JPH02303721A - Control method for electrode feeding of discharging machine - Google Patents

Control method for electrode feeding of discharging machine

Info

Publication number
JPH02303721A
JPH02303721A JP12085689A JP12085689A JPH02303721A JP H02303721 A JPH02303721 A JP H02303721A JP 12085689 A JP12085689 A JP 12085689A JP 12085689 A JP12085689 A JP 12085689A JP H02303721 A JPH02303721 A JP H02303721A
Authority
JP
Japan
Prior art keywords
electrode
fuzzy
control
feed
control method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12085689A
Other languages
Japanese (ja)
Inventor
Hideaki Kawamura
川村 英昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP12085689A priority Critical patent/JPH02303721A/en
Publication of JPH02303721A publication Critical patent/JPH02303721A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

PURPOSE:To perform a high electrode control and to increase a working speed and working accuracy by controlling the feeding speed of the electrode of a discharging machine by a fuzzy control. CONSTITUTION:A waveform feature detection means 19 detects the maximum value Vn of a gap voltage and the value of a discharging delay time Tn and a smoothing means 20 produces Vi and Ti which are smoothed by taking the averaged value of these values, etc., inputting it to a fuzzy control part 12. At this control part 12 a fuzzy inference is executed at a fuzzy inference part 12a based thereon, a moving command (a feeding command pulse Pn) is output with its fuzzing at an interpretation part 12b and the feeding of the electrode 34 of a discharging machine is controlled. A high electrode 34 control can thus be realized and the working speed and working accuracy can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は放電加工機の電極送り制御方式に関し、特にフ
ァジィ制御を使用して電極の送りを制御する放電加工機
の電極送り制御方式に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an electrode feed control system for an electric discharge machine, and more particularly to an electrode feed control system for an electric discharge machine that uses fuzzy control to control electrode feed.

〔従来の技術〕[Conventional technology]

型彫放電加工機の電極送り制御方式としては、放電電圧
波形の平均電圧や放電開始までの遅延時間等を検出して
、これらの検出値を基準目標電圧や基準目標遅延時間に
なるように、サーボモータで極間距離を制御する方式が
とられている。
The electrode feed control method for die-sinking electrical discharge machines detects the average voltage of the discharge voltage waveform, the delay time until the start of discharge, etc., and adjusts these detected values to the reference target voltage and reference target delay time. A method is used to control the distance between poles using a servo motor.

この制御は概路次のようにおこなわれる。This control is generally performed as follows.

(a)放電電圧波形の平均電圧や放電開始までの遅延時
間等を検出する。
(a) Detecting the average voltage of the discharge voltage waveform, the delay time until the start of discharge, etc.

(b)この検出値とあらかじめ設定されている基準目標
電圧や基準目標遅延時間等との差を求める(C)この差
にあるゲインを掛けた値を、サーボモータへの移動指令
とする。
(b) Find the difference between this detected value and a preset reference target voltage, reference target delay time, etc. (C) The value obtained by multiplying this difference by a certain gain is used as a movement command to the servo motor.

(d)(a)〜(c)を一定周期毎に繰り返す。(d) Repeat (a) to (c) at regular intervals.

これにより、電極をたえず基準目標距離になるように制
御する。
As a result, the electrode is constantly controlled to maintain the reference target distance.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、放電電圧波形の平均電圧や放電開始までの遅延
時間等の検出値は放電毎に異なるのが一般である。すな
わち、これらの検出値は電極とワークのギャップ距離だ
けで決まるのではなく、電極間のスラッジ(加工カス)
の状態や、イオンの状態など複雑な要因で変化する。
However, detected values such as the average voltage of the discharge voltage waveform and the delay time until the start of discharge generally differ for each discharge. In other words, these detected values are determined not only by the gap distance between the electrode and the workpiece, but also by the sludge (processing debris) between the electrodes.
It changes depending on complex factors such as the state of the ions and the state of the ions.

