JPH0230267Y2 - - Google Patents

Info

Publication number
JPH0230267Y2
JPH0230267Y2 JP8036984U JP8036984U JPH0230267Y2 JP H0230267 Y2 JPH0230267 Y2 JP H0230267Y2 JP 8036984 U JP8036984 U JP 8036984U JP 8036984 U JP8036984 U JP 8036984U JP H0230267 Y2 JPH0230267 Y2 JP H0230267Y2
Authority
JP
Japan
Prior art keywords
cold air
bubble
air
passage
die
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP8036984U
Other languages
Japanese (ja)
Other versions
JPS60194514U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP8036984U priority Critical patent/JPS60194514U/en
Publication of JPS60194514U publication Critical patent/JPS60194514U/en
Application granted granted Critical
Publication of JPH0230267Y2 publication Critical patent/JPH0230267Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Description

【考案の詳細な説明】 〈産業分野〉 この考案は、インフレーシヨンフイルム成形に
おいて押出成形機のダイより押出される合成樹脂
製チユーブからなるバブルの内部にこのダイ内か
ら冷風を供給し、ダイから押出され、今だ溶融状
態にあるバブルを内側から強制冷却する装置に関
する。
[Detailed description of the invention] <Industrial field> This invention supplies cold air from inside the die to the inside of a bubble made of a synthetic resin tube extruded from the die of an extrusion molding machine in inflation film molding. It relates to a device that forcibly cools bubbles extruded from the inside that are still in a molten state from the inside.

〈従来技術〉 この種のインフレーシヨンフイルム成形におい
ては、ダイから押出された直後の今だ溶融状態に
あるバブルは、その冷却固化の工程においてその
内部に封入された空気により膨張され、所望のフ
イルム幅寸法に成形されている。また、厚肉のフ
イルムを偏肉なく、その引張強さを全周均一化
し、高品質のフイルムを得るために、バブルを外
側から冷却すると共に、その内側からも冷却を行
なつており、通常は、その内部冷却は、外部冷却
と同様に冷風を用いており、この冷風をダイから
バブル内部へ吹込み循環させる過程でこのバブル
を膨張させると共に冷却し、その後ダイを通して
バブル外へ排出している。
<Prior art> In this type of inflation film forming, bubbles that are still in a molten state immediately after being extruded from a die are expanded by the air sealed inside in the cooling and solidification process, and are formed into the desired shape. It is molded to the film width dimension. In addition, in order to make a thick film uniform in tensile strength all around and to obtain a high-quality film, we cool the bubble from the outside as well as from the inside. As with external cooling, this uses cold air for internal cooling, and in the process of blowing this cold air into the bubble from the die and circulating it, it expands and cools the bubble, and then discharges it to the outside of the bubble through the die. There is.

〈この考案が解決しようとする問題点〉 この種の冷風を用いるバブル内部冷却装置の従
来例は、第4図に示す如く、内部空気案内リング
Aが、ダイC上面にロツドBにより相互離間して
垂直に複数個配置され、ダイCの空気供給管Dか
らの冷風は、各リングA内に垂直短管E〜Gを介
して順次供給され、各リングAの外周面に穿設し
たスリツト状の冷風吹出リツプHからバブル内面
に吹出しているが、このように上下リングA内部
を垂直短管E,F,Gにより各々連通しているた
め、上段の前記リングAになればなるほど、冷風
の供給風量が下段のものに比べ減少し不足気味と
なり、前記各リツプHの面積が一定とすれば、こ
れらから吹出す冷風速度が上段ほど弱くなり、各
段における前記リングAのリツプHからの冷風速
度が不均一となり、全高さ位置間においても冷風
によるバブル冷却効果を一定化することができ
ず、バブルの上下又は左右への振動を誘因する。
<Problems to be solved by this invention> In a conventional example of a bubble internal cooling device using this type of cold air, as shown in FIG. The cold air from the air supply pipe D of the die C is sequentially supplied into each ring A via the vertical short pipes E to G, and the slit-like The cold air is blown out from the cold air blowing lip H to the inner surface of the bubble, but since the inside of the upper and lower rings A are communicated with each other through the vertical short pipes E, F, and G, the cold air is blown from the upper ring A to the inner surface of the bubble. The supplied air volume is reduced compared to the one in the lower tier, and it seems to be insufficient.If the area of each lip H is constant, the velocity of the cold air blown from these will be weaker in the upper tier, and the cold air from the lip H of the ring A in each tier will be lower. The speed becomes non-uniform, and the bubble cooling effect of the cold air cannot be made constant even at all height positions, which causes the bubble to vibrate vertically or horizontally.

