JPH02303169A - Infrared detector - Google Patents

Infrared detector

Info

Publication number
JPH02303169A
JPH02303169A JP1126440A JP12644089A JPH02303169A JP H02303169 A JPH02303169 A JP H02303169A JP 1126440 A JP1126440 A JP 1126440A JP 12644089 A JP12644089 A JP 12644089A JP H02303169 A JPH02303169 A JP H02303169A
Authority
JP
Japan
Prior art keywords
layer
layers
platinum silicide
type
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1126440A
Other languages
Japanese (ja)
Inventor
Yuichiro Ito
雄一郎 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1126440A priority Critical patent/JPH02303169A/en
Publication of JPH02303169A publication Critical patent/JPH02303169A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid State Image Pick-Up Elements (AREA)
  • Light Receiving Elements (AREA)

Abstract

PURPOSE:To obtain a high-sensitivity Schottky-type infrared detection device which uses an Si substrate by a method wherein metal layers or silicide layers and semiconductor layers are laminated and formed alternately on a semiconductor substrate so as to be a multilayer structure and Schottky junctions composed of the metal layers or the silicide layers and the semiconductor layers are formed so as to be a multilayer. CONSTITUTION:A first-layer platinum silicide (PtSi) layer 12A in a thickness of about 10Angstrom is formed, by a molecular beam epitaxial growth method, on a P-type Si substrate 11 whose acceptor concentration NA is 1X10<15>; in addition, a first-layer P-type silicon (Si) layer 13A in a thickness of about 200Angstrom is formed on it by said growth method. In addition, a second-layer platinum silicide layer 12B, a second-layer P-type Si layer 13B, a third-layer platinum silicide layer 12C and a third-layer P-type Si layer 13C in the same thickness are formed on it to be a multilayer structure by said growth method. When said growth method is used in this manner, the platinum silicide layers and the Si layers can be obtained to be a thin-layer structure in a state that their crystallinity is good. Thereby, hot carriers generated in a platinum silicide layer 12 are implanted in both direction of an arrow B and an arrow C; an increase in a sensitivity can be anticipated as compared with a structure in which only one layer of the platinum silicide layer is formed.

Description

【発明の詳細な説明】 〔概 要〕 赤外線検知装置に関し、 画素数が多く、製造が容易で高感度な赤外線検知装置を
目的とし、 半導体基板上に金属層またはシリサイド層と半導体層と
を交互に多層構造に積層形成し、前記金属層またはシリ
サイド層と半導体層とのショットキ接合を多層構造に設
けたことで構成する。
[Detailed Description of the Invention] [Summary] Regarding an infrared detection device, the present invention aims at an infrared detection device with a large number of pixels, easy manufacture, and high sensitivity, in which metal layers or silicide layers and semiconductor layers are alternately arranged on a semiconductor substrate. The semiconductor layer is laminated in a multilayer structure, and a Schottky junction between the metal layer or silicide layer and the semiconductor layer is provided in the multilayer structure.

〔産業上の利用分野〕[Industrial application field]

本発明は赤外線検知装置に係り、特に画素数が多く製造
が容易な赤外線検知装置に関する。
The present invention relates to an infrared detection device, and particularly to an infrared detection device that has a large number of pixels and is easy to manufacture.

近年、大面積の単結晶が容易に得られ、LSI等の半導
体素子製造技術が確立したSi基板を用い、該基板上に
白金等の金属電極を所定のパターンに蒸着、或いはスパ
ッタで形成してSiと金属電極間のショットキ接合を形
成したショットキ接合型の赤外線検知素子が、テレビ並
みの500 X500画素程度の多画素の素子が容易に
得られるので注目されている。
In recent years, Si substrates, for which large-area single crystals can be easily obtained and the manufacturing technology for semiconductor devices such as LSIs has been established, are used, and metal electrodes such as platinum are formed on the substrate in a predetermined pattern by vapor deposition or sputtering. A Schottky junction type infrared sensing element in which a Schottky junction is formed between Si and a metal electrode is attracting attention because it can easily produce a multi-pixel device with about 500 x 500 pixels, which is comparable to that of a television.

