JPH02302718A - Semiconductor optical element having quantum well structure - Google Patents

Semiconductor optical element having quantum well structure

Info

Publication number
JPH02302718A
JPH02302718A JP12288689A JP12288689A JPH02302718A JP H02302718 A JPH02302718 A JP H02302718A JP 12288689 A JP12288689 A JP 12288689A JP 12288689 A JP12288689 A JP 12288689A JP H02302718 A JPH02302718 A JP H02302718A
Authority
JP
Japan
Prior art keywords
quantum well
well structure
electric field
semiconductor
quantization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12288689A
Other languages
Japanese (ja)
Inventor
Yasutomo Kajikawa
靖友 梶川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Optoelectronics Technology Research Laboratory
Original Assignee
Optoelectronics Technology Research Laboratory
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Optoelectronics Technology Research Laboratory filed Critical Optoelectronics Technology Research Laboratory
Priority to JP12288689A priority Critical patent/JPH02302718A/en
Publication of JPH02302718A publication Critical patent/JPH02302718A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)

Abstract

PURPOSE:To ensure a large energy shift and high sensitivity to an electric field by making the axis of quantization of the quantum well structure of a semiconductor parallel to the [111] crystal orientation. CONSTITUTION:A III-V compd. semiconductor having zinc-blende structure and quantum well structure is used. When an electric field parallel to the axis of quantization of the quantum well structure is impressed, the quantum well level changes. The axis of quantization is made to practically coincide with the [111] crystal orientation. A semiconductor optical element having large effective mass of grains related to quantum confining Stark effect and a large energy shift of the peak of an exciter is obtd.

Description

【発明の詳細な説明】 [産業上の利用分野コ 本発明は、半導体量子井戸構造を有し、量子閉じ込めシ
ュタルク効果を利用する半導体光素子に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor optical device having a semiconductor quantum well structure and utilizing the quantum confined Stark effect.

[従来の技術] この種の半導体光素子として1例えば、応用物理第55
巻第3号(1986)p、p 210〜218に示され
る光変調器がある。
[Prior art] As this type of semiconductor optical device, for example,
There is an optical modulator shown in Vol. 3, No. 3 (1986) p., p. 210-218.

その光変調器を第3図に示す。第3図の光変調器はn型
半導体領域31.i型半導体領域32゜p型半導体領域
33から成り、i型半導体領域32内には多重量子井戸
構造34が形成されている。
The optical modulator is shown in FIG. The optical modulator shown in FIG. 3 has an n-type semiconductor region 31. It consists of an i-type semiconductor region 32° and a p-type semiconductor region 33, and a multiple quantum well structure 34 is formed in the i-type semiconductor region 32.

このようなp i n 構造の光素子に逆バイアスを印
加して、多重量子井戸構造の量子化軸に平行に電界を印
加すると、多重量子構造の光学定数が変化する。例えば
、第4図において1曲線C1に第3図の光変調器にlX
10’V/amの電界が印加されたときの吸収スペクト
ルを示し、他方、C2には4.7 X 10’ V/c
mの電界が印加されたときの吸収スペクトルを示す。曲
線C1と02とを比較しても明らかな通り、吸収ピーク
は電界強度が増加するに従い、低エネルギー側ヘシフト
する。
When a reverse bias is applied to an optical element having such a pin structure and an electric field is applied parallel to the quantization axis of the multiple quantum well structure, the optical constant of the multiple quantum well structure changes. For example, in FIG. 4, one curve C1 has lX in the optical modulator in FIG.
The absorption spectrum is shown when an electric field of 10'V/am is applied, while C2 has an electric field of 4.7 X 10' V/c.
The absorption spectrum is shown when an electric field of m is applied. As is clear from comparing curves C1 and 02, the absorption peak shifts to the lower energy side as the electric field strength increases.

ここで、ピークA、A’ は電子と重い正孔の最低量子
準位で形成される励起子ピーク、ピークB。
Here, peaks A and A' are exciton peaks formed at the lowest quantum levels of electrons and heavy holes, and peak B is peak B.