このような欠点を改良するために、各段におけ
る垂直短管E,F,Gの断面積を、下段ほど大き
くした従来技術が、特公昭56−7854号公報に記載
されてはいるが、その設定、製造には困難性があ
り、かつ構造も複雑であり、まだ改良の余地を残
している。
In order to improve this drawback, a conventional technique in which the cross-sectional area of the vertical short pipes E, F, and G in each stage is made larger toward the lower stage is described in Japanese Patent Publication No. 56-7854. It is difficult to set up and manufacture, and the structure is complicated, so there is still room for improvement.

更に、前記各リングAのリツプHから吹出した
冷風は、前記各リングA間の軸方向長さの短い円
筒状空気案内路を通り、中央排気通路Jを形成
する中央管KとリングAの内壁間に形成した環状
の吸引通路L内に吸引され上昇してゆくため、こ
の空気案内路内の圧力は、大気圧よりも低めの
負圧の状態となり、冷風により内部冷却中のバブ
ルの一部が、この空気案内路の位置、即ち上下
リングA間の位置において内部冷却装置側へ吸引
されて、密着するおそれがあり、所望直径のバブ
ルに吹膨する前段階であるバブル内部冷却を円滑
に行なえず、バブルが左右又は上下に振動するこ
ととなり、バブルの巻取り時においてバブルに偏
肉が生じ易くなり、最悪の場合には、破断してし
まいフイルム成形の能率を低下させてしまう。
Further, the cold air blown from the lip H of each ring A passes through a cylindrical air guide path with a short axial length between each ring A, and then passes through the inner wall of the central pipe K and the ring A forming the central exhaust passage J. As the air is sucked into the annular suction passage L formed between them and rises, the pressure inside this air guide passage becomes a negative pressure state lower than atmospheric pressure, and some of the bubbles that are being internally cooled by the cold air However, at the position of this air guide path, that is, the position between the upper and lower rings A, there is a risk that it will be sucked into the internal cooling device and come into close contact with the internal cooling device, which may prevent smooth internal cooling of the bubble, which is the stage before blowing into a bubble of the desired diameter. If this is not possible, the bubble will vibrate left and right or up and down, and when the bubble is wound up, uneven thickness will likely occur in the bubble, and in the worst case, it will break, reducing the efficiency of film forming.

このような事項が、問題点として指摘できる。 These matters can be pointed out as problems.

この考案は、前記従来技術の問題点を改良し、
バブルを振動なく均一に内部冷却する装置を提供
することを主目的とする。
This invention improves the problems of the prior art,
The main objective is to provide a device that uniformly internally cools bubbles without vibration.

〈問題点を解決する手段〉 この考案は、前記主目的である問題点解決のた
めに考案されたバブル内部冷却装置であり、その
要旨は、押出成形機のダイより押出される合成樹
脂製チユーブからなるバブルの内部を内側から冷
却する装置において、 上端がバブル内に開口し、下端が前記ダイの中
央排気吸引路に連通して中央空気排気通路を形成
する内管と、上端が閉止され、下端がこのダイの
冷風吹出口に連通し、前記内管周りに筒状の冷風
供給路を形成する内側中間管と、上端がバブル内
に開口し下端が閉塞され空気上昇通路を前記内側
中間管周りに形成する外側中間管が、同心上に配
置され、この外側中間管の外周面に、軸線方向に
間隔をおいて円周方向に環状の冷風吐出室が上下
に位置する一対の隣接する同一外径寸法を有する
リング状の型材により形成し、上側のリング状型
材の外向きに延びるリツプと、下側のリング状型
材の内向に延びるリツプ間に、前記冷風吐出室に
連通する円周方向のスリツト状の冷風吹出溝が形
成され、各冷風吐出室と冷風供給路間を連通する
短管が、空気上昇通路を半径方向にまたぎ放射状
に多数配設されており、上下に隣接する冷風吹出
室間には、多数の小孔をあけた筒体が、前記の冷
風吹出溝先端面と面一に張設され、この筒体と相
互離間して配置した前記型材と外側中間管外周面
により、冷風吐出室と隔離された空気戻し室を形
成し、各空気戻し室と空気上昇通路間に位置する
外側中間管に連通孔が多数明けられ前記筒体周面
と冷風吹出溝先端面により、筒状のバブル案内面
が形成されていることを特徴とするインフレーシ
ヨンフイルム成形におけるバブル内部冷却装置で
ある。
<Means for solving the problem> This invention is a bubble internal cooling device devised to solve the above-mentioned main purpose. An apparatus for cooling the inside of a bubble from the inside, comprising: an inner tube whose upper end opens into the bubble and whose lower end communicates with the central exhaust suction path of the die to form a central air exhaust passage; an inner intermediate tube whose lower end communicates with the cold air outlet of this die and forms a cylindrical cold air supply path around the inner tube; and an inner intermediate tube whose upper end opens into a bubble and whose lower end is closed and which connects the air rising passage. An outer intermediate pipe formed around the outer intermediate pipe is arranged concentrically, and a pair of adjacent identical cold air discharge chambers are arranged above and below in the circumferential direction and spaced apart in the axial direction on the outer peripheral surface of the outer intermediate pipe. A circumferential direction which is formed by a ring-shaped material having an outer diameter and communicates with the cold air discharge chamber between an outwardly extending lip of the upper ring-shaped material and an inwardly extending lip of the lower ring-shaped material. A slit-shaped cold air outlet groove is formed, and a large number of short pipes communicating between each cold air outlet chamber and the cold air supply path are arranged radially across the air ascending passage in the radial direction. Between the chambers, a cylindrical body with a large number of small holes is stretched flush with the tip surface of the cold air blowing groove, and the cylindrical body, the shape material and the outer circumferential surface of the outer intermediate pipe arranged at a distance from each other form a cylindrical body with a large number of small holes. , an air return chamber isolated from the cold air discharge chamber is formed, and a large number of communication holes are formed in the outer intermediate pipe located between each air return chamber and the air ascending passage, and the peripheral surface of the cylinder and the tip surface of the cold air blowing groove are formed. This is a bubble internal cooling device for inflation film molding, characterized in that a cylindrical bubble guide surface is formed.