〔従来の技術〕[Conventional technology]

従来、このようなSi基板を用いたショットキ型赤外線
検知素子としては、該検知素子とこの検知素子からの信
号を処理する信号処理素子とを組み合わせた赤外線撮像
装置が、文献(Kimata、M、、etallssc
c  DrGEST  OF  TECHNICAL 
 PAPER3,WPM  10.3“^512 X5
12 Element PtSi 5chottky−
BarrierInfrared 、Tmage Se
m5or”、Feb 、1987)に於いて報告されて
いる。
Conventionally, as a Schottky-type infrared sensing element using such a Si substrate, an infrared imaging device that combines the sensing element and a signal processing element that processes a signal from the sensing element has been described in the literature (Kimata, M., etallssc
c DrGEST OF TECHNICAL
PAPER3, WPM 10.3"^512 X5
12 Element PtSi 5chottky-
Barrier Infrared, Tmage Se
m5or”, Feb. 1987).

この検知素子の要部の断面図を第3図に示す。A cross-sectional view of the main parts of this sensing element is shown in FIG.

図示するように、P型のSi基板1の表面の所定位置に
N型層2が形成され、このN型層で検知素子の周辺部で
の電界集中を避けるためのガードリングの機能を持たし
ている。更に基板表面には薄層の白金シリサイド層3が
スパッタ法等により形成され、その上に5in2膜4が
形成され、更にその上にはi反射膜5が形成されている
。この5iOz膜4は基板の底部より矢印へのように入
射された赤外線の内で薄層の白金シリサイド層で吸収さ
れなかった赤外線をA2反射膜5に当てて反射させ、再
び白金シリサイド層の方向に再入射させる光学的共振器
の働きを持たせ、該検知素子の量子効率を高め感度を向
上させるようにしている。
As shown in the figure, an N-type layer 2 is formed at a predetermined position on the surface of a P-type Si substrate 1, and this N-type layer has a guard ring function to avoid electric field concentration around the sensing element. ing. Further, a thin platinum silicide layer 3 is formed on the surface of the substrate by sputtering or the like, a 5in2 film 4 is formed thereon, and an i-reflection film 5 is further formed thereon. This 5iOz film 4 reflects the infrared rays that are not absorbed by the thin platinum silicide layer among the infrared rays incident from the bottom of the substrate in the direction of the arrow, and reflects them by hitting the A2 reflective film 5, and reflects them again in the direction of the platinum silicide layer. It is designed to act as an optical resonator for re-injecting light into the detection element, thereby increasing the quantum efficiency and sensitivity of the detection element.

このような検知素子の動作を第4図に示すエネルギーバ
ンド図を用いて説明すると、基板1の底部より入射され
た赤外線は、白金シリサイド層で吸収され、電圧が印加
されて励起された電子6の後に熱い正孔7が形成され、
この熱い正孔7は電子と再結合する迄は、白金シリサイ
ド層3中をランダムに運動する。そしてこの運動中で白
金シリサイド層3とP型Si基板1との界面8に到達し
た正札のうちで、φ5のエネルギーバリアより大きいエ
ネルギー(界面に垂直な運動量に相当する)を有する熱
い正孔のみが、白金シリサイド層3よりP型Si基板1
の方向に向かって注入されて光電流となるとされている
The operation of such a sensing element will be explained using the energy band diagram shown in FIG. A hot hole 7 is formed after
These hot holes 7 move randomly within the platinum silicide layer 3 until they recombine with electrons. During this movement, only the hot holes that have reached the interface 8 between the platinum silicide layer 3 and the P-type Si substrate 1 have an energy greater than the energy barrier of φ5 (corresponding to the momentum perpendicular to the interface). However, the P-type Si substrate 1 is smaller than the platinum silicide layer 3.
It is said that the photocurrent is injected in the direction of .