このため従来のような制御方式では、加工速度の低下、
あるいは放電が不安定になるなどの問題があった。
Therefore, with conventional control methods, machining speed decreases,
Alternatively, there was a problem that the discharge became unstable.

本発明はこのような点に鑑みてなされたものであり、フ
ァジィ制御を使用して電極の送り速度を制御する放電加
工機の電極送り制御方式を提供す】  ることを目的と
する。
The present invention has been made in view of these points, and an object of the present invention is to provide an electrode feed control system for an electric discharge machine that uses fuzzy control to control the electrode feed speed.

〔課題を解決するだめの手段〕[Failure to solve the problem]

本発明では上記課題を解決するために、放電加工機の電
極の送りを制御する放電加工機の電極送り制御方式にお
いて、前記電極の送り速度をファジィ制御によって制御
することを特徴とする放電加工機の電極送り制御方式が
提供される。
In order to solve the above-mentioned problems, the present invention provides an electrode feed control method for an electric discharge machine that controls the feed of an electrode of an electric discharge machine, in which the feed speed of the electrode is controlled by fuzzy control. An electrode feeding control method is provided.

〔作用〕[Effect]

ギャップ電圧、放電遅れ時間等のギャップ電圧波形の特
徴的な要素を検出し、これらの値に基づいてファジィ推
論を実行し、ディファジィ化した出力で電極の送り速度
を制御する。
Characteristic elements of the gap voltage waveform, such as gap voltage and discharge delay time, are detected, fuzzy inference is performed based on these values, and the electrode feeding speed is controlled using the defuzzified output.

〔実施例〕〔Example〕

以下、本発明の一実施例を図面に基づいて説明する。 Hereinafter, one embodiment of the present invention will be described based on the drawings.

第1図は本発明を実施するためのCNC型彫放電加工2
機の構成を示したブロック図である。加工条件/加工工
程設定手段13はCRT/MDIユニット11より所要
のデータを人力し、加工電圧あるいは加工電流に関する
加工電源用パラメータを加工電源40に、揺動に関する
制御パラメータを電極揺動制御手段14に、ジャンプ周
期及びジャンプ距離に関する制御パラメータをジャンプ
制御手段15に人力する。サーボ制御手段16は電極揺
動制御手段14、ジャンプ制御手段15、及び後述する
ファジィ制御部12から出力された各指令を人力して、
X軸周サーボモータ31、Y軸層サーボモータ32及び
zm用サーボモータ33を駆動する。
Figure 1 shows CNC die-carving electrical discharge machining 2 for carrying out the present invention.
FIG. 2 is a block diagram showing the configuration of the machine. The machining condition/machining process setting means 13 manually inputs the required data from the CRT/MDI unit 11, and sends machining power supply parameters related to machining voltage or machining current to the machining power supply 40, and control parameters regarding oscillation to the electrode oscillation control means 14. Next, control parameters regarding the jump period and jump distance are manually input to the jump control means 15. The servo control means 16 manually receives commands output from the electrode swing control means 14, the jump control means 15, and the fuzzy control section 12, which will be described later.
The X-axis peripheral servo motor 31, the Y-axis layer servo motor 32, and the ZM servo motor 33 are driven.

加工電源40からは高周波のパルス電圧が出力されて電
極34とテーブル3日上に固定された被加工物35との
間に印加されると共に、加工工程の指令に従ってテーブ
ル36がX−Y平面上を、電極34が2軸上を移動して
被加工物34が放電加工される。
A high-frequency pulse voltage is output from the machining power source 40 and applied between the electrode 34 and the workpiece 35 fixed on the table, and the table 36 is moved on the X-Y plane according to the instructions of the machining process. The electrode 34 moves on two axes, and the workpiece 34 is subjected to electrical discharge machining.

ギャップ電圧波形検出手段17は電極34と被加工物3
5間のギャップ電圧波形を検出し、AD変換器18に送
る。AD変換器18はこの電圧波形をディジタル化し、
波形特徴抽出手段19に送る。
The gap voltage waveform detection means 17 detects the electrode 34 and the workpiece 3.
5 is detected and sent to the AD converter 18. The AD converter 18 digitizes this voltage waveform,
It is sent to the waveform feature extraction means 19.

