者らは、これらの従来法の問題点を克服できる、
優れた水素化膜アルキル法について研究を進めた結果、
活性、選択性、経済性に優れた触媒粒子を見いだした。
Summary> The present inventors have discovered that the problems of these conventional methods can be overcome.
As a result of research on the excellent hydrogenation membrane alkyl method,
We have discovered catalyst particles with excellent activity, selectivity, and economy.

すなわち、本発明によるアルキル芳香族化合物の水素化
膜アルキル方法は、アルミナ粒子に担持させたバナジウ
ムから成る触媒(たたし、金属バナジウム換算のバナジ
ウム含有量は30重瓜%以下である)にアルキル芳香族
化合物またはそれを含む原料油を水素の存在下450〜
680°Cて接触させて脱アルキル化すること、を特徴
とするものである。
That is, the membrane alkyl hydrogenation method for alkyl aromatic compounds according to the present invention is a method for hydrogenating alkyl aromatic compounds using a catalyst made of vanadium supported on alumina particles (vanadium content in terms of metal vanadium is 30% or less). Aromatic compounds or raw oil containing them in the presence of hydrogen 450 ~
It is characterized by dealkylation by contacting at 680°C.

く効 果〉 本発明の方法によれば、アルキル芳香族化合物またはそ
れを含む原料浦の水素化膜アルキル反応において、目的
とする芳香族化合物または低級のアルキル芳香族化合物
を、比較的温和な条件にて高収率、高選択率で製造する
ことかできる。
Effect> According to the method of the present invention, in the hydrogenation film alkyl reaction of an alkyl aromatic compound or a raw material containing the same, the target aromatic compound or lower alkyl aromatic compound is heated under relatively mild conditions. It can be produced with high yield and high selectivity.

= 3− さらに、本発明の方法の大きな特徴として、通常水素化
膜アルキルを行なう際に触媒毒となるような物質やコー
キングなどプロセス上のトラブルを生じやすい物質を多
量に含むような、劣質の原料浦を処理することが可能と
なった。
= 3- Furthermore, a major feature of the method of the present invention is that the method uses inferior-quality materials that contain large amounts of substances that poison the catalyst or that tend to cause process troubles such as coking when performing membrane alkyl hydrogenation. It became possible to process raw materials.

すなわち、従来知られている水素化膜アルキル法では、
原料油として比較的高純度のアルキル芳香族化合物たと
えば改質ナフサからの抽出トルエン留分などが主に使用
され、通常触媒毒となる硫黄化合物や窒素化合物などや
、コーク生成の主原因となる不飽和炭化水素たとえばジ
エンやオレフィンや高沸点の多環芳香族化合物などを多
量に含む油は原料油として不適であるとして使用されな
いか、または多大の精製コストをかけて上記の物質を除
去してから使用されるか、のいずれかであった。
In other words, in the conventionally known hydrogenation membrane alkyl method,
Relatively high-purity alkyl aromatic compounds, such as toluene fraction extracted from reformed naphtha, are mainly used as feedstock oil, and they usually contain sulfur and nitrogen compounds, which are catalyst poisons, and impurities, which are the main cause of coke formation. Oils that contain large amounts of saturated hydrocarbons, such as dienes, olefins, and high-boiling polycyclic aromatic compounds, are either not used as feedstocks because they are unsuitable, or they are not used after the above substances have been removed at great cost in refining. It was either used or.

しかし、本発明の方法によれば、この問題は二つの点で
解決が図られた。第一に本発明の方法で使用する触媒は
、上記のような物質を多量に含む原料浦を使用する場合
にも、高い活性と選択性を発揮することができる。第二
に、好ましくは2塔式の流動層から成る反応装置を用い
ることにより触媒の連続再生を行ない、多量にコークを
生成するような原料油の処理も可能となり、また触媒の
高い活性と選択性を一定に連続的に保持することができ
る。
However, according to the method of the present invention, this problem has been solved in two ways. First, the catalyst used in the method of the present invention can exhibit high activity and selectivity even when raw material containing a large amount of the above-mentioned substances is used. Second, by using a reactor preferably consisting of a two-column fluidized bed, the catalyst can be continuously regenerated, making it possible to treat raw oils that produce a large amount of coke, and also achieving high catalyst activity and selectivity. properties can be maintained constant and continuous.