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

然し、上記したショットキ接合型の赤外線検知装置構造
に於いても、上記白金シリサイド層を透過した赤外線を
、上記光学的共振構造で捕捉するには十分でなく、該検
知装置の量子効率は1%以下と低い欠点がある。
However, even in the Schottky junction type infrared detector structure described above, the optical resonance structure is not sufficient to capture the infrared rays transmitted through the platinum silicide layer, and the quantum efficiency of the detector is 1%. It has the following shortcomings.

このため、インジウムアンチモン(InSb)や、水銀
・カドミウム・テルル(Hg+−x Cd)+ Te)
のようなエネルギーバンドギャップの狭い化合物半導体
基板を用いた赤外線検知装置に対し、ショットキ接合型
の赤外線検知素子は量子効率が悪く、感度の低い検知装
置となる欠点がある。
For this reason, indium antimony (InSb), mercury, cadmium, tellurium (Hg + -x Cd) + Te)
Compared to an infrared detection device using a compound semiconductor substrate with a narrow energy bandgap, a Schottky junction type infrared detection element has a disadvantage of having poor quantum efficiency and resulting in a detection device with low sensitivity.

本発明は上記した問題点を除去し、Si基板を用いた高
感度なショットキ赤外線検知装置の提供を目的とする。
The present invention aims to eliminate the above-mentioned problems and provide a highly sensitive Schottky infrared detection device using a Si substrate.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的を達成する本発明の赤外線検知装置は、第1図
の原理図に示すように、半導体基板11上に金属層また
はシリサイド層12と半導体層13とを交互に多層構造
に積層形成し、前記金属層またはシリサイド層と半導体
層とのショットキ接合を多層に設けたことで構成する。
As shown in the principle diagram of FIG. 1, the infrared detecting device of the present invention that achieves the above object has a multilayer structure in which metal layers or silicide layers 12 and semiconductor layers 13 are alternately stacked on a semiconductor substrate 11. It is constructed by providing multiple Schottky junctions between the metal layer or silicide layer and the semiconductor layer.

〔作 用〕[For production]

本発明のショットキ型赤外線検知装置は、第1図のよう
に赤外線を透過するSiのような半導体基板11に分子
線エピタキシャル成長方法により厚さが50Å以下の白
金シリサイドより成るシリサイド層12と、厚さが20
.0入子度のP型のSi層よりなる半導体層13とを交
互に多層構造に積層形成する。
As shown in FIG. 1, the Schottky-type infrared detection device of the present invention includes a semiconductor substrate 11 made of Si that transmits infrared rays, a silicide layer 12 made of platinum silicide with a thickness of 50 Å or less, and a is 20
.. Semiconductor layers 13 made of P-type Si layers with zero nesting degree are alternately stacked in a multilayer structure.

このようにすると上記白金シリサイドのシリサイド層1
2中で発生したホットキャリアは、矢印BおよびC方向
の両方向へ注入されるため、従来のSi基板上に白金シ
リサイド層を一層のみ形成した構造に比較して約2倍の
感度の向上が見込める。
In this way, the silicide layer 1 of the platinum silicide
Since the hot carriers generated in 2 are injected in both directions of arrows B and C, sensitivity can be expected to improve approximately twice as much as compared to the conventional structure in which only one platinum silicide layer is formed on a Si substrate. .

また分子線エピタキシャル成長方法で結晶性の良好な白
金シリサイドより成るシリサイド層12を薄く形成する
ことで、該シリサイド層の膜厚が、該シリサイド中の熱
い正孔の平均自由工程の値より小さくなる。そのため、
上記熱い正孔が再結合されにくい状態でSi層に注入さ
れて光電流に変換されやすくなり、量子効率が向上する
Furthermore, by forming the silicide layer 12 made of platinum silicide with good crystallinity thinly using a molecular beam epitaxial growth method, the thickness of the silicide layer becomes smaller than the value of the mean free path of hot holes in the silicide. Therefore,
The hot holes are injected into the Si layer in a state where they are difficult to recombine and are easily converted into photocurrent, improving quantum efficiency.