B′は電子と軽い正孔の最低量子準位で形成される励起
子ピークである。このような半導体量子井戸の光学定数
に対する電界効果を量子閉じ込めシュタルク効果という
。なお、励起子ピークのエネルギーシフト量は正孔の有
効質量が大きいほど大きい。
B' is an exciton peak formed at the lowest quantum level of electrons and light holes. This electric field effect on the optical constant of a semiconductor quantum well is called the quantum-confined Stark effect. Note that the amount of energy shift of the exciton peak increases as the effective mass of the hole increases.

このような量子閉じ込めシュタルク効果を利用する半導
体光素子として波長選択可能な光検出器。
A wavelength-selectable photodetector is a semiconductor optical device that utilizes such a quantum-confined Stark effect.

更゛に光双安定素子等も考えられている。Furthermore, optical bistable devices are also being considered.

従来、これらの閃亜鉛鉱構造の■−V族化合物半導体か
らなる量子井戸構造を有する半導体光素子は(100)
基板を用いて作製されている。
Conventionally, semiconductor optical devices having a quantum well structure made of these ■-V group compound semiconductors with a zincblende structure have (100)
It is made using a substrate.

[発明が解決しようとする課題] しかしながら、閃亜鉛鉱構造の■−v族化合物半導体で
は、正孔の有効質量が結晶方位に対して強い異方性を有
しており、その大きさは[100]方向で最も小さく、
従って、励起子ピークのエネルギーシフト量が小さいと
いう問題点があることが判明した。
[Problems to be Solved by the Invention] However, in a ■-v group compound semiconductor with a zincblende structure, the effective mass of holes has strong anisotropy with respect to the crystal orientation, and its size is [ 100] is the smallest in the direction,
Therefore, it has been found that there is a problem in that the amount of energy shift of the exciton peak is small.

本発明は、量子閉じ込めシュタルク効果に関与する粒子
の有効質量が大きく、励起子ピークのエネルギーシフト
量が大きな半導体光素子の提供を課題とする。
An object of the present invention is to provide a semiconductor optical device in which the effective mass of particles involved in the quantum-confined Stark effect is large and the amount of energy shift of the exciton peak is large.

[課題を解決するための手段] 本発明は、閃亜鉛鉱型結晶構造の■−V族化合物半導体
によって構成されると共に、量子井戸構造を備え、当該
量子井戸構造の量子化軸に平行な電界を印加することに
より量子井戸準位の変化する半導体光素子において、前
記量子化軸が[111]方位の結晶方位に実質的に一致
していることを特徴とする。
[Means for Solving the Problems] The present invention is composed of a ■-V group compound semiconductor having a zincblende crystal structure, has a quantum well structure, and has an electric field parallel to the quantization axis of the quantum well structure. A semiconductor optical device in which a quantum well level is changed by applying , is characterized in that the quantization axis substantially coincides with a [111] crystal orientation.

[実施例] 以下に図面を参照して本発明の詳細な説明する。[Example] The present invention will be described in detail below with reference to the drawings.

本発明の半導体光素子の一実施例として光変調器につい
て説明する。
An optical modulator will be described as an embodiment of the semiconductor optical device of the present invention.

本実施例の光変調器は、(111)基板を用いて作製さ
れ、その構造は第3図の光変調器と同じである。
The optical modulator of this example is manufactured using a (111) substrate, and its structure is the same as that of the optical modulator shown in FIG.

本発明者等の実験によれば閃亜鉛鉱構造を持つ■−V族
化合物半導体における正孔の有効質量は[111]方向
で最も大きいことが判明した。したがって、(111)
基板を用いて作製された本発明の光変調器における励起
子ピークのシフト量は(100)基板を用いたときより
も大きくなる。
According to experiments conducted by the present inventors, it has been found that the effective mass of holes in a ■-V group compound semiconductor having a zincblende structure is greatest in the [111] direction. Therefore, (111)
The amount of shift of the exciton peak in the optical modulator of the present invention manufactured using a substrate is larger than when a (100) substrate is used.

本発明の効果を明らかにするために、従来の(100)
基板用いて作製した光変調器と本発明である(111)
 基板を用いた光変調器との比較を行った。
In order to clarify the effects of the present invention, the conventional (100)
An optical modulator manufactured using a substrate and the present invention (111)
A comparison was made with an optical modulator using a substrate.