〈実施態様〉 この考案の代表的実施態様を第1図乃至第3図
に基ずき説明する。
<Embodiment> A typical embodiment of this invention will be explained based on FIGS. 1 to 3.

第1図乃至第3図において、10は、バブル内
部冷却装置であり、この冷却装置10の内管11
は、その上端がバブルW内に開口し、その下端が
押出成形機のダイ12の空気排気口13に連通
し、中央空気排気通路14を形成している。この
内管11と軸線を共有する内側中間管15の上端
は、リング状端板16により閉止され、その下端
が、このダイ12の冷風吹出口17に連通してお
り、この内側中間管15により内管11周りに筒
状の冷風供給路18を形成する。
1 to 3, 10 is a bubble internal cooling device, and the inner tube 11 of this cooling device 10 is
The upper end thereof opens into the bubble W, and the lower end thereof communicates with the air exhaust port 13 of the die 12 of the extrusion molding machine, thereby forming a central air exhaust passage 14. The upper end of the inner intermediate tube 15 that shares an axis with the inner tube 11 is closed by a ring-shaped end plate 16, and the lower end thereof communicates with the cold air outlet 17 of the die 12. A cylindrical cold air supply path 18 is formed around the inner tube 11.

この内側中間管15の周りに空気上昇通路19
を形成する外側中間管20は、前記軸線を内管1
1、内側中間管15と共有し、ダイ12の上面に
バブルW内部に位置するようにこの外側中間2
0、内側中間管15及び内管11が同心に配置さ
れており、前記外側中間管20の上端はバブルW
内に開口し、その下端は、リング状の端板21に
より閉塞されている。
Air rising passage 19 is arranged around this inner intermediate pipe 15.
The outer intermediate tube 20 forming the inner tube 1 has the axis line
1. This outer intermediate 2 is shared with the inner intermediate tube 15 and is located inside the bubble W on the upper surface of the die 12.
0, the inner intermediate tube 15 and the inner tube 11 are arranged concentrically, and the upper end of the outer intermediate tube 20 is connected to the bubble W.
It opens inward, and its lower end is closed by a ring-shaped end plate 21.

前記リング状端板16に、前記内管11と内側
中間管15の各上端が固定され、リング状端板1
6の上面には、空気上昇通路19から吹出される
空気と、中央空気排気通路14内に流入する空気
の混合を防止する混合防止リング体16aが上向
きに突設されている。
The upper ends of the inner tube 11 and the inner intermediate tube 15 are fixed to the ring-shaped end plate 16, and the ring-shaped end plate 1
A mixing prevention ring body 16a that prevents mixing of the air blown out from the air ascending passage 19 and the air flowing into the central air exhaust passage 14 is provided on the upper surface of the central air exhaust passage 14 to protrude upward.