第2図に波形特徴抽出手段19に入力されるギャップ電
圧波形の一例を示す。ギャップ電圧波形50はVnを最
大値として、所定の放電遅れ時間Tn後に放電が生じて
低電圧となり、このす”イクルを高周波で繰り返す。最
大値Vn及び放電遅れ時間TnO値は正常なスパーク時
にはそれぞれ所定の範囲内にあるが、放電の状態により
変化し、例えば完全なオープン時には1サイクルの始め
から終わりまで最大値Vnを一定に保ったままの波形、
すなわち放電遅れ時間Tnが1サイクルの周期に一致す
る。逆に、ショート時には始めから低電圧となり、放電
遅れ時間Tnは0となる。
FIG. 2 shows an example of the gap voltage waveform input to the waveform feature extraction means 19. The gap voltage waveform 50 has Vn as the maximum value, and after a predetermined discharge delay time Tn, a discharge occurs and becomes a low voltage, and this cycle is repeated at high frequency.The maximum value Vn and the discharge delay time TnO value are respectively set at the time of a normal spark. A waveform that is within a predetermined range but changes depending on the state of discharge; for example, when completely open, the maximum value Vn remains constant from the beginning to the end of one cycle,
That is, the discharge delay time Tn matches the period of one cycle. Conversely, when a short circuit occurs, the voltage becomes low from the beginning, and the discharge delay time Tn becomes zero.

再び第1図に戻り、説明する。波形特徴検出手段19は
ギャップ電圧の最大値Vn及び放電遅れ時間Tnの値を
検出し、平滑化手段20に送る。
Returning to FIG. 1 again, explanation will be given. The waveform feature detection means 19 detects the maximum value Vn of the gap voltage and the values of the discharge delay time Tn and sends them to the smoothing means 20.

平滑化手段20はこれらの値の平均値をとるなどして平
滑化したVi及びTiを生成し、ファジィ制御部12に
入力する。
The smoothing means 20 generates smoothed Vi and Ti by taking the average value of these values, and inputs them to the fuzzy control section 12.

ファジィ制御部12ではこれらに基づいてファジィ推論
部12aでファジィ推論を実行し、解釈部12bでディ
ファジィ化し2、移動指令(送り指令パルスPn)を出
力する。゛ 第3図(a)及び(b)はファジィ推論部12a内に設
けられたファジィルールの説明図である。
In the fuzzy control unit 12, based on these, a fuzzy inference unit 12a executes fuzzy inference, an interpretation unit 12b performs defuzzification 2, and outputs a movement command (feeding command pulse Pn). 3(a) and 3(b) are explanatory diagrams of fuzzy rules provided in the fuzzy inference section 12a.

図において、60はR’−R5より構成されるファジィ
ルール、AIl〜A14は最大電圧Viと適合度との関
係を示したメンバーシップ関数、A22〜A25は放電
遅れ時間Tiと適合度との関係を示したメンバーシップ
関数、81〜B51;!送り指令パルスPiと適合度と
の関係を示したメンバーシップ関数である。
In the figure, 60 is a fuzzy rule composed of R'-R5, AIl to A14 are membership functions showing the relationship between the maximum voltage Vi and the degree of conformity, and A22 to A25 are the relationships between the discharge delay time Ti and the degree of conformity. Membership functions showing 81-B51;! This is a membership function showing the relationship between the sending command pulse Pi and the degree of conformity.

ここで、ファジィルールR’はメンバーシップ関数Al
l及びB1に基づいて、 R1: Viが小さければ、Piを正の大きな値にせよと推論す
るルールである。
Here, the fuzzy rule R' is the membership function Al
Based on l and B1, R1: This is a rule that infers that if Vi is small, Pi should be a large positive value.