また上記シリサイド層12を薄く形成して量子効率の向
上を図った場合、この薄いシリサイド層12で吸収され
ずに透過した赤外線は、その上のSiの半導体層13に
に吸収され、更にこのSi層13で吸収されなかった赤
外線は、その上の第2層目のシリサイド層で吸収される
ために、入射された赤外線の量子効率の低下は起こらず
、装置の検知感度が向上する。
Furthermore, when the above-mentioned silicide layer 12 is formed thinly to improve quantum efficiency, infrared rays that are transmitted without being absorbed by this thin silicide layer 12 are absorbed by the Si semiconductor layer 13 above it, and are further absorbed by this Si semiconductor layer 13. Infrared rays that are not absorbed by the layer 13 are absorbed by the second silicide layer thereon, so that the quantum efficiency of the incident infrared rays does not decrease, and the detection sensitivity of the device improves.

〔実 施 例] 以下、図面を用いて本発明の一実施例につき詳細に説明
する。
[Example] Hereinafter, an example of the present invention will be described in detail with reference to the drawings.

第2図は本発明の赤外線検知装置の一実施例を示す断面
図である。
FIG. 2 is a sectional view showing an embodiment of the infrared detection device of the present invention.

第2図に図示するように、本発明の赤外線検知装置は、
アクセプタ濃度NAがl Xl015のP型Si基板1
1に厚さが10人程度の第1層目の白金シリサイド(P
tSi)層12八が分子線エピタキシャル成長方法によ
り形成され、更にその上に厚さが200人程積層第1N
目のP型のシリコン(S’i)層13Aが分子線エピタ
キシャル成長方法により形成されている。
As illustrated in FIG. 2, the infrared detection device of the present invention includes:
P-type Si substrate 1 with acceptor concentration NA of l Xl015
1, the first layer of platinum silicide (P) is about 10 layers thick.
tSi) layer 128 is formed by the molecular beam epitaxial growth method, and on top of that, a layer 128 of about 200 layers is deposited.
A P-type silicon (S'i) layer 13A is formed by molecular beam epitaxial growth.

更にその上に前記したのと同様な厚さで第2層目の白金
シリサイド層12B、第2層目のP型のSi層13B、
aJi目の白金シリサイド層12C1第3層目のP型の
Si層13Cが順次前記した分子線エピタキシャル成長
方法で多層構造に形成されている。
Furthermore, a second layer of platinum silicide layer 12B, a second layer of P-type Si layer 13B,
The aJi-th platinum silicide layer 12C1 and the third P-type Si layer 13C are sequentially formed into a multilayer structure by the above-described molecular beam epitaxial growth method.

このように分子線エピタキシャル成長方法を用いると上
記白金シリサイド層、およびSi層が結晶性が良好な状
態で薄層構造に得られる。
As described above, when the molecular beam epitaxial growth method is used, the platinum silicide layer and the Si layer can be obtained in a thin layer structure with good crystallinity.

このように多層構造に積層形成された白金シリサイド層
とSi層はメサエッチングされ、そのメサの側面には、
白金シリサイド層とコンタクトを採るための八!の金属
電極14が蒸着、或いはスパッタにより形成され、また
他方のメサの側面には基板とコンタクトを採るための高
濃度にP型の不純物原子を添加したP’Si層15がス
パッタ法等により形成されている。
The platinum silicide layer and Si layer stacked in a multilayer structure in this way are mesa-etched, and the sides of the mesa are etched.
Eight for making contact with the platinum silicide layer! A metal electrode 14 is formed by vapor deposition or sputtering, and a P'Si layer 15 doped with P-type impurity atoms at a high concentration is formed by sputtering or the like on the side surface of the other mesa to make contact with the substrate. has been done.

またP型Si基板11には、図示しないが電荷転送素子
に光電変換された信号電荷を注入するための入力ダイオ
ードを形成するためのN″層16が形成されている。
Although not shown, an N'' layer 16 is formed on the P-type Si substrate 11 to form an input diode for injecting photoelectrically converted signal charges into the charge transfer element.

このようにして形成した赤外線検知装置の基板11の底
部より赤外線を矢印り方向に沿って入射する。該基板を
透過して白金シリサイド層12Aで吸収された赤外光に
より熱い正孔が形成される。そしてこの熱い正孔がSi
基板11 Si層13Aの両方に移動して光電流となる
Infrared rays are incident from the bottom of the substrate 11 of the infrared detecting device thus formed along the direction of the arrow. Hot holes are formed by infrared light transmitted through the substrate and absorbed by the platinum silicide layer 12A. And this hot hole is Si
The photocurrent moves to both the substrate 11 and the Si layer 13A and becomes a photocurrent.

ソノタメ、従来の装置に於けるように基板上に白金シリ
サイド膜を形成しただけの構造に比較してホット正孔が
、Si基板とSi層の両方に移動するため量子効率が向
上する。
Specifically, compared to a conventional device in which a platinum silicide film is simply formed on a substrate, the quantum efficiency is improved because hot holes move to both the Si substrate and the Si layer.

更に上記白金シリサイド層12Aが薄いために、該白金
シリサイド層12Aを突き抜けて通過した赤外線は第2
層目の白金シリサイド層12Bに到達し、該シリサイド
層12Bで発生したホットキャリアは、両側の5iJi
13A、13B注入されて光電流となり、このような動
作が繰り返して行えるため、量子効率の向上した赤外線
検知装置が得られる。
Furthermore, since the platinum silicide layer 12A is thin, the infrared rays that penetrate through the platinum silicide layer 12A are transmitted through the platinum silicide layer 12A.
The hot carriers reaching the platinum silicide layer 12B of the third layer and generated in the silicide layer 12B are
13A and 13B are injected to form a photocurrent, and since such an operation can be repeated, an infrared detection device with improved quantum efficiency can be obtained.

なお、本実施例ではシリサイド層として白金シリサイド
層を用いたが、その他シリサイド層としてイリジウムシ
リサイド(IrSi)、パラジウムシリサイド(PdS
i)を用いてもよい。
In this example, a platinum silicide layer was used as the silicide layer, but other silicide layers such as iridium silicide (IrSi) and palladium silicide (PdS) were used.
i) may also be used.

またシリサイド層の代わりに白金(Pt)層、イリジウ
ム(Ir)層、パラジウム(Pd)層等の金属層を用い
ても良い。
Further, instead of the silicide layer, a metal layer such as a platinum (Pt) layer, an iridium (Ir) layer, a palladium (Pd) layer, etc. may be used.

更に半導体層としては、Siの他にゲルマニウム(Ge
)、シリコン・ゲルマニウム(5iGe)を用いても良
い。
Furthermore, as a semiconductor layer, in addition to Si, germanium (Ge
), silicon germanium (5iGe) may also be used.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように本発明によれば、薄層の
金属、或いはシリサイド層で発生したホットキャリアが
金属、或いはシリサイド層の両側の半導体層に注入され
て光電流となり、また上記金属、或いはシリサイド層で
吸収されなかった赤外線は更にその上の金属、或いはシ
リサイド層で捕捉されるため、量子効率の向上した高感
度の多画素のSi基板を用いたショットキ型赤外線検知
装置が得られる効果がある。
As is clear from the above description, according to the present invention, hot carriers generated in a thin metal or silicide layer are injected into the semiconductor layers on both sides of the metal or silicide layer to become a photocurrent, and the metal, Alternatively, infrared rays that are not absorbed by the silicide layer are further captured by the metal or silicide layer above the silicide layer, so a Schottky-type infrared detection device using a high-sensitivity multi-pixel Si substrate with improved quantum efficiency can be obtained. There is.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の赤外線検知装置の原理図、第2図は本
発明の赤外線検知装置の一実施例の断面図、 第3図は従来の検知装置の構造を示す断面図、第4図は
ショットキ型赤外線検知素子のエネルギーバンドの説明
図である。 図に於いて、 llは半導体基板(P型Si基板)、12は金N層(シ
リサイド層)、12^、 12B、 12Cは白金シリ
サイド層、13は半導体層(Si層) 、13A、13
B、13CはSi層、14は金属電極、15はP″Si
層を示す。 矛qも四の銀外線検知恭R1へ原理図 31 図 未化l1lI71めふ外撤綾知挨1−史桶何の峻面況館
 2 図
Fig. 1 is a principle diagram of the infrared detection device of the present invention, Fig. 2 is a sectional view of an embodiment of the infrared detection device of the present invention, Fig. 3 is a sectional view showing the structure of a conventional detection device, and Fig. 4 is an explanatory diagram of energy bands of a Schottky-type infrared sensing element. In the figure, 11 is a semiconductor substrate (P-type Si substrate), 12 is a gold N layer (silicide layer), 12^, 12B, 12C is a platinum silicide layer, 13 is a semiconductor layer (Si layer), 13A, 13
B, 13C is a Si layer, 14 is a metal electrode, 15 is P″Si
Show layers. Principle Diagram 31 Figure 31 Figure 1 I71 Mefu External Removal Aya Chiki 1-Shioke What Shunmen Shokan 2 Diagram