前記外側中間管20の外周面には、上下に位置
する一対の隣接するリング状の同一外径寸法を有
する型材22と23により、軸線方向に間隔をお
いて円周方面に環状の冷風吐出室24が、階層状
に形成され、上側のリング状型材22の外向きに
延びるリツプ22aと、下側のリング状型材23
の内向きに延びるリツプ22b間に、前記冷風吐
出室24に連通する円周方向のスリツト状の冷風
吹出溝25が形成されている。これら各冷風吐出
室24と冷風供給路18間を連通する短管26
は、前記空気上昇通路19を半径方向にまたぎ放
射状に多数配設されており、冷風供給路18に供
給された冷風を短管26群を経て各冷風吐出室2
4内へ順次供給し、円周方向のスリツト状の冷風
吹出溝25からバブルW内面に向け吹出す経路を
形成する。
On the outer peripheral surface of the outer intermediate pipe 20, annular cold air discharge chambers are formed in the circumferential direction at intervals in the axial direction by a pair of adjacent ring-shaped shapes 22 and 23 having the same outer diameter dimension located above and below. 24 is formed in a layered manner, and includes an outwardly extending lip 22a of the upper ring-shaped member 22 and a lower ring-shaped member 23.
A circumferential slit-shaped cold air blowing groove 25 communicating with the cold air blowing chamber 24 is formed between the inwardly extending lips 22b. A short pipe 26 communicating between each of these cold air discharge chambers 24 and the cold air supply path 18
are arranged radially across the air ascending passage 19 in large numbers, and direct the cold air supplied to the cold air supply path 18 to each cold air discharge chamber 2 through a group of short pipes 26.
A path is formed in which the air is sequentially supplied into the bubble W and is blown out from the circumferential slit-shaped cold air blowing groove 25 toward the inner surface of the bubble W.

上下に隣接する冷風吹出室24間には、多数の
小孔27をあけた筒体28が、前記冷風吹出溝2
5先端面と面一に張設され、この筒体28、相互
離間して配置された型材23,22および外側中
間管20外周面により、上下の冷風吐出室24と
隔離された空気戻し室29が形成されている。
A cylindrical body 28 having a large number of small holes 27 is provided between the vertically adjacent cold air blowing chambers 24 and the cold air blowing grooves 2.
5, an air return chamber 29 which is stretched flush with the tip surface and is isolated from the upper and lower cold air discharge chambers 24 by this cylinder 28, the shapes 23, 22 spaced apart from each other, and the outer peripheral surface of the outer intermediate tube 20; is formed.

即ち、前記型材22,23で仕切られた冷風吐
出室23と空気戻し室29が、外側中間管20の
周りに、軸線方向で交互に形成配置されている。
各空気戻し室29と空気上昇通路19間に位置す
る外側中間管20に連通孔30が、多数穿設さ
れ、筒体28の小孔27から冷風吹出室22に流
入した空気を連通孔30を経て空気上昇通路19
に吸込まれ、この通路19に沿い上昇しその上端
からバブルW内へ吹出す経路を形成する。
That is, the cold air discharge chamber 23 and the air return chamber 29, which are partitioned by the shapes 22 and 23, are formed and arranged alternately in the axial direction around the outer intermediate pipe 20.
A large number of communication holes 30 are bored in the outer intermediate pipe 20 located between each air return chamber 29 and the air rising passage 19, and air flowing into the cold air blowing chamber 22 from the small hole 27 of the cylinder body 28 is passed through the communication holes 30. Air rising passage 19
A path is formed in which the bubbles are sucked into the bubble W, rise along this passage 19, and blow out into the bubble W from its upper end.

前記筒体28周面と冷風吹出溝25先端面によ
り、筒状のバブル案内面が形成される。
A cylindrical bubble guide surface is formed by the circumferential surface of the cylindrical body 28 and the tip end surface of the cold air blowing groove 25.

なお、最下位の空気戻し室29とダイ12との
間には、円筒体31が設けられ、内側中間管15
の周りに平面リング状の空間32を形成してい
る。この空間32は、冷風通過自在な円筒状の多
孔板33により、内外2室32a,32bに区画
され、内側の圧力調整室32aは、内側中間管1
5に穿設した上下2組の多数の連通孔34によ
り、冷風供給路18に連通し、円筒体31寄りの
外側吹出室32bには、ダイ12の溶融樹脂吐出
口35近傍に開口する上向きの吹出環状口32c
が形成され、ダイ12の冷風吹出口17から吹出
された直後の一部の冷風が連通孔34、内側の圧
力調整室32a、多孔板33、外側吹出室32b
の順にジグザグに通過し吹出環状口32cから吹
出す通路を形成する。
Note that a cylindrical body 31 is provided between the lowest air return chamber 29 and the die 12, and the inner intermediate pipe 15
A planar ring-shaped space 32 is formed around the . This space 32 is divided into two inner and outer chambers 32a and 32b by a cylindrical perforated plate 33 through which cold air can freely pass.
5 are connected to the cold air supply path 18 through two sets of upper and lower communication holes 34, and the outer blowing chamber 32b near the cylindrical body 31 has an upwardly facing hole that opens near the molten resin discharge port 35 of the die 12. Blowout annular port 32c
is formed, and a portion of the cold air immediately after being blown out from the cold air outlet 17 of the die 12 flows through the communication hole 34, the inner pressure adjustment chamber 32a, the perforated plate 33, and the outer blowing chamber 32b.
A passage is formed in which the air passes through in a zigzag pattern in this order and blows out from the annular blowout port 32c.