それぞれの光変調器においてn型半導体領域としてn型
AlGaAs、p型半導体領域としてp型AlGaAs
、n型半導体領域としてANGaAsを用い、n型半導
体領域の中央部は、厚さ1oneのGaAS及び厚さ1
5nsのAlGaAsからなる20周期の超格子とし、
n型半導体領域の厚さを1μmとした。
In each optical modulator, n-type AlGaAs is used as the n-type semiconductor region, and p-type AlGaAs is used as the p-type semiconductor region.
, ANGaAs is used as the n-type semiconductor region, and the central part of the n-type semiconductor region is made of GaAs with a thickness of 1 and
A 20-period superlattice made of 5ns AlGaAs,
The thickness of the n-type semiconductor region was 1 μm.

それぞれの光変調器の77Kにおけるフォトルミネッセ
ンス測定結果を第1図に示す。第1図(a)は本発明の
光変調器((111)基板使用)。
FIG. 1 shows the photoluminescence measurement results of each optical modulator at 77K. FIG. 1(a) shows an optical modulator of the present invention (using a (111) substrate).

第1図(b)は従来の光変調器((100)基板使用)
のフォトルミネッセンス測定結果である。
Figure 1(b) shows a conventional optical modulator (using a (100) substrate)
These are the photoluminescence measurement results.

電子と重い正孔の最低量子準位で形成される励起子ピー
クAI、A2のエネルギーシフト量を印加電界の大きさ
の関数として第2図に示す。
The energy shift of the exciton peaks AI, A2 formed at the lowest quantum levels of electrons and heavy holes is shown in FIG. 2 as a function of the magnitude of the applied electric field.

第2図から明らかなように、(100)基板を用いた従
来の光変調器(0で示す)よりも(111)基板を用い
た本発明の光変調器(・で示す)の方がエネルギーシフ
トが大きい。
As is clear from FIG. 2, the optical modulator of the present invention using a (111) substrate (indicated by .) has more energy than the conventional optical modulator using a (100) substrate (indicated by 0). The shift is large.

なお、[1001方向と[1111方向の重い正孔の有
効質量をそれぞれm ” hb= 0.34m 11 
In addition, the effective masses of heavy holes in the [1001 direction and [1111 direction] are respectively m '' hb = 0.34 m 11
.

m” mb=0.9 m、とじて求めたエネルギーシフ
トの理論値を破線及び実線で示す。これら理論値は実験
結果と略一致しており1本発明の有効性を示している。
Theoretical values of the energy shift obtained by dividing m'' mb=0.9 m are shown by broken lines and solid lines.These theoretical values substantially agree with the experimental results, demonstrating the effectiveness of the present invention.

[発明の効果] 本発明によれば、多重量子井戸構造の量子化軸を[11
11結品方位と平行にしたことで、エネルギーシフトが
大きく、電界に対して感度の良い半導体素子が得られる
[Effects of the Invention] According to the present invention, the quantization axis of the multiple quantum well structure is set to [11
11 By making the crystal orientation parallel to the crystal orientation, a semiconductor element with a large energy shift and high sensitivity to electric fields can be obtained.

以下余白Margin below

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、光変調器のフォトルミネッセンスベクトルを
示し、第1図(a)は[111]方向に量子化した量子
井戸を有する光変調器のもの、第1図(b)は[100
]方向に量子化した童子井戸を白゛する光変調器のもの
、第2図は、第1図の励起子ピークのエネルギーシフト
を示すグラフ、第3図は垂直入射型光変調器を示す概略
図、第4図は量子閉じ込めシュタルク効果を説明するた
めの吸収係数のグラフである。 31・・・n型半導体領域、32・・・i型半導体領域
。 33・・・p型半導体領域、34・・・多重量子井戸。 第27 印加電圧 (V) 電界(X10’V/cm) 第1図(a) エネルギー(eV) 波 長(圃) 第1図(b) エネルギー(eV ) 1.55  1.54  1.53 795  800  805  870  8i5波 
  長  (nm )
FIG. 1 shows the photoluminescence vector of an optical modulator. FIG. 1(a) shows the photoluminescence vector of an optical modulator having a quantum well quantized in the [111] direction, and FIG.
] Figure 2 is a graph showing the energy shift of the exciton peak in Figure 1, and Figure 3 is a schematic diagram showing a normal incidence optical modulator. 4 are graphs of absorption coefficients for explaining the quantum confined Stark effect. 31...n-type semiconductor region, 32...i-type semiconductor region. 33...p-type semiconductor region, 34... multiple quantum well. 27 Applied voltage (V) Electric field (X10'V/cm) Figure 1 (a) Energy (eV) Wavelength (field) Figure 1 (b) Energy (eV) 1.55 1.54 1.53 795 800 805 870 8i5 wave
Length (nm)

