JPH02302587A - Cooler for hot isostatic press - Google Patents

Cooler for hot isostatic press

Info

Publication number
JPH02302587A
JPH02302587A JP1121486A JP12148689A JPH02302587A JP H02302587 A JPH02302587 A JP H02302587A JP 1121486 A JP1121486 A JP 1121486A JP 12148689 A JP12148689 A JP 12148689A JP H02302587 A JPH02302587 A JP H02302587A
Authority
JP
Japan
Prior art keywords
gas
nozzle
furnace
insulating layer
heat insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1121486A
Other languages
Japanese (ja)
Other versions
JPH0579907B2 (en
Inventor
Kazumasa Ozeki
大関 和正
Hidenobu Nagano
長野 秀信
Mikihiro Hayashi
幹洋 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP1121486A priority Critical patent/JPH02302587A/en
Publication of JPH02302587A publication Critical patent/JPH02302587A/en
Publication of JPH0579907B2 publication Critical patent/JPH0579907B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B30PRESSES
    • B30BPRESSES IN GENERAL
    • B30B11/00Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses
    • B30B11/001Presses specially adapted for forming shaped articles from material in particulate or plastic state, e.g. briquetting presses, tabletting presses using a flexible element, e.g. diaphragm, urged by fluid pressure; Isostatic presses
    • B30B11/002Isostatic press chambers; Press stands therefor

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To improve cooling capacity by adding a nozzle having a throttle and an injection gas guide tube to a standard hot isostatic press(HIP). CONSTITUTION:In a HIP in which an inverted cuplike heat insulating layer 4 is disposed in a pressure vessel 2 sealed with high pressure gas, and a heater 5 and a material to be treated is contained in the layer 4, gas of a gas cylinder 11 is pressurized by a gas compressor 10, and arrived at a nozzle 9 via a through hole 17 passing a lower cover 3 of the vessel 2. The bore of the nozzle 9 is reduced, and gas is rapidly diffused from the nozzle 9. The gas diffused from the nozzle 9 is fed through an injection gas guide tube 7 to the top of the inner face of the layer 4, and then diffused in the furnace. Thus low temperature gas having high density is spread to the upper part in the furnace, and vigorous convection with high temperature gas in the furnace having low density is immediately caused. As a result, the convection heat transfer rate in the furnace is raised, the interior is satisfactorily mixed in the furnace, and the temperature in the furnace is made uniform.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、金属粉末、セラミックス等を高圧高温のガス
雰囲気下で焼結するための熱間静水圧加圧装置(以下器
Pという)に関し、特に上記装置の高温炉内の冷却装置
に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a hot isostatic pressing device (hereinafter referred to as device P) for sintering metal powder, ceramics, etc. in a high-pressure, high-temperature gas atmosphere. In particular, the present invention relates to a cooling device in a high-temperature furnace of the above-mentioned device.

〔従来の技術〕[Conventional technology]

近年、高温高圧下で種々の材料の処理を行なう要求が高
まり、処理装置としてのHIPが注目されている。HI
Pは圧力容器の温度を所定の設計温度以下に維持しつつ
2000℃におよぶ高温処理を可能にしかつ炉内での良
好な温度分布を得るために倒立コツプ状の断熱層を具備
しているが、一方で上記断熱層は加熱後の冷却時間がか
かる原因となっている。特に近年、装置の大型化が進む
につれ生産性向上、処理コスト低減の観点から冷却速度
の向上に対する要求が強まってきている。
In recent years, the demand for processing various materials under high temperature and high pressure has increased, and HIP as a processing device has been attracting attention. HI
P is equipped with an inverted pot-shaped heat insulating layer in order to maintain the temperature of the pressure vessel below the predetermined design temperature, enable high-temperature treatment of up to 2000°C, and obtain good temperature distribution within the furnace. On the other hand, the heat insulating layer causes a long cooling time after heating. Particularly in recent years, as devices have become larger, there has been an increasing demand for improved cooling rates from the viewpoint of improving productivity and reducing processing costs.