このリング状の空間32の真上で、外側中間管
20の下端は、端板21により閉塞されているこ
とは云うまでもない。
Needless to say, the lower end of the outer intermediate tube 20 is closed by the end plate 21 directly above the ring-shaped space 32.

〈作用〉 前記のように構成した本件考案の作用を次に説
明する。
<Operation> The operation of the present invention configured as described above will be explained below.

前記ダイ12の冷風吹出口17に連通する送風
機P1と、ダイ12の空気排気口13に連通する
送風機P2を始動すると、冷風は、送風機P1によ
りダイ12の冷風吹出口17から本件考案のバブ
ル内部冷却装置10の冷風供給路18に供給され
た後、冷風の一部は、ダイ12寄りの連通孔34
群、内側圧力調整室32a、多孔板33、外側吹
出室32bを順次通過し、吹出環状口32cよ
り、ダイ12の吐出口35から押出し成形中の溶
融状態にあるバブルW内面に向け吹出され、この
バブルW内面を冷却すると共に、バブルWと円筒
体31周面に沿い上昇し、他の冷風は、前記筒状
の冷風供給路18を上昇するに伴い、半径方向に
延びる短管26を経て各冷風吐出室24へ順次分
散供給され、次いで各冷風吐出室24から前記円
周方向のスリツト状の冷風吹出溝25を通つてバ
ブルW内面に向け吹出され、バブルW内面を冷却
しつつバブルに沿い上昇する。
When the blower P 1 communicating with the cold air outlet 17 of the die 12 and the blower P 2 communicating with the air outlet 13 of the die 12 are started, the cold air is supplied from the cold air outlet 17 of the die 12 by the blower P 1 according to the present invention. After being supplied to the cold air supply path 18 of the bubble internal cooling device 10, a part of the cold air is supplied to the communication hole 34 near the die 12.
The bubbles pass through the inner pressure adjustment chamber 32a, the porous plate 33, and the outer blowing chamber 32b in order, and are blown out from the blowing annular opening 32c toward the inner surface of the bubble W in a molten state during extrusion molding from the outlet 35 of the die 12. The inner surface of the bubble W is cooled, and the other cold air rises along the circumferential surface of the bubble W and the cylindrical body 31, and as it rises through the cylindrical cold air supply path 18, it passes through the short pipe 26 extending in the radial direction. The cold air is sequentially distributed and supplied to each cold air discharge chamber 24, and then blown from each cold air discharge chamber 24 toward the inner surface of the bubble W through the slit-shaped cold air blowing groove 25 in the circumferential direction, thereby cooling the inner surface of the bubble W and forming bubbles. Rising along.

このバブル内面を冷却し若干温度上昇した空気
の一部は、そのまま更に冷却を行いつつバブルに
沿い上昇し続け、次位の冷風吐出室21の冷風吹
出溝25から吹出される冷風と合流し、バブルW
に沿い上に上にと上昇して、バブルWを冷却し続
ける。
A part of the air whose temperature has risen slightly by cooling the inner surface of the bubble continues to rise along the bubble while being further cooled, and merges with the cold air blown out from the cold air blowing groove 25 of the next cold air blowing chamber 21. Bubble W
It continues to cool the bubble W by rising upward along the same direction.

このバブルWを冷却し若干温度上昇した空気の
他の一部は、隣接する上位の空気戻し室22内
に、前記筒体28の多数の小孔27群を介して導
かれ、次いで、空気上昇通路19に連通孔30を
経て吸引された後、この空気上昇通路19中を上
昇してゆき、各空気戻し室22から吸引された全
ての暖つた空気は、空気上昇通路19の上端から
吹出され、バブルWに沿い上昇してくる空気と合
流し、本件内部冷却装置を出た直後のバブルWを
所望径に急速に拡大膨張させる。この際、混合防
止リング16aにより、排気通路14へ流入する
空気と、上昇通路19から吹出される空気の混合
は防止される。このようにバブルWを拡大膨張さ
せた暖つた全ての空気は、内管11で形成した中
央空気排気通路14の上端から流入降下し、ダイ
12の空気排気口13からダイ12外へ排出され
る。
Another part of the air whose temperature has risen slightly by cooling the bubble W is guided into the adjacent upper air return chamber 22 through a large number of small holes 27 of the cylinder body 28, and then the air rises. After being sucked into the air passage 19 through the communication hole 30, the air rises in the air rising passage 19, and all the warm air sucked from each air return chamber 22 is blown out from the upper end of the air rising passage 19. , merges with the air rising along the bubble W, and rapidly expands and expands the bubble W immediately after leaving the internal cooling device to a desired diameter. At this time, the mixing prevention ring 16a prevents the air flowing into the exhaust passage 14 and the air blown out from the rising passage 19 from mixing. All the warm air that has expanded and expanded the bubble W in this way flows in and descends from the upper end of the central air exhaust passage 14 formed by the inner tube 11, and is discharged from the air exhaust port 13 of the die 12 to the outside of the die 12. .

この空気上昇通路19と中央空気排気通路14
をその上端寄りで放射状の半径方向に設けた短管
により相互連通しておけば、中央空気排気通路1
4中を流れる空気流に、空気上昇通路19内の空
気の一部が強制吸引され、空気上昇通路19内で
の空気の上昇流がより確実になる。
This air rising passage 19 and the central air exhaust passage 14
If they are communicated with each other by short pipes provided in the radial direction near their upper ends, the central air exhaust passage 1
A part of the air in the air rising passage 19 is forcibly sucked into the air flow flowing through the air passage 4, thereby making the upward flow of air in the air rising passage 19 more reliable.

〈効果〉 叙述のように構成し作用するこの考案の内部冷
却装置10は、次の効果を奏する。
<Effects> The internal cooling device 10 of this invention, which is constructed and operates as described above, has the following effects.

各冷風吐出室24への冷風の供給は、前記内側
中間管15により内管11周りに形成した筒状の
冷風供給路18を上昇中の冷風を、半径方向に放
射状に多数配設された短管26により、半径方向
から分散供給する構造としてあるため、同一寸法
の短管26を用いてもほヾ同一風量の冷風を軸線
方向に離間して配置した各冷風吐出室24に分散
供給することができ、構造の簡素化を伴い同一風
量、同一速度の冷風を各冷風吐出室24のフリツ
ト状の冷風吹出溝25からバブルW内面に向け吹
出すことができ、上下又は左右の振動なくバブル
Wを安定した状態で内部から一様に冷却でき、そ
の偏肉発生を防止できる。
The cold air is supplied to each cold air discharge chamber 24 by passing the cold air rising through a cylindrical cold air supply path 18 formed around the inner pipe 11 by the inner intermediate pipe 15 to a plurality of short channels arranged radially in the radial direction. Since the structure is such that the pipes 26 supply the cold air in a distributed manner from the radial direction, even if the short pipes 26 of the same size are used, almost the same amount of cold air can be distributed and supplied to the cold air discharge chambers 24 spaced apart in the axial direction. The structure is simplified, and the same air volume and speed can be blown out from the frit-shaped cold air blowing grooves 25 of each cold air discharge chamber 24 toward the inner surface of the bubble W, without vertical or horizontal vibration. can be cooled uniformly from the inside in a stable state, and uneven thickness can be prevented.

各スリツト状の冷風吹出溝25からバブルWに
向け吹出され、バブルW冷却により若干暖つた空
気の一部は、バブルW内面に沿い上昇しつつ前記
筒体28の小孔27群を通り各空気戻し室29に
流入するため、暖まつた空気の殆んどを、一時に
その流入速度を高めることなく空気戻し室29に
流入することができ、この小孔27群付きの筒体
28の存在により空気戻し室29内の圧力を負圧
にすることなくほヾ大気圧の状態に維持しつつ、
暖まつた多量の空気を連通孔30を介して空気上
昇通路19に導くことができ、バブルWが空気戻
し室29位置において、その筒体28周面に密着
することを防止でき、バブルW内面に沿い上昇す
る冷風により、本件内部冷却装置10の外周面か
ら離間した状態でバブルWを支持し内部冷却する
ことができる。
A part of the air that is blown out from each slit-shaped cold air blowing groove 25 toward the bubble W and slightly warmed by the cooling of the bubble W rises along the inner surface of the bubble W and passes through the group of small holes 27 of the cylinder 28 to each air. Since most of the warm air flows into the air return chamber 29, it is possible to flow into the air return chamber 29 without increasing the inflow speed at once. While maintaining the pressure inside the air return chamber 29 at almost atmospheric pressure without making it negative pressure,
A large amount of warm air can be guided to the air rising passage 19 through the communication hole 30, and the bubble W can be prevented from coming into close contact with the circumferential surface of the cylindrical body 28 at the air return chamber 29 position. The bubble W can be supported and internally cooled by the cold air rising along the bubble W while being spaced apart from the outer peripheral surface of the internal cooling device 10.