同様にして、ファジィルールR2はメンバーシップ関数
A12、A22及びB2、ファジィルールR3はメンバ
ーシップ関数A13、A23及びB3、ファジィルール
R4はメンバーシップ関数A14、A24及びB4、フ
ァジィルールR5はメンバーシップ関数A25及びB5
に基づいて推論するルールであり、 R2: Viが中くらいで且つTiが小さければ、Piを正のや
や大きな値にせよ R3゜ Viが大きく且つTiが小さければ、Piを0にせよ R4= Viが大きく且つTiが中くらいならば、Piを負のや
や小さな値にせよ R5゜ Tiが大きければPiを負の大きな値にせよである。
Similarly, fuzzy rule R2 is membership function A12, A22, and B2, fuzzy rule R3 is membership function A13, A23, and B3, fuzzy rule R4 is membership function A14, A24, and B4, and fuzzy rule R5 is membership function A25 and B5
R2: If Vi is medium and Ti is small, set Pi to a positive and slightly large value R3゜If Vi is large and Ti is small, set Pi to 0 R4 = Vi If R5° is large and Ti is medium, then Pi should be set to a slightly small negative value, or if R5°Ti is large, Pi should be set to a large negative value.

ファジィ推論部12aは入力されたギャップ電圧の最大
値Viと放電遅れ時間Tiを上記のファジィルールR’
−R’に照らし合わせ、メンバーシップ関数31〜B5
においてそれぞれの送り指令パルスPiの適合度を求め
、これらを重ね合わせて図示されていない推論結果を表
tメンバーシップ関数を生成し、解釈部12bに送出す
る。
The fuzzy inference unit 12a calculates the maximum value Vi of the input gap voltage and the discharge delay time Ti using the above fuzzy rule R'.
-Membership functions 31 to B5 in comparison with R'
, the degree of conformity of each sending command pulse Pi is determined, and these are superimposed to generate an inference result (not shown) into a table t membership function, which is sent to the interpreter 12b.

解釈部12bはこのメンバーシップ関数に対して、例え
ば重心法によりディファジィフィケーションを行−って
送り指令パルスPnの値を決定し、出力するわ 第4図は本発明を実施するための他のCNC型彫放電加
工機の構成を示したブロック図である。
The interpreter 12b performs defuzzification on this membership function using, for example, the centroid method to determine the value of the feed command pulse Pn and outputs it. 1 is a block diagram showing the configuration of a CNC die-sinking electrical discharge machine.

第1図との相違点は平滑化手段20に換えて極間距離推
定手段21、演算器22a及び微分器22bを設けたこ
とである。すなわち、極間距離推定手段20は波形特徴
抽出手段19から出力された最大電圧Vn及び放電遅れ
時間Tnに基づいて電極34と被加工物35とのギャッ
プ距離を求め、演算器22に入力する。演算器22はこ
のギャップ距離と加工条件/加工工程設定手段13から
の目標基準値との差分を演算してファジィ制御部23の
ファジィ推論部23aに入力する。微分器2gbはギャ
ップ距離と目標基準値との差分εの変化箪δεを演算し
てファジィ制御部23のファジィ推論部23aに人力す
る。ファジィ推論部23aでは入力されたデータに基づ
いてファジィ推論を実行し、解釈部23bでディファジ
ィフィヶーションを行って送り指令パルスPnを出力す
る。
The difference from FIG. 1 is that the smoothing means 20 is replaced with interpole distance estimating means 21, an arithmetic unit 22a, and a differentiator 22b. That is, the gap distance estimation means 20 calculates the gap distance between the electrode 34 and the workpiece 35 based on the maximum voltage Vn and the discharge delay time Tn output from the waveform feature extraction means 19, and inputs it to the calculator 22. The calculator 22 calculates the difference between this gap distance and the target reference value from the machining condition/process setting means 13, and inputs the difference to the fuzzy inference section 23a of the fuzzy control section 23. The differentiator 2gb calculates a variation δε of the difference ε between the gap distance and the target reference value and inputs the calculated value to the fuzzy inference unit 23a of the fuzzy control unit 23. The fuzzy inference section 23a executes fuzzy inference based on the input data, and the interpretation section 23b performs defuzzification and outputs a feed command pulse Pn.

その他、第1図と同じ番号を付した要素はそれぞれ同一
の機能を有するものであり、説明を省略する。
Other elements with the same numbers as in FIG. 1 have the same functions, and their explanations will be omitted.

また電極送りの制御を行うファジィコントローラのファ
ジィルールとメンバーシップ関数を複数個登録しておき
、加工方法や被加工物の材質等に応じて選択し、選択し
たファジィルール七メンバーシップ関数によりファジィ
制御するようにすることもできる。
In addition, multiple fuzzy rules and membership functions for the fuzzy controller that controls electrode feeding are registered, and selected according to the processing method and material of the workpiece, etc., and fuzzy control is performed using the selected fuzzy rules and seven membership functions. You can also do this.

の送りを制御することで説明したが、同様な構成でワイ
ヤカット放電加工機械の極間距離等も制御できる。
Although the explanation has been made by controlling the feed of the wire, the distance between the poles and the like of a wire-cut electrical discharge machining machine can also be controlled with a similar configuration.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明では、ギャップ電圧の最大値
及び放電遅れ時間を検出し、これらに基づいてファジィ
推論を実行し、その出力で電極の送り速度を制御するよ
うにしたので、高度な電極制御の実現が可能になり、加
工速度の向上とクリアランスを含めた加工精度の向上を
はかることができる。
As explained above, in the present invention, the maximum value of the gap voltage and the discharge delay time are detected, fuzzy inference is executed based on these, and the electrode feeding speed is controlled by the output, so that the advanced electrode It becomes possible to realize control, and it is possible to improve machining speed and machining accuracy including clearance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を実施するためのCNC型彫放電加工機
の構成を示したブロック図、 第2図はギャップ電圧波形の一例、 第3図(a)、(b)はファジィルールの説明図、 第4図は本発明を実施するための他のCNC型彫放電加
工機の構成を示したブロック図である。 12.23   ・ファジィ制御部 12a、23a   ” ファジィ推論部12b、23
b     解釈部 16    ・サーボ制御手段 19−−  波形特徴抽出手段 20    平滑化手段 21    極間距離推定手段 22    演算器 34    電極 35    被加工物 40    加工電源 60    ファジィルール Vi     ギャップ電圧の最大値 Ti     放電遅れ時間
Figure 1 is a block diagram showing the configuration of a CNC die-sinking electrical discharge machine for implementing the present invention, Figure 2 is an example of a gap voltage waveform, and Figures 3 (a) and (b) are explanations of fuzzy rules. FIG. 4 is a block diagram showing the configuration of another CNC die-sinking electrical discharge machine for carrying out the present invention. 12.23 Fuzzy control unit 12a, 23a ” Fuzzy inference unit 12b, 23
b Interpretation section 16 - Servo control means 19 -- Waveform feature extraction means 20 Smoothing means 21 Inter-electrode distance estimating means 22 Arithmetic unit 34 Electrode 35 Workpiece 40 Machining power source 60 Fuzzy rule Vi Maximum value of gap voltage Ti Discharge delay time

Claims (4)