Claims (1)

【特許請求の範囲】[Claims] 半導体基板(11)上に、金属層またはシリサイド層(
12)と半導体層(13)とを、交互に多層構造に積層
形成し、前記金属層またはシリサイド層と半導体層との
ショットキ接合を多層構造に設けたことを特徴とする赤
外線検知装置。
A metal layer or a silicide layer (
12) and semiconductor layers (13) are alternately stacked in a multilayer structure, and a Schottky junction between the metal layer or silicide layer and the semiconductor layer is provided in the multilayer structure.
JP1126440A 1989-05-18 1989-05-18 Infrared detector Pending JPH02303169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1126440A JPH02303169A (en) 1989-05-18 1989-05-18 Infrared detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1126440A JPH02303169A (en) 1989-05-18 1989-05-18 Infrared detector

Publications (1)

Publication Number Publication Date
JPH02303169A true JPH02303169A (en) 1990-12-17

Family

ID=14935260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1126440A Pending JPH02303169A (en) 1989-05-18 1989-05-18 Infrared detector

Country Status (1)

Country Link
JP (1) JPH02303169A (en)

Similar Documents

Publication Publication Date Title
US4876586A (en) Grooved Schottky barrier photodiode for infrared sensing
US7180066B2 (en) Infrared detector composed of group III-V nitrides
US10566366B2 (en) Photodetection device having a coating comprising trenches with a wide bandgap coating and production method
CN109244176B (en) Micro-ellipsoidal zero-crosstalk tellurium-cadmium-mercury infrared focal plane detector
US5751049A (en) Two-color infrared detector
JPH0436470B2 (en)
JPH05267695A (en) Infrared image sensing device
JPS62160776A (en) Photovoltage detector and manufacture of the same
JPH04246860A (en) Photoelectric conversion device
US7041983B2 (en) Planar geometry buried junction infrared detector and focal plane array
JPH02303169A (en) Infrared detector
US5198370A (en) Method for producing an infrared detector
EP0345343B1 (en) Method and apparatus for detecting infrared radiation
JPH05126643A (en) Infrared sensor
JPH0492481A (en) Photosensor
JPH0964402A (en) Hybrid infrared detector
JP2000164918A (en) Schottky junction semiconductor photodetector
JP5298499B2 (en) Light receiving element array and imaging device
JPS59112652A (en) Semiconductor image pickup device
JPS63273365A (en) Infrared-ray detector
JP2503605B2 (en) Infrared sensor
JP2988540B2 (en) Semiconductor photodetector
JPS63305568A (en) Photodetector
JPS6222474A (en) Infrared solid-state image pickup device
JP2616707B2 (en) Manufacturing method of infrared detector