〈実施態様の効果〉 前記端板16に設けた混合防止リング体16a
により、空気上昇通路19上端から吹出す空気
と、中央空気排気通路14内に上端から流入降下
する空気の混合を確実に防止でき、過流を起こす
ことなく、この吹出す空気をバブルWに沿い上昇
してくる空気と適切に混合し、バブルWを所望径
に一挙に吹膨成形できる。
<Effects of the embodiment> Mixing prevention ring body 16a provided on the end plate 16
As a result, it is possible to reliably prevent the air blowing out from the upper end of the air rising passage 19 from mixing with the air flowing in and falling into the central air exhaust passage 14 from the upper end, and to direct this blowing air along the bubble W without causing an overflow. By appropriately mixing with the rising air, the bubbles W can be blown to a desired diameter all at once.

ダイ12の吐出口35から押出された直後のバ
ブルW内周面全周に、円筒体31寄りの外側吹出
室32bに形成した吹出環状口32cから今だ冷
却能力の高い冷風の一部を吹付けることができ、
バブルWを押出成形直後から直ちに内部冷却でき
ると共に、円筒体31の外周面に沿いバブル冷却
により暖められた空気を上方へ案内し、上位の空
気戻し室22までバブルWを安定した状態で案内
でき、かつ円筒体31の内部には常に温度の低い
空気が順次供給されるため、この部分の外周面を
流れる空気は、この区間を流れる間に内部から冷
却されることゝなり、バブル冷却効果をより高め
ることができる。
A portion of the cold air, which still has a high cooling capacity, is blown from the blow-off annular opening 32c formed in the outer blow-off chamber 32b near the cylindrical body 31 to the entire inner peripheral surface of the bubble W immediately after being extruded from the discharge port 35 of the die 12. can be attached,
The bubble W can be internally cooled immediately after extrusion molding, and the air warmed by bubble cooling can be guided upward along the outer circumferential surface of the cylindrical body 31 to stably guide the bubble W to the upper air return chamber 22. , and since low-temperature air is always sequentially supplied to the inside of the cylinder 31, the air flowing around the outer circumferential surface of this part is cooled from the inside while flowing through this section, creating a bubble cooling effect. It can be increased further.

前記円筒体28が、多数の小孔27を穿設した
パンチングプレートを円筒体に形成してなるもの
においては、その円筒体28の製造が簡易とな
る。
If the cylindrical body 28 is formed by forming a punching plate with a large number of small holes 27 into the cylindrical body, the cylindrical body 28 can be manufactured easily.

なお、前記型材22,23は、組立の都合上、
2つ割としてある。
In addition, for convenience of assembly, the mold materials 22 and 23 are
It is divided into two parts.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、この考案に係るもので、第1図は、この
考案の代表的実施態様の縦断面図、第2図は、そ
の空気吐出室位置における横断面図、第3図は、
その空気戻し室位置における横断面図、第4図
は、従来例の一つを示す概略図である。 主な記号の説明、10……バブル内部冷却装
置、11……内管、15……内側中間管、20…
…外側中間管、22,23……型材、24……空
気吐出室、25……スリツト状の空気吐出溝、2
9……空気戻し室。
The figures relate to this invention; FIG. 1 is a longitudinal cross-sectional view of a typical embodiment of this invention, FIG. 2 is a cross-sectional view of the air discharge chamber, and FIG. 3 is a
A cross-sectional view at the air return chamber position, FIG. 4, is a schematic diagram showing one of the conventional examples. Explanation of main symbols, 10...Bubble internal cooling device, 11...Inner tube, 15...Inner intermediate tube, 20...
...Outer intermediate pipe, 22, 23... Shape material, 24... Air discharge chamber, 25... Slit-shaped air discharge groove, 2
9...Air return chamber.

Claims (1)