【特許請求の範囲】[Claims] (1)放電加工機の電極の送りを制御する放電加工機の
電極送り制御方式において、 前記電極の送りをファジィ制御によって制御することを
特徴とする放電加工機の電極送り制御方式。
(1) An electrode feed control method for an electric discharge machine that controls the feed of an electrode of an electric discharge machine, characterized in that the feed of the electrode is controlled by fuzzy control.
(2)前記ファジィ制御のファジィルールとメンバーシ
ップ関数をデータベースとして複数保存しておき、加工
の種類に応じて選択できるようにしたことを特徴とする
特許請求の範囲第1項記載の放電加工機の電極送り制御
方式。
(2) The electrical discharge machine according to claim 1, wherein a plurality of fuzzy rules and membership functions for the fuzzy control are stored as a database and can be selected depending on the type of machining. electrode feed control method.
(3)ギャップ電圧の最大値及び放電遅れ時間を入力と
し、電極の送り指令パルスを出力とし、これらの間の制
御をファジィ推論で行うことを特徴とする特許請求の範
囲第1項記載の放電加工機の電極送り制御方式。
(3) The discharge according to claim 1, wherein the maximum value of the gap voltage and the discharge delay time are input, the electrode sending command pulse is output, and the control between these is performed by fuzzy reasoning. Electrode feed control method for processing machines.
(4)極間距離推定手段より検出されたギャップ距離と
目標距離との差とこの差分の変化量を入力とし、電極の
送り指令パルスを出力とし、これらの間の制御をファジ
ィ推論で行うことを特徴とする特許請求の範囲第1項記
載の放電加工機の電極送り制御方式。
(4) The difference between the gap distance and the target distance detected by the inter-electrode distance estimating means and the amount of change in this difference are input, the electrode feed command pulse is output, and the control between these is performed by fuzzy inference. An electrode feed control system for an electrical discharge machine according to claim 1, characterized in that:
JP12085689A 1989-05-15 1989-05-15 Control method for electrode feeding of discharging machine Pending JPH02303721A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12085689A JPH02303721A (en) 1989-05-15 1989-05-15 Control method for electrode feeding of discharging machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12085689A JPH02303721A (en) 1989-05-15 1989-05-15 Control method for electrode feeding of discharging machine

Publications (1)

Publication Number Publication Date
JPH02303721A true JPH02303721A (en) 1990-12-17

Family

ID=14796643

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12085689A Pending JPH02303721A (en) 1989-05-15 1989-05-15 Control method for electrode feeding of discharging machine

Country Status (1)

Country Link
JP (1) JPH02303721A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216218A (en) * 1990-07-30 1993-06-01 Mitsubishi Denki K.K. Control unit for electrical discharge machine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5216218A (en) * 1990-07-30 1993-06-01 Mitsubishi Denki K.K. Control unit for electrical discharge machine

Similar Documents

Publication Publication Date Title
Yan An adaptive control system with self-organizing fuzzy sliding mode control strategy for micro wire-EDM machines
US5117083A (en) Jump control system for an electric discharge machine
JPH07100262B2 (en) Discharge machining end determination method and apparatus
US4837415A (en) Wire electrode type electric discharge machining apparatus
JPH02303721A (en) Control method for electrode feeding of discharging machine
JP3182526B2 (en) Control method and apparatus for electric discharge machine
Liao et al. On-line workpiece height estimation and its application in servo feed control of WEDM process
JPH01274923A (en) Servo controller for electrolytic corrosion working machine
JPH0691435A (en) Electric discharge machine and electric discharge maching method
JPH05305517A (en) Wire electric discharge machine
JPS597523A (en) Wire-cut electric discharge machine
JPH068050A (en) Electric discharge machining device
JPH0475822A (en) Electric discharge machining device
Rajurkar et al. Advances in EDM monitoring and control systems using modern control concepts
JP3736118B2 (en) Electric discharge machining control method and control apparatus
Mehdizadeh Moghadam et al. Adaptive control of machining process using Electrical Discharging Method (EDM) based on Self-Tuning Regulator (STR)
JPH02303718A (en) Control method for power source of electric discharging machine
JP2632950B2 (en) Adaptive control device for electric discharge machine
JP2976223B2 (en) Processing machine adaptive control device
JPH0457619A (en) Discharge gap control device
JPH05116030A (en) Control device for electric discharge machine
SU1301594A1 (en) Method of extremum control of electro-erosion process
JPH02303727A (en) Discharge control method
JPH068051A (en) Electric discharge machining method and device therefor
Zhao et al. A SUSPENSION MOTION CONTROL SYSTEM OF ELECTROLYTE-PLASMA POLISHING MACHINE