高圧のガスは、高密度、低粘度であることから、ガスを
流動させることにより、冷却速度を上げられることが知
られており第5図に示すように圧力容器2の下部にファ
ン16を置き、断熱層4内で圧媒ガスの強制対流を発生
させ、冷却速度を向上させることが試みられている(特
公昭59−14712号公報)。
Since high-pressure gas has high density and low viscosity, it is known that the cooling rate can be increased by flowing the gas.As shown in FIG. 5, a fan 16 is placed at the bottom of the pressure vessel 2. , attempts have been made to generate forced convection of pressurized gas within the heat insulating layer 4 to improve the cooling rate (Japanese Patent Publication No. 14712/1983).

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

第5図の圧力容器内にファンを設置する方法によっても
相応の効果を上げることは可能であるが、以下のような
欠点がある。
Although it is possible to obtain a corresponding effect by installing a fan inside the pressure vessel as shown in FIG. 5, it has the following drawbacks.

(1)ファンは、可動部品が多く、信頼性に欠ける。(1) Fans have many moving parts and lack reliability.

(2)ファン方式は冷却能力が比較的小さく、生産設備
として使用される中・大型HIPの冷却装置としては不
十分である。
(2) The fan type has a relatively small cooling capacity and is insufficient as a cooling device for medium-sized and large-sized HIPs used as production equipment.

そこで、冷却能力を大きくする方法として、大ガス量用
のファンを使用することが考えられるが、ファンが大型
となり、多くのスペースを犠牲にするといった問題があ
る。
One possible way to increase the cooling capacity is to use a fan for large amounts of gas, but the problem is that the fan becomes large and takes up a lot of space.

本発明は、上記の問題点を解決するものである。The present invention solves the above problems.

〔課題を解決するための手段〕[Means to solve the problem]

すなわち、本発明の特徴は次の通りである。 That is, the features of the present invention are as follows.

(1)高圧ガスを封入する圧力容器内に倒立コツプ状の
断熱層を配置し、該断熱層内側に加熱装置および処理物
を収設してなる熱間静水圧加圧装置に於て、圧力容器内
下部に少なくとも1つの圧媒ガス噴出用ノズルを設け、
該ノズルに圧力容器の下蓋の流通孔を接続し、該流通孔
にガス圧縮機を連通ずるとともに、該ノズル噴出口より
断熱層空間内上部に連通ずる噴出ガス誘導管を設ける。
(1) In a hot isostatic pressurization device in which an inverted cup-shaped heat insulating layer is arranged in a pressure vessel that seals high-pressure gas, and a heating device and a processed material are housed inside the heat insulating layer, the pressure At least one nozzle for ejecting pressurized gas is provided in the lower part of the container,
A communication hole in the lower cover of the pressure vessel is connected to the nozzle, a gas compressor is communicated with the communication hole, and an ejected gas guide pipe is provided which communicates from the nozzle ejection port to the upper part of the heat insulating layer space.

(2)更に望ましくは、圧力容器下部空間と断熱層下部
との間に、前記噴出ガス誘導管を避けて遮蔽板を設け、
圧力容器下部に低温圧媒ガス滞留空間を設ける。
(2) More preferably, a shielding plate is provided between the lower space of the pressure vessel and the lower part of the heat insulating layer, avoiding the blown gas guide pipe;
A low-temperature pressure medium gas retention space is provided at the bottom of the pressure vessel.

(3)また更に、前記ノズルの噴出側でかつ前記低温圧
媒ガス滞留空間内に、適切な間隔を置いて少なくとも1
つのインジェクターを配設すgo(4)その上、冷却能
力を長時間維持するためには、前記断熱層下部と前記遮
蔽板との間に流路を形成しかつ断熱層と圧力容器内面と
の間にガス冷却流路を設ける。
(3) Still further, at least one
(4) Furthermore, in order to maintain cooling capacity for a long time, a flow path must be formed between the lower part of the heat insulating layer and the shielding plate, and a flow path must be formed between the heat insulating layer and the inner surface of the pressure vessel. A gas cooling channel is provided in between.

〔作用および実施例〕[Function and Examples]

以下ノズルのみを装備した実施例を第1図に従って説明
する。ガスボンベ11のガスは、ガス圧縮機10で加圧
され、圧力容器2の下蓋3を貫通する流通孔17を通っ
てノズル9に到達する。ノズル90口径は、小さく絞ら
れており、ガスは高速で勢いよくノズル9から吹き出す
。ノズル9から吹き出たガスは、噴出ガス誘導管7を通
り、断熱層4内面上部まで達した後炉内に拡散する。こ
のため炉内上部に密度の高い低温ガスが広がることにな
り、直ちに密度の低い炉内高温ガスとの激しい対流が起
こる。この結果炉内の対流熱伝達率が上昇するとともに
、炉内がよく混合され炉内温度が均一化する。
An embodiment equipped with only a nozzle will be described below with reference to FIG. The gas in the gas cylinder 11 is pressurized by the gas compressor 10 and reaches the nozzle 9 through the communication hole 17 penetrating the lower lid 3 of the pressure vessel 2 . The diameter of the nozzle 90 is narrowed, and the gas is blown out from the nozzle 9 vigorously at high speed. The gas blown out from the nozzle 9 passes through the blown gas guide pipe 7, reaches the upper part of the inner surface of the heat insulating layer 4, and then diffuses into the furnace. As a result, the high-density low-temperature gas spreads in the upper part of the furnace, and intense convection immediately occurs with the low-density high-temperature gas inside the furnace. As a result, the convection heat transfer coefficient within the furnace increases, and the inside of the furnace is well mixed, making the temperature inside the furnace uniform.

尚、第1図ではノズル9および噴出ガス誘導管7を炉内
中央部に一式設置した例を示したが、上記装置一式また
は複数式を、炉内中央部または周辺部に設置しても同様
の効果が得られる。
Although Fig. 1 shows an example in which the nozzle 9 and the ejected gas guide pipe 7 are installed as a set in the center of the furnace, the same result can be obtained even if the above-mentioned set or multiple sets are installed in the center or the periphery of the furnace. The effect of this can be obtained.

以上の方法により発生したガス対流により、圧力容器2
下部の雰囲気温度が上がり、圧力容器2下部に設置した
電気品等に悪影響を及ぼす恐れがある場合には、第2図
に示すように、断熱層4の下部に前記噴出ガス誘導管7
以外の直通のガス流路を遮断する遮蔽板12を設けると
ともに圧力容器2の下部に低温圧媒ガス滞留空間15を
設けることにより、断熱層4内から吹き出るガス量を極
力抑える。尚この際、断熱層4内に吹き込まれた低温の
ガスが膨張し、断熱層4内の圧力が上がる場合は、断熱
層4下部と遮蔽板12との間より、圧力容器2内面と断
熱層4外面との間に向けて圧媒ガスを吹き出させる。
Due to the gas convection generated by the above method, the pressure vessel 2
If the lower atmospheric temperature rises and there is a risk of adversely affecting electrical equipment installed at the lower part of the pressure vessel 2, as shown in FIG.
By providing a shielding plate 12 that blocks other direct gas flow paths and providing a low-temperature pressure medium gas retention space 15 in the lower part of the pressure vessel 2, the amount of gas blown out from within the heat insulating layer 4 is suppressed as much as possible. At this time, if the low temperature gas blown into the heat insulating layer 4 expands and the pressure inside the heat insulating layer 4 increases, the inner surface of the pressure vessel 2 and the heat insulating layer will be 4 Blow out the pressurized gas between the outer surface and the outer surface.

上記方法でも装置内の冷却速度がかなり改善されるが、
更に冷却速度の改善が可能な実施例を第3図に従って説
明する。この実施例は、ノズル9の噴出側で且つ低温圧
媒ガス滞留空間15内に、適切な間隔を置いて2段のイ
ンジェクター13−1゜13−2を配設したものである
。ガスボンベ11のガスは、ガス圧縮機10で加圧され
、圧力容器2の下蓋3を貫通する流通孔17を通ってノ
ズル9に到達する(第2図参照)。ノズル9の口径は小
さく絞られており、ガスは高速で勢いよくノズル9から
吹き出す。ノズル9から吹き出たガスは、圧力容器2下
部の低温圧媒ガス滞留空間15内の、低温かつ高密度の
ガスを巻き込んでインジェクター(1段目”)13−1
に入る。この時インジェクター(1段目)13−1を通
るガス流量は、ガス圧縮機10で加圧されたガス量に比
べ大幅に増加している。このガスは、更に多量の低温ガ
スを巻き込みながらインジェクター(2段目)13−2
へと導かれる。こうして流量を大幅に増したガスはイン
ジェクター(2段目)13−2から噴出ガス誘導管7を
通り、断熱層4内面上部に勢いよく吹き出されることに
なる。このため炉内上部に密度の高い低温ガスが広がる
ことになり、直ちに密度の低い炉内高温ガスとの激しい
対流が起こる。この結果炉内の対流熱伝達率が上昇する
とともに、炉内がよく混合され炉内温度が均一化する。
Although the above method also considerably improves the cooling rate inside the device,
An embodiment in which the cooling rate can be further improved will be described with reference to FIG. In this embodiment, two stages of injectors 13-1 and 13-2 are arranged at appropriate intervals on the ejection side of the nozzle 9 and within the low-temperature pressure medium gas retention space 15. The gas in the gas cylinder 11 is pressurized by the gas compressor 10 and reaches the nozzle 9 through the communication hole 17 penetrating the lower lid 3 of the pressure vessel 2 (see FIG. 2). The diameter of the nozzle 9 is narrowed, and the gas is blown out from the nozzle 9 with great force at high speed. The gas blown out from the nozzle 9 entrains the low-temperature and high-density gas in the low-temperature pressure medium gas retention space 15 at the bottom of the pressure vessel 2, and then flows into the injector (first stage) 13-1.
to go into. At this time, the gas flow rate passing through the injector (first stage) 13-1 has significantly increased compared to the amount of gas pressurized by the gas compressor 10. This gas is transferred to the injector (second stage) 13-2 while drawing in a larger amount of low-temperature gas.
be led to. The gas whose flow rate has been greatly increased in this way passes through the ejected gas guide pipe 7 from the injector (second stage) 13-2, and is forcefully blown out onto the upper inner surface of the heat insulating layer 4. As a result, the high-density low-temperature gas spreads in the upper part of the furnace, and intense convection immediately occurs with the low-density high-temperature gas inside the furnace. As a result, the convection heat transfer coefficient within the furnace increases, and the inside of the furnace is well mixed, making the temperature inside the furnace uniform.

尚、上記冷却能力を長時間維持するためには、第4図に
示したように断熱層4下部と遮蔽板12との間に流路7
−1を設は断熱層4下部より積極的にガスを吹き出させ
る。更に該流路7−1より吹きでるガスが圧力容器2内
面および圧力容器2内面と断熱層4外側面の間に存在す
る低温の圧媒ガスと熱交換を行なうガス冷却流路14を
設ける。
In order to maintain the above-mentioned cooling capacity for a long time, a flow path 7 is provided between the lower part of the heat insulating layer 4 and the shielding plate 12, as shown in FIG.
-1, the gas is actively blown out from the bottom of the heat insulating layer 4. Furthermore, a gas cooling channel 14 is provided in which the gas blown out from the channel 7-1 exchanges heat with the low-temperature pressure medium gas existing between the inner surface of the pressure vessel 2 and between the inner surface of the pressure vessel 2 and the outer surface of the heat insulating layer 4.

これにより、低温ガス滞留空間15→断熱層4内上部→
ガス冷却流路14→低温ガス滞留空間15というガスル
ープが形成され、低温ガス滞留空間15には、低温の圧
媒ガスが次々と供給され、該低温ガス滞留空間15のガ
ス温度は、はとんど上昇せず、急速冷却を連続的に行な
うことができる。
As a result, the low temperature gas retention space 15 → the upper part of the heat insulating layer 4 →
A gas loop is formed from gas cooling channel 14 to low temperature gas retention space 15, low temperature pressure medium gas is successively supplied to low temperature gas retention space 15, and the gas temperature in low temperature gas retention space 15 is extremely low. Rapid cooling can be performed continuously without any rise.

この結果、第4図の方法においてφ460 X 100
0 h 。
As a result, in the method shown in Fig. 4, φ460 x 100
0 h.

2000℃対応の生産用大型HIPで、300kgの処
理品を本発明の冷却装置で冷却した場合、冷却装置を使
用しない通常冷却時間に比べ1/3に時間短縮ができる
When a 300 kg processed product is cooled using the cooling device of the present invention in a large production HIP capable of handling 2000° C., the cooling time can be reduced to 1/3 compared to the normal cooling time without using the cooling device.

〔発明の効果〕〔Effect of the invention〕

上記の構成により、下記の効果がある。 The above configuration has the following effects.

2000℃に右よぶ高温処理に対し、十分な断熱性を有
したまま、標準のHIPに絞りを有したノズノペ噴出ガ
ス誘導管を新たに付加するだけで、冷却能力を高めるこ
とができる。
For high-temperature processing up to 2000°C, cooling capacity can be increased by simply adding a nozzle gas guide pipe with a restriction to the standard HIP while maintaining sufficient heat insulation.

その上、遮蔽板を設置することで、圧力容器下部を低温
に保つこともできる。
Furthermore, by installing a shielding plate, the lower part of the pressure vessel can be kept at a low temperature.

更に、1個もしくは複数個のインジェクターを追加する
ことで、大幅に冷却能力を高めることができる。
Furthermore, by adding one or more injectors, the cooling capacity can be significantly increased.

また、ガス冷却流路を付加することで、長時間にわたり
大幅に冷却能力を高めることができる。
Furthermore, by adding a gas cooling channel, the cooling capacity can be significantly increased over a long period of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の1実施例を示す縦断面側面図、第2
図は、本発明の他の実施例を示す縦断面側面図、第3図
は、本発明の他の実施例の部分拡大断面側面図、第4図
は、本発明の他の実施例の部分拡大断面側面図、第5図
は、従来法の実施例を示す縦断面側面図である。 1・・・上蓋、      2・・・圧力容器、3・・
・下蓋、       4・・・断熱層、5・・・ヒー
ター、     6・・・処理物、7・・・噴出ガス誘
導管、 8・・・処理台、9・・・ノズノペ     
 10・・・ガス圧縮機、11・・・ガスボンベ、  
 12・・・遮蔽板、13・・・インジェクター、14
・・・ガス冷却流路、15・・・低温圧媒ガス滞留空間
、 16・・・ファン、     17・・・流通孔。 第1図 6・・・処理物  17・・・流通孔 第2図
FIG. 1 is a vertical cross-sectional side view showing one embodiment of the present invention, and FIG.
3 is a partially enlarged sectional side view of another embodiment of the invention; FIG. 4 is a partial side view of another embodiment of the invention. An enlarged cross-sectional side view, FIG. 5 is a vertical cross-sectional side view showing an example of the conventional method. 1...Top lid, 2...Pressure vessel, 3...
・Lower lid, 4...Insulating layer, 5...Heater, 6...Processing material, 7...Blowout gas guide pipe, 8...Processing table, 9...Nozzle nope
10... Gas compressor, 11... Gas cylinder,
12... Shielding plate, 13... Injector, 14
... Gas cooling channel, 15 ... Low temperature pressure medium gas retention space, 16 ... Fan, 17 ... Distribution hole. Figure 1 6... Processed material 17... Distribution hole Figure 2

Claims (4)

【特許請求の範囲】[Claims] 1.高圧ガスを封入する圧力容器に倒立コップ状の断熱
層を配置し、該断熱層内側に加熱装置および処理物を収
設してなる熱間静水圧加圧装置に於て、圧力容器内下部
に少なくとも1つの圧媒ガス噴出用ノズルを設け、該ノ
ズルに圧力容器の下蓋の流通孔を接続し、該流通孔にガ
ス圧縮機を連通するとともに、該ノズル噴出口より断熱
層空間内上部に連通する噴出ガス誘導管を設けたことを
特徴とする熱間静水圧加圧装置の冷却装置。
1. In a hot isostatic pressurization device, an inverted cup-shaped heat insulating layer is arranged in a pressure vessel that seals high-pressure gas, and a heating device and a processed material are housed inside the heat insulating layer. At least one nozzle for ejecting pressurized gas is provided, a communication hole in the lower cover of the pressure vessel is connected to the nozzle, a gas compressor is communicated with the communication hole, and the nozzle is connected to the upper part of the heat insulating layer space from the nozzle ejection port. 1. A cooling device for a hot isostatic pressurizing device, characterized in that a communicating ejected gas guide pipe is provided.
2.圧力容器下部空間と断熱層下部との間に、遮蔽板を
設けた請求項1記載の熱間静水圧加圧装置の冷却装置。
2. 2. The cooling device for a hot isostatic pressurizing device according to claim 1, further comprising a shielding plate provided between the lower space of the pressure vessel and the lower portion of the heat insulating layer.
3.前記ノズルの噴出側でかつ低温圧媒ガス滞留空間内
に、少なくとも1つのインジェクターを配設した請求項
1又は2記載の熱間静水圧加圧装置の冷却装置。
3. 3. The cooling device for a hot isostatic pressurizing device according to claim 1, wherein at least one injector is disposed on the ejection side of the nozzle and in the low temperature pressure medium gas retention space.
4.前記断熱層下部と前記遮蔽板との間に流路を形成し
かつ前記断熱層の外側面と圧力容器内面との間にガス冷
却流路を設けた請求項3記載の熱間静水圧加圧装置の冷
却装置。
4. Hot isostatic pressurization according to claim 3, wherein a flow path is formed between the lower part of the heat insulation layer and the shielding plate, and a gas cooling flow path is provided between the outer surface of the heat insulation layer and the inner surface of the pressure vessel. Equipment cooling system.
JP1121486A 1989-05-17 1989-05-17 Cooler for hot isostatic press Granted JPH02302587A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1121486A JPH02302587A (en) 1989-05-17 1989-05-17 Cooler for hot isostatic press

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1121486A JPH02302587A (en) 1989-05-17 1989-05-17 Cooler for hot isostatic press

Publications (2)

Publication Number Publication Date
JPH02302587A true JPH02302587A (en) 1990-12-14
JPH0579907B2 JPH0579907B2 (en) 1993-11-05

Family

ID=14812353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1121486A Granted JPH02302587A (en) 1989-05-17 1989-05-17 Cooler for hot isostatic press

Country Status (1)

Country Link
JP (1) JPH02302587A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514066B1 (en) * 1997-06-13 2003-02-04 Flow Holdings Gmbh (Sagl) Limited Liability Company Device for hot isostatic pressing
WO2010057670A1 (en) * 2008-11-23 2010-05-27 Dieffenbacher Gmbh + Co. Kg Method for regulating the temperature of a hot isostatic press and a hot isostatic press
JP2012509191A (en) * 2008-11-23 2012-04-19 ディーフェンバッハー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Method for temperature control in hot isostatic pressing and hot isostatic pressing
CN103057150A (en) * 2013-01-28 2013-04-24 中国工程物理研究院化工材料研究所 Fluid medium diversion structure for thermal isostatic-pressing working cylinder
JP2013178070A (en) * 2011-09-21 2013-09-09 Kobe Steel Ltd Hot isotropic pressure device
US8695494B2 (en) 2007-05-22 2014-04-15 Cremer Thermoprozessanlagen Gmbh Method for rapid cooling of a hot isostatic press and a hot isostatic press
JP2018126790A (en) * 2013-03-13 2018-08-16 キンタス・テクノロジーズ・エービーQuintus Technologies AB Pressing arrangement using combined fan and ejector cooling, and method of pressing
US11214857B2 (en) 2018-03-15 2022-01-04 Toyota Jidosha Kabushiki Kaisha Method for manufacturing aluminum alloy member

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63188498U (en) * 1987-05-25 1988-12-02

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63188498U (en) * 1987-05-25 1988-12-02

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6514066B1 (en) * 1997-06-13 2003-02-04 Flow Holdings Gmbh (Sagl) Limited Liability Company Device for hot isostatic pressing
US8695494B2 (en) 2007-05-22 2014-04-15 Cremer Thermoprozessanlagen Gmbh Method for rapid cooling of a hot isostatic press and a hot isostatic press
WO2010057670A1 (en) * 2008-11-23 2010-05-27 Dieffenbacher Gmbh + Co. Kg Method for regulating the temperature of a hot isostatic press and a hot isostatic press
JP2012509191A (en) * 2008-11-23 2012-04-19 ディーフェンバッハー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Method for temperature control in hot isostatic pressing and hot isostatic pressing
JP2013178070A (en) * 2011-09-21 2013-09-09 Kobe Steel Ltd Hot isotropic pressure device
CN103057150A (en) * 2013-01-28 2013-04-24 中国工程物理研究院化工材料研究所 Fluid medium diversion structure for thermal isostatic-pressing working cylinder
JP2018126790A (en) * 2013-03-13 2018-08-16 キンタス・テクノロジーズ・エービーQuintus Technologies AB Pressing arrangement using combined fan and ejector cooling, and method of pressing
US10458711B2 (en) 2013-03-13 2019-10-29 Quintus Technologies Ab Combined fan and ejector cooling
US11214857B2 (en) 2018-03-15 2022-01-04 Toyota Jidosha Kabushiki Kaisha Method for manufacturing aluminum alloy member
US11761070B2 (en) 2018-03-15 2023-09-19 Toyota Jidosha Kabushiki Kaisha Method for manufacturing aluminum alloy member

Also Published As

Publication number Publication date
JPH0579907B2 (en) 1993-11-05

Similar Documents

Publication Publication Date Title
KR101392005B1 (en) Hot isotropic pressure device
US4448747A (en) High density sintering method for powder molded products
JP5615019B2 (en) Hot isostatic press
US4693211A (en) Surface treatment apparatus
JPH02302587A (en) Cooler for hot isostatic press
US20080006294A1 (en) Solder cooling system
US6936793B1 (en) Oven apparatus and method of use thereof
KR100675523B1 (en) Substrate processing method and substrate processing apparatus
JPH03216259A (en) Method and device for casting metal against gravitational force
US5123832A (en) Hot isostatic press
WO2015005047A1 (en) Hot isostatic pressing device
KR100524390B1 (en) Heating Furanace and Semiconductor Wafer-Holding Jig Assembly and Process of Manufacturing Semiconductor Device
GR3037015T3 (en) Method and apparatus for forming granulate from a melt of chemical products
JP2011017040A (en) Cell type decompressed carburization furnace
US4059429A (en) Glass pressing plunger cooling
WO2018123246A1 (en) Heat treatment apparatus
JPS57128940A (en) Heat treating method for substrate
KR20040076276A (en) Ozone-processing device
US20020062790A1 (en) Processing apparatus and processing system
US5524810A (en) Solder reflow processor
JP2646732B2 (en) Hot press equipment
JPH09136325A (en) Mold apparatus
SE2050886A1 (en) A method and a system for brazing a plate heat exchanger
JPH0122144B2 (en)
JPH0533010A (en) Pressure sintering furnace and method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees