JPH0230206B2 - - Google Patents

Info

Publication number
JPH0230206B2
JPH0230206B2 JP54044015A JP4401579A JPH0230206B2 JP H0230206 B2 JPH0230206 B2 JP H0230206B2 JP 54044015 A JP54044015 A JP 54044015A JP 4401579 A JP4401579 A JP 4401579A JP H0230206 B2 JPH0230206 B2 JP H0230206B2
Authority
JP
Japan
Prior art keywords
field effect
switch
effect transistor
electrode side
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP54044015A
Other languages
Japanese (ja)
Other versions
JPS55136720A (en
Inventor
Hiroshi Sakuma
Toshuki Suzuki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP4401579A priority Critical patent/JPS55136720A/en
Publication of JPS55136720A publication Critical patent/JPS55136720A/en
Publication of JPH0230206B2 publication Critical patent/JPH0230206B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors

Landscapes

  • Electronic Switches (AREA)

Description

【発明の詳細な説明】 本発明は、電界効果トランジスタを用いた双方
向の固体スイツチに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a bidirectional solid state switch using field effect transistors.

従来、商用電圧のような比較的高い交流電圧
や、直流電圧のスイツチには、いわゆる機械式接
点スイツチや水銀リレー等が利用されて来た。特
にスイツチ制御回路系と被スイツチ回路系の電位
レベルが異なる場合、あるいは両者を電位的に独
立に保ちたい場合には、両回路が電気的に絶縁分
離されている必要があり、上記スイツチが有利で
あつた。しかし、電子回路の固体化、集積化が進
み電子装置全体の小型化が進むに従い、従来の機
械式接点スイツチに代る小型高性能な双方向固体
スイツチの実現が望まれ、種々開発が行なわれて
いる。第1図は、スイツチ用トランジスタとし
て、電界効果トランジスタを用い、入力信号回路
と被スイツチ回路とをトランスで絶縁分離した従
来の固体交流スイツチの一例である。この固体交
流スイツチは、バイポーラ形素子を用いたスイツ
チに比し高出力、高電圧のスイツチとして信頼性
が高い等種々の長所を有するが、小型化に限界の
あるトランスを用いているためスイツチ全体を小
型化もしくは集積化できないという欠点があつ
た。
Conventionally, so-called mechanical contact switches, mercury relays, and the like have been used as switches for relatively high alternating current voltages such as commercial voltages, and direct current voltages. In particular, when the potential levels of the switch control circuit system and the switched circuit system are different, or when you want to keep both circuits electrically independent, it is necessary to electrically isolate both circuits, and the above switch is advantageous. It was hot. However, as electronic circuits become more solid-state and more integrated, and electronic devices as a whole become smaller, there is a desire to create a compact, high-performance bidirectional solid-state switch that can replace the conventional mechanical contact switch, and various developments are underway. ing. FIG. 1 is an example of a conventional solid-state AC switch in which a field effect transistor is used as a switching transistor, and an input signal circuit and a switched circuit are insulated and separated by a transformer. This solid-state AC switch has various advantages over switches using bipolar elements, such as high reliability as a high-output and high-voltage switch, but since it uses a transformer, which has a limit to miniaturization, the overall switch size The drawback was that it could not be miniaturized or integrated.

第2図は本願発明と同日に出願された、本願発
明者らによる発明を引用したものである。
FIG. 2 cites an invention filed by the present inventors on the same day as the present invention.

第2図は、この点を解決すべく入力端にコンデ
ンサを用いた固体交流スイツチであり、入力信号
回路と被スイツチ回路とは、コンデンサにより直
流的に分離されている。用いるコンデンサの容量
は数十pF〜数百pF程度と比較的小容量でよいた
め、スイツチ全体の小型化、集積化が容易という
特徴を有する。
FIG. 2 shows a solid-state AC switch that uses a capacitor at the input end to solve this problem, and the input signal circuit and the circuit to be switched are separated in terms of direct current by the capacitor. Since the capacitance of the capacitor used may be relatively small, ranging from several tens of pF to several hundred pF , the switch has the advantage of being easy to downsize and integrate as a whole.

ところで、トランジスタを用いたスイツチは、
一般にトランジスタ自身のオン抵抗のため、従来
の機械式接点スイツチ等に比べて直列抵抗が高く
なるという欠点がある。直列抵抗はスイツチ機能
に差しつかえない程度に、低くする必要があるか
ら、第1図、第2図の固体スイツチの場合、電界
効果トランジスタを大きくすることによつて、オ
ン抵抗を下げる必要がある。実際、電界効果トラ
ンジスタでは、ゲート幅を大きくすることによつ
て、容易に1Ω程度のオン抵抗が得られるが、同
時にドレイン面積の増大に伴ない、ドレイン容量
が大巾に増加してしまう欠点を有する。たとえば
ドレイン耐圧150V以上オン抵抗1Ω程度の高耐
圧電界効果トランジスタの場合、ドレイン容量は
1000pF程度にもなる。かかる電界効果トランジ
スタを第1、第2図の様な固体交流スイツチに用
いれば、該固体スイツチの被スイツチ端入力容量
が1000pF程度になり、該スイツチの周波数特性
が著しく劣化する。たとえば、1KHzの交流被