Claims (1)

【特許請求の範囲】[Claims] 1、閃亜鉛鉱型結晶構造のIII−V族化合物半導体によ
って構成されると共に、量子井戸構造を備え、当該量子
井戸構造の量子化軸に平行な電界を印加することにより
量子井戸準位の変化する半導体光素子において、前記量
子化軸が[111]方位の結晶方位に実質的に一致して
いることを特徴とする量子井戸構造を有する半導体光素
子。
1. It is composed of a III-V group compound semiconductor with a zincblende crystal structure and has a quantum well structure, and the quantum well level can be changed by applying an electric field parallel to the quantization axis of the quantum well structure. 1. A semiconductor optical device having a quantum well structure, wherein the quantization axis substantially coincides with a [111] crystal orientation.
JP12288689A 1989-05-18 1989-05-18 Semiconductor optical element having quantum well structure Pending JPH02302718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12288689A JPH02302718A (en) 1989-05-18 1989-05-18 Semiconductor optical element having quantum well structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12288689A JPH02302718A (en) 1989-05-18 1989-05-18 Semiconductor optical element having quantum well structure

Publications (1)

Publication Number Publication Date
JPH02302718A true JPH02302718A (en) 1990-12-14

Family

ID=14847070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12288689A Pending JPH02302718A (en) 1989-05-18 1989-05-18 Semiconductor optical element having quantum well structure

Country Status (1)

Country Link
JP (1) JPH02302718A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208296A (en) * 1987-02-24 1988-08-29 Sharp Corp Semiconductor device
JPS6456413A (en) * 1987-03-25 1989-03-03 Toshiba Corp Semiconductor optical element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63208296A (en) * 1987-02-24 1988-08-29 Sharp Corp Semiconductor device
JPS6456413A (en) * 1987-03-25 1989-03-03 Toshiba Corp Semiconductor optical element

Similar Documents

Publication Publication Date Title
Hader et al. Microscopic theory of gain, absorption, and refractive index in semiconductor laser materials-influence of conduction-band nonparabolicity and coulomb-induced intersubband coupling
JP2584811B2 (en) Nonlinear optical element
JPH0656899B2 (en) Optical element and semiconductor element
JP2968335B2 (en) Quantum well structure
US6525337B1 (en) Light and/or electron element
JPS59116612A (en) Light modulator
En-nadir et al. Inter and intra band impurity-related absorption in (In, Ga) N/GaN QW under composition, size and impurity effects
Jeon et al. Strain effects on optical gain in wurtzite GaN
McCallum et al. Polarization rotation modulator in a strained [110]‐oriented multiple quantum well
JP3394789B2 (en) Light modulation element with high contrast ratio
JPH02302718A (en) Semiconductor optical element having quantum well structure
Campbell et al. Electrooptic modulation in polar growth axis InGaAs/GaAs multiple quantum wells
JP2758472B2 (en) Light modulator
Livescu et al. Electron-hole correlation singularity in optical spectra of modulation doped GaAs AlGaAs quantum wells
US5208695A (en) Optical modulator based on gamma -X valley mixing in GaAs-AlAs
JP2864462B2 (en) Semiconductor optical device and method of using the same
Pezeshki et al. Wannier–Stark localization in a strained InGaAs/GaAs superlattice
Smith Piezoelectric effects in strained layer heterostructures grown on novel index substrates
Das et al. The Magneto Electron Statistics in Heavily Doped N Type-Intrinsic-P Type-Intrinsic Structures
JPH0862554A (en) Semiconductor optical modulator
Efron et al. Multiple quantum well-based spatial light modulators
Mal et al. Influence of Hydrostatic Pressure on the Performance of GaAsSbN/GaAs Quantum Well Based Optoelectronic Devices
JPH0743490B2 (en) Semiconductor device
Yang et al. Electric field effects on HgTe‐based quantum wells
Henriques Magneto-excitons in asymmetric modulation-doped quantum wells