【実用新案登録請求の範囲】 1 押出成形機のダイより押出される合成樹脂製
チユーブからなるバブルの内部を内側から冷却
する装置において、 上端がバブル内に開口し、下端が前記ダイの
中央排気吸引路に連通して中央空気排気通路を
形成する内管と、上端が閉止され、下端がこの
ダイの冷風吹出口に連通し、前記内管周りに筒
状の冷風供給路を形成する内側中間管と、上端
がバブル内に開口し下端が閉塞され空気上昇通
路を前記内側中間管周りに形成する外側中間管
が、同心上に配置され、この外側中間管の外周
面に、軸線方向に間隔をおいて円周方向に環状
の冷風吐出室が上下に位置する一対の隣接する
同一外径寸法を有するリング状の型材により形
成し、上側のリング状型材の外向きに延びるリ
ツプと、下側のリング状型材の内向に延びるリ
ツプ間に、前記冷風吐出室に連通する円周方向
のスリツト状の冷風吹出溝が形成され、各冷風
吐出室と冷風供給路間を連通する短管が、空気
上昇通路を半径方向にまたぎ放射状に多数配設
されており、上下に隣接する冷風吹出室間に
は、多数の小孔をあけた筒体が、前記の冷風吹
出溝先端面と面一に張設され、この筒体と相互
離間して配置した前記型材と外側中間管外周面
により、冷風吐出室と隔離された空気戻し室を
形成し、各空気戻し室と空気上昇通路間に位置
する外側中間管に連通孔が多数明けられ、前記
筒体周面と冷風吹出溝先端面により、筒状のバ
ブル案内面が形成されていることを特徴とする
インフレーシヨンフイルム成形におけるバブル
内部冷却装置。 2 前記筒体は、多数の孔を穿設したパンチプレ
ートからなる実用新案登録請求の範囲第1項記
載のインフレーシヨンフイルム成形におけるバ
ブル内部冷却装置。
[Claims for Utility Model Registration] 1. A device for cooling the inside of a bubble made of a synthetic resin tube extruded from a die of an extrusion molding machine from the inside, the upper end opening into the bubble and the lower end opening into the central exhaust of the die. an inner pipe that communicates with the suction passage to form a central air exhaust passage; and an inner middle whose upper end is closed and whose lower end communicates with the cold air outlet of this die, forming a cylindrical cold air supply passage around the inner tube. A tube and an outer intermediate tube whose upper end opens into a bubble and whose lower end is closed to form an air ascending passage around the inner intermediate tube are arranged concentrically, and an axial space is formed on the outer peripheral surface of the outer intermediate tube. An annular cold air discharge chamber is formed by a pair of adjacent ring-shaped sections having the same outer diameter, and the outer diameter of the annular cold-air discharge chamber is located one above the other in the circumferential direction. A slit-shaped cold air blowing groove in the circumferential direction communicating with the cold air discharge chamber is formed between the inwardly extending lips of the ring-shaped member, and a short pipe communicating between each cold air discharge chamber and the cold air supply path is formed to A large number of cylinders are arranged radially across the ascending passage in the radial direction, and between the upper and lower adjacent cold air blowing chambers, a cylinder body with many small holes is stretched flush with the tip surface of the cold air blowing groove. An air return chamber isolated from the cold air discharge chamber is formed by the molded material and the outer peripheral surface of the outer intermediate pipe, which are arranged at a distance from the cylinder, and an outer air return chamber located between each air return chamber and the air ascending passage. 1. A bubble internal cooling device for inflation film molding, characterized in that a number of communicating holes are formed in an intermediate tube, and a cylindrical bubble guide surface is formed by the circumferential surface of the cylinder and the tip surface of the cold air blowing groove. 2. The bubble internal cooling device for inflation film molding according to claim 1, wherein the cylindrical body is a punch plate having a large number of holes.
JP8036984U 1984-06-01 1984-06-01 Bubble internal cooling device for inflation film molding Granted JPS60194514U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8036984U JPS60194514U (en) 1984-06-01 1984-06-01 Bubble internal cooling device for inflation film molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8036984U JPS60194514U (en) 1984-06-01 1984-06-01 Bubble internal cooling device for inflation film molding

Publications (2)

Publication Number Publication Date
JPS60194514U JPS60194514U (en) 1985-12-25
JPH0230267Y2 true JPH0230267Y2 (en) 1990-08-15

Family

ID=30626155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8036984U Granted JPS60194514U (en) 1984-06-01 1984-06-01 Bubble internal cooling device for inflation film molding

Country Status (1)

Country Link
JP (1) JPS60194514U (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4632557B2 (en) * 2001-02-19 2011-02-16 株式会社クラレ Inflation film forming method and apparatus

Also Published As

Publication number Publication date
JPS60194514U (en) 1985-12-25

Similar Documents

Publication Publication Date Title
JPS598214B2 (en) Film forming equipment
US3898028A (en) Apparatus for cooling plastics material tubing made by a blow head
JPS60228125A (en) Air ring for manufacture of inflation film
US5102320A (en) Apparatus for the production of a tubular film from thermoplastic material
JPH0230267Y2 (en)
US3618169A (en) Manufacture of plastic film
JPH0230268Y2 (en)
JPH0230265Y2 (en)
JPH0230266Y2 (en)
JP3521926B2 (en) Blown film forming equipment
JPH0517228Y2 (en)
KR930016223A (en) Blow Molding Extrusion Head
US20230311400A1 (en) Film molding device
JPS58179620A (en) Cooler for blown-film extrusion
CN220008807U (en) Film blowing machine
JPH06862A (en) Sizing die for extrusion molding equipment
JPH0343001Y2 (en)
JPH0346900Y2 (en)
JP2520823Y2 (en) Parison injection dies for blow molding machine
JPH0757523B2 (en) Inflation-film forming machine
JPS62267121A (en) Cooling device for blown film
JPH0517227Y2 (en)
JPS58503Y2 (en) Air ring for synthetic resin film blow molding
JPH0513551Y2 (en)
JPS61112630A (en) Cooler for inflation film