〔発明の詳細な説明〕[Detailed description of the invention]

く触 媒〉 本発明の方法で使用する触媒は、バナジウムとアルミナ
担体とから成る。バナジウムの含有量は金属として、触
媒粒子の0. 1〜30重量%である。バナジウム含有
量が0.1重量96よりも少ないと、触媒の活性が充分
でない。また30重量%よりも多いと、触媒が高価とな
って不経済となるたけでなく、担体の細孔構造をバナジ
ウムかふさいで活性が不充分となり、またとくに流動層
を用いる場合には触媒粒子の嵩比重か過大となって流動
不良となり好ましくない。
Catalyst> The catalyst used in the method of the present invention consists of vanadium and an alumina carrier. The content of vanadium as a metal is 0.0% in the catalyst particles. It is 1 to 30% by weight. When the vanadium content is less than 0.1% by weight, the activity of the catalyst is insufficient. If the amount exceeds 30% by weight, not only will the catalyst become expensive and uneconomical, but the pore structure of the carrier will be clogged with vanadium, resulting in insufficient activity, and especially when a fluidized bed is used, the catalyst particles will be The bulk specific gravity becomes too large, resulting in poor flow, which is undesirable.

バナジウムは通常酸化物たとえばV 203やV2O4
の形態をとる。V 205のII3態であってもよいが
、触媒粒子の耐熱性の点から余り好ましくない。しかし
、反応は水素圧下で行なイっれるため、当初V2O5の
形態であっても反応条件Fで酸化数の低い状態に直ちに
還元される。バナジウムは、また、その硫化物や塩ある
いは有機化合物の形態であってもよい。
Vanadium is usually an oxide such as V203 or V2O4
takes the form of The II3 form of V205 may be used, but it is not so preferred from the viewpoint of heat resistance of the catalyst particles. However, since the reaction is carried out under hydrogen pressure, even if it is initially in the form of V2O5, it is immediately reduced to a state with a low oxidation number under reaction condition F. Vanadium may also be in the form of its sulfides, salts or organic compounds.

アルミナ担体は、多孔質アルミナ、たとえばγ−アルミ
ナ、などが好ましい。
The alumina support is preferably porous alumina, such as γ-alumina.

触媒粒子として好ましいのは、細孔容積0.1〜1. 
5crl/g、さらに好ましいのは0,2〜1.2cd
/g、のちのである。また、反応装置として流動層を用
いる場合には、良好な流動性を得るために、触媒粒子と
して重量平均径25〜2507zm、好ましくは40〜
120μmであり、嵩密度が0. 3〜1.  !5g
/cd、好ましくは0.4〜1.3g/cdであって、
実質的に球形のものであることが望ましい。
The catalyst particles preferably have a pore volume of 0.1 to 1.
5 crl/g, more preferably 0.2 to 1.2 cd
/g, later on. In addition, when a fluidized bed is used as the reaction device, in order to obtain good fluidity, the weight average diameter of the catalyst particles is 25 to 2507 zm, preferably 40 to 2507 zm.
120 μm, and the bulk density is 0. 3-1. ! 5g
/cd, preferably 0.4 to 1.3g/cd,
Preferably, it is substantially spherical.

本発明の方法で使用する触媒は、バナジウムの他、さら
に、Nt、Mo、Pts Rhs Re。
In addition to vanadium, the catalyst used in the method of the present invention also includes Nt, Mo, and Pts Rhs Re.

Cr、に、Caなどを金属または酸化物などの形で含ん
でいてもよい。
Cr, Ca, etc. may be included in the form of a metal or oxide.

また、アルミナ担体はアルミナを主成分とするものであ
るが、アルミナの他に、粒子の熱安定性を増すために、
シリカ、チタニア、マグネシアや、Ba5Laなどの酸
化物やPなどを含んでいてもよい。
In addition, the alumina carrier is mainly composed of alumina, but in addition to alumina, in order to increase the thermal stability of the particles,
It may contain silica, titania, magnesia, oxides such as Ba5La, P, and the like.

本発明の方法で使用する触媒は、アルミナ担体に通常の
方法たとえば含浸法や浸漬法などでバナジウムを担持さ
せて調製することができる。たとえば、■の無機塩たと
えばメタバナジン酸アンモニウムなどの溶液たとえばシ
ュウ酸水溶液や、■の有機化合物たとえばアセチルアセ
トンバナジウムの有機溶液たとえばトルエン溶液などで
、含浸または浸漬を行ない、その後乾燥、熱分解、水素
還元などの処理を施して調製することができる。
The catalyst used in the method of the present invention can be prepared by supporting vanadium on an alumina carrier by a conventional method such as an impregnation method or a dipping method. For example, impregnation or immersion is performed with a solution of an inorganic salt such as (2) such as ammonium metavanadate, such as an oxalic acid aqueous solution, or an organic solution of (2) such as an organic compound such as acetylacetonate vanadium such as a toluene solution, followed by drying, thermal decomposition, hydrogen reduction, etc. It can be prepared by subjecting it to the following treatment.

また、バナジウムを含有する油、たとえば原油、常圧残
油、減圧残油、ピッチなどをアルミナ担体に含浸させた
後、その油を熱分解させてバナジウムを担持してもよい
Alternatively, vanadium may be supported by impregnating an alumina carrier with an oil containing vanadium, such as crude oil, atmospheric residual oil, vacuum residual oil, pitch, etc., and then thermally decomposing the oil.

その外にも、これらを組合せたものとして、たとえば、
アセチルアセトンバナジウムのトルエン溶液等と減圧機
油等の混合溶液をたとえば流動層を用いてアルミナ粒子
上で熱分解させ、好ましくは分子状酸素含有ガス(およ
び/または)スチーム等で析出コークの全部または一部
を燃焼またはガス化させて、本発明の方法で使用する触
媒を製造することができる。
In addition, there are also combinations of these, such as:
A mixed solution of acetylacetone vanadium in toluene, etc. and vacuum machine oil, etc. is thermally decomposed on alumina particles using, for example, a fluidized bed, and preferably all or part of the precipitated coke is decomposed using a molecular oxygen-containing gas (and/or) steam, etc. can be combusted or gasified to produce the catalyst used in the method of the invention.

く水素化膜アルキル基内 □ル化の方法は、上記の触媒を用い、アルキル芳香族化
合物またはそれを含む原料油を水素の存在下450〜6
80℃、好ましくは500〜650℃で水素化膜アルキ
ルする。水素分圧は、通常1〜100kg/(!J、好
ましくは1〜50kg/at、さらに好ましくは2〜3
0kg/cm3、である。
In the method for internal hydrogenation of alkyl groups, an alkyl aromatic compound or a raw material oil containing the same is heated to 450 to 60% hydrogen in the presence of hydrogen using the above catalyst.
Hydrogenation film alkyl is carried out at 80°C, preferably 500-650°C. The hydrogen partial pressure is usually 1 to 100 kg/(!J, preferably 1 to 50 kg/at, more preferably 2 to 3
0 kg/cm3.

アルキル芳香族化合物は、たとえば単環または多環の芳
香族化合物に1個以上のアルキル基が置換されている化
合物であり、たとえばトルエン、キシレン、トリメチル
ベンゼン、インデン、メチルナフタレン、ジメチルナフ
タレン、トリメチルナフタレン、アセナフテンなどであ
る。アルキル芳香族化合物を含む原料油はたとえば接触
分解循環油、接触改質油、ナフザ分解副生油、コールタ
ール、石炭液化油などである。これらの原料は、硫黄化
合物たとえばチオフェンやベンゾチオフェンなど、窒素
化合物たとえばピリジンやキノリンなど、酸素化合物た
とえばフェノール、ベンゾフラン、ジベンゾフランなど
、を含んでいてもよい。
Alkyl aromatic compounds are, for example, monocyclic or polycyclic aromatic compounds substituted with one or more alkyl groups, such as toluene, xylene, trimethylbenzene, indene, methylnaphthalene, dimethylnaphthalene, trimethylnaphthalene. , acenaphthene, etc. Feedstock oils containing alkyl aromatic compounds include, for example, catalytic cracking recycled oil, catalytic reforming oil, naphza cracking byproduct oil, coal tar, coal liquefied oil, and the like. These raw materials may include sulfur compounds such as thiophene and benzothiophene, nitrogen compounds such as pyridine and quinoline, and oxygen compounds such as phenol, benzofuran, dibenzofuran and the like.

本発明の方法において、水素化膜アルキル反応によりこ
れらの原料からベンゼンやナフタレンなどの芳香族化合
物や、原料よりもアルキル基内の炭素数の少ない低級ア
ルキル芳香族、たとえばメチルナフタレンなどを、高収
率、高選択率で製造することができる。すなわち、本発
明の方法は、使用する触媒の活性が高いため、比較的温
和な反応条件すなわち比較的低温かつ低い水素圧て高収
率を達成し、副反応たとえば芳香環の水素化分解やコー
ク生成や不均化などが抑制されて選択率か高く、原料中
の不純物やコーク析出による触媒被毒に強いため多様の
原料油の処理が可能でかつ反応性が高く、経済的である
などの、すぐれた多くの利点を発揮する。
In the method of the present invention, aromatic compounds such as benzene and naphthalene, as well as lower alkyl aromatic compounds having a smaller number of carbon atoms in the alkyl group than the raw materials, such as methylnaphthalene, can be produced from these raw materials in high yield by hydrogenation membrane alkyl reaction. It can be produced with high selectivity and high selectivity. In other words, the method of the present invention achieves a high yield under relatively mild reaction conditions, that is, relatively low temperature and low hydrogen pressure, due to the high activity of the catalyst used, and eliminates side reactions such as hydrogenolysis of aromatic rings and coke. It suppresses formation and disproportionation, has a high selectivity, and is resistant to catalyst poisoning due to impurities in the raw material and coke precipitation, so it can process a variety of feedstock oils, has high reactivity, and is economical. , exhibits many outstanding advantages.

本発明の好ましい実施態様として、2塔の流動!路を用
い、一方の流動層にてアルキル芳香族またはそれを含む
原料油の水素化膜アルキルを行ない、他方の流動層にて
コークの付着した触媒の再生を行ない、両塔間の触媒粒
子の循環を行なう。この方法により、本発明の方法を連
続的に実施することができ、とくにコークを多】に生成
しゃすい劣質の原料油の水素化膜アルキルを有効に行な
うことができる。
As a preferred embodiment of the present invention, a two-column flow! One fluidized bed performs membrane alkyl hydrogenation of alkyl aromatics or feedstock oil containing them, and the other fluidized bed regenerates the catalyst with coke attached, and the catalyst particles between the two columns are Do a cycle. By this method, the method of the present invention can be carried out continuously, and in particular, it is possible to carry out effectively the hydrogenation membrane alkyl of poor quality feedstock oil which produces a lot of coke.

触媒の再生は、好ましくは酸素含有ガスたとえば酸素、
空気など、および(または)スチームCO2、炭化水素
または水素のうちの一種以上を含むガスにより、好まし
くは600〜1000 ’Cの温度で触媒」二のコーク
を完全または一部ガス化して除去することからなる。
Regeneration of the catalyst is preferably carried out using an oxygen-containing gas such as oxygen,
Completely or partially gasifying and removing the coke on the catalyst with a gas such as air and/or steam containing one or more of CO2, hydrocarbons or hydrogen, preferably at a temperature of 600 to 1000'C. Consisting of

実施例1 アルミナ粒子(細孔容積0. 96cnl/g、比表面
積240i/g、重量平均径70μIn、嵩密度0、4
5 g/cni、実質的に球形)4リツt□ルを用い、
次の工程でバナジウムを担持させた。
Example 1 Alumina particles (pore volume 0.96cnl/g, specific surface area 240i/g, weight average diameter 70μIn, bulk density 0.4
5 g/cni, substantially spherical) using 4 liters,
Vanadium was supported in the next step.

シュウ酸80gを水1520gに溶解させ、次にこの溶
液にメタバナジン酸アンモニウム39gを溶解させる。
80 g of oxalic acid are dissolved in 1520 g of water, and then 39 g of ammonium metavanadate are dissolved in this solution.

この溶液を上記のアルミナ粒子の細孔内に含浸させ、1
05°Cの空気中で1115間乾燥させる。この粒子を
、内径8cmの流動層反応装置に充てんし、空気を通じ
ながら250℃で1時間処理してメタバナジン酸アンモ
ニウムの熱分解を行ない、次に450℃で3時間、60
0℃で1時間、水素で還元処理を行なう。この結果、バ
ナジウムを金属として0.9重量%含む触媒を得た。
This solution is impregnated into the pores of the above alumina particles,
Dry in air at 05°C for 1115 minutes. These particles were packed into a fluidized bed reactor with an inner diameter of 8 cm, and treated at 250°C for 1 hour while passing air to thermally decompose ammonium metavanadate, and then heated at 450°C for 3 hours for 60
Reduction treatment is performed with hydrogen at 0° C. for 1 hour. As a result, a catalyst containing 0.9% by weight of vanadium as a metal was obtained.

同様な方法により、バナジウムを金属として0.3重量
%、7.8重量%および25.8重量%含む触媒を調製
した。これらの触媒およびバナジウムを担持しないアル
ミナ粒子を用い、前記の流動層反応装置でβ−メチルナ
フタレンの水素化膜アルキル反応を行なった。反応条件
は、温度600℃、水素分圧的7.8kg/cれ接触時
間約8秒、原料供給速度約1.2kg/hてあった。反
応結果を表1に示す。本発明の方法により、高収率、高
選択率で水素化膜アルキルを行なうことができた。
Catalysts containing 0.3% by weight, 7.8% by weight and 25.8% by weight of vanadium as metal were prepared by a similar method. Using these catalysts and alumina particles not carrying vanadium, a hydrogenation membrane alkyl reaction of β-methylnaphthalene was carried out in the fluidized bed reactor described above. The reaction conditions were a temperature of 600° C., a hydrogen partial pressure of 7.8 kg/cm, a contact time of about 8 seconds, and a raw material supply rate of about 1.2 kg/h. The reaction results are shown in Table 1. By the method of the present invention, membrane alkyl hydrogenation could be carried out in high yield and high selectivity.

なお、バナジウムを38重量%含む触媒を同様にして調
製し、同様の反応実験を行なったが、流動状態が良好で
なく、反応成績もナフタレン収率25.9モル%、ナフ
タレン選択率91.7モル%であった。
A catalyst containing 38% by weight of vanadium was similarly prepared and a similar reaction experiment was conducted, but the fluidity was not good and the reaction results were as follows: naphthalene yield: 25.9 mol%, naphthalene selectivity: 91.7. It was mol%.

実施例2 実施例1と同様な方法で得たバナジウム含有率7.3重
量%の触媒と、実施例1で用いたアルミナ担体に水素化
膜アルキル活性を持つことのすでに知られているニッケ
ルを7.2重量%担持させた触媒とを用い、実施例1と
同じ装置てβ−メチルナフタレンの水素化膜アルキル実
験を行なった。
Example 2 A catalyst with a vanadium content of 7.3% by weight obtained in the same manner as in Example 1 and nickel, which is already known to have hydrogenation membrane alkyl activity, were added to the alumina support used in Example 1. A membrane alkyl hydrogenation experiment of β-methylnaphthalene was conducted using the same apparatus as in Example 1 using a catalyst supported at 7.2% by weight.

反応条件は、温度600℃、水素分圧的8. 0kg/
 ctl、接触時間約8秒、原料供給速度約1.2kg
/hであった。
The reaction conditions were a temperature of 600°C and a hydrogen partial pressure of 8. 0kg/
ctl, contact time approximately 8 seconds, raw material supply rate approximately 1.2 kg
/h.

反応結果を表2に示す。本発明の方法により、高い収率
と選択率で水素化膜アルキルを行なうことができた。
The reaction results are shown in Table 2. By the method of the present invention, membrane alkyl hydrogenation could be carried out with high yield and selectivity.

−12= 実施例3 実施例1と同じ流動層反応装置に、内径2.8amの流
動層再生装置を連結し、両流動層間を触媒粒子が循環す
るようにした。
-12= Example 3 A fluidized bed regenerator having an inner diameter of 2.8 am was connected to the same fluidized bed reactor as in Example 1, so that catalyst particles were circulated between both fluidized beds.

触媒として、実施例1と同様な方法で調製したバナジウ
ム含有率2゜8重量%の触媒粒子4,5リツトルを使用
した。
As a catalyst, 4.5 liters of catalyst particles having a vanadium content of 2.8% by weight, prepared in the same manner as in Example 1, were used.

反応装置には水素約2.4NTIl/hおよび原料油と
して接触分解循環油約1..2kg/hを供給し、60
0℃、水素分圧的7. 5kg/cれ接触時間約15秒
で水素化膜アルキルを行なった。再生装置には、酸素濃
度約4体積%に窒素で希釈した空気的0.55N′rI
t/hとスチーム約130 g / +1を供給し、反
応装置とほぼ等しい圧力下、740℃でコーク付着触媒
の再生を行なった。表3に原料油と生成油の組成を示す
。本発明の方法により、硫黄および窒素化合物を含む原
料油を直接用いて、連続的に水素化膜アルキルを行なう
ことができた。
The reactor contains about 2.4 NTIl/h of hydrogen and about 1.0 NTIl/h of catalytic cracking circulating oil as a feedstock. .. 2kg/h, 60
0°C, hydrogen partial pressure7. Membrane alkyl hydride was carried out at a pressure of 5 kg/cm and a contact time of about 15 seconds. The regenerator contains 0.55N'rI pneumatically diluted with nitrogen to an oxygen concentration of approximately 4% by volume.
The coke-adhered catalyst was regenerated at 740° C. under approximately the same pressure as that of the reactor by supplying about 130 g/h of steam and about 130 g/+1 of steam. Table 3 shows the compositions of the raw oil and produced oil. By the method of the present invention, membrane alkyl hydrogenation could be carried out continuously by directly using feedstock oil containing sulfur and nitrogen compounds.

表1 表2 表3接触分解循環油組成 ナフタレン          重量%  6.4メチ
ルナフタレン        〃14.5ジメチルナフ
タレン       〃  24.4トリメチルナフタ
レン      〃6.9計            
  100.O8含有率         重量%  
0. 2N含有率        重量ppm210表
 4 生成油組成 ナフタレン         重量% 67.4メチル
ナフタレン       〃   8゜9ジメチルナフ
タレン      〃0,8トリメチルナフタレン  
   〃0.6ベンゼン、トルエン、キシレン 〃17
.0+ 、
Table 1 Table 2 Table 3 Catalytic cracking circulating oil composition Naphthalene Weight% 6.4 Methylnaphthalene 〃14.5 Dimethylnaphthalene 〃 24.4 Trimethylnaphthalene 〃6.9 Total
100. O8 content weight%
0. 2N content Weight ppm 210 Table 4 Produced oil composition Naphthalene Weight% 67.4 Methylnaphthalene 〃 8゜9 Dimethylnaphthalene 〃 0.8 Trimethylnaphthalene
〃0.6 Benzene, toluene, xylene 〃17
.. 0+,

Claims (1)

【特許請求の範囲】 1、アルミナ粒子に担持させたバナジウムから成る触媒
(ただし、金属バナジウム換算のバナジウム含有量は3
0重量%以下である)にアルキル芳香族化合物またはそ
れを含む原料油を水素の存在下450〜680℃で接触
させて脱アルキル化することを特徴とする、水素化膜ア
ルキル化方法。 2、触媒が重量平均径25〜250μm、嵩密度0.3
〜1.5g/cm^3、細孔容積0.1〜1.5cm^
3/gのものであり、水素化膜アルキル化工程を水素化
膜アルキル化用触媒粒子の流動層反応帯域で実施し、こ
の工程で生成したコークの析出した該触媒を該反応帯域
から抜出し、これを別の反応帯域でその流動層の状態で
再生処理し、処理済み粒子を水素化膜アルキル化工程に
返送する、請求項1記載の水素化膜アルキル化方法。
[Claims] 1. A catalyst consisting of vanadium supported on alumina particles (however, the vanadium content in terms of metal vanadium is 3.
A method for hydrogenation membrane alkylation, characterized in that dealkylation is carried out by contacting an alkyl aromatic compound or a feedstock oil containing the same with an alkyl aromatic compound or a feedstock oil containing the same in the presence of hydrogen at 450 to 680°C. 2. The catalyst has a weight average diameter of 25 to 250 μm and a bulk density of 0.3.
~1.5g/cm^3, pore volume 0.1-1.5cm^
3/g, the hydrogenation membrane alkylation step is carried out in a fluidized bed reaction zone of catalyst particles for hydrogenation membrane alkylation, and the catalyst on which the coke produced in this step is precipitated is extracted from the reaction zone, 2. The hydrogenation membrane alkylation method according to claim 1, wherein the particles are regenerated in a fluidized bed state in a separate reaction zone, and the treated particles are returned to the hydrogenation membrane alkylation step.
JP1125364A 1989-02-06 1989-05-18 Hydrodealkylation method Expired - Lifetime JP2716523B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP1125364A JP2716523B2 (en) 1989-05-18 1989-05-18 Hydrodealkylation method
US07/475,213 US5132480A (en) 1989-02-06 1990-02-05 Hydrodealkylation process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1125364A JP2716523B2 (en) 1989-05-18 1989-05-18 Hydrodealkylation method

Publications (2)

Publication Number Publication Date
JPH02304033A true JPH02304033A (en) 1990-12-17
JP2716523B2 JP2716523B2 (en) 1998-02-18

Family

ID=14908305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1125364A Expired - Lifetime JP2716523B2 (en) 1989-02-06 1989-05-18 Hydrodealkylation method

Country Status (1)

Country Link
JP (1) JP2716523B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529661A (en) * 1975-07-15 1977-01-25 Mitsubishi Heavy Ind Ltd Device for maintaining roll gap when changing roll of rolling mill

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529661A (en) * 1975-07-15 1977-01-25 Mitsubishi Heavy Ind Ltd Device for maintaining roll gap when changing roll of rolling mill

Also Published As

Publication number Publication date
JP2716523B2 (en) 1998-02-18

Similar Documents

Publication Publication Date Title
JP3755955B2 (en) Lower hydrocarbon aromatization catalyst and method for producing aromatic compound using the catalyst
US2560433A (en) Desulfurization of hydrocarbon oils
US3966833A (en) Process for hydrodealkylating alkylaromatic hydrocarbons
GB2172610A (en) Process for thermal cracking of heavy oil
US5053574A (en) Hydrodealkylation of alkylaromatic compounds
JP2000300987A (en) Process of converting small carbon number aliphatic hydrocarbon into greater carbon number hydrocarbon, and catalyst therefor
EP0072653A2 (en) Endothermic removal of coke deposited on sorbent materials during conversion of oils containing coke precursors and heavy metals
US4244810A (en) Fluidized catalytic cracking process for increased hydrogen production
CA1307488C (en) Process for hydrogenation of heavy oil
US3433732A (en) Catalytic hydrocracking process and steam regeneration of catalyst to produce hydrogen
US4983560A (en) Modified zeolite catalysts
JPS6322183B2 (en)
JPS61246135A (en) Conversion of paraffinic hydrocarbon to aromatic hydrocarbon
JPS6012908B2 (en) How to regenerate a deactivated catalyst
US5132480A (en) Hydrodealkylation process
JP2620244B2 (en) A novel composite catalyst for mercaptan oxidation and its production method
US3256205A (en) Catalyst rejuvenating process
JPS6263529A (en) Selective production of ethylene and propylene
JP2017532349A (en) Production method of light olefin
CA1144502A (en) Pollutants control in cracking system using a combustion promoter
US4361496A (en) Passivation of metal contaminants on cracking catalyst
CN112745924B (en) Method and system for treating catalytic pyrolysis gasoline, catalytic pyrolysis process and device
CA1168647A (en) Catalytic oxycracking of polynuclear aromatic hydrocarbons
JP2716523B2 (en) Hydrodealkylation method
RU2751703C1 (en) Zeolite catalyst for propane dehydrogenation and method for producing propylene using this catalyst

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081107

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091107

Year of fee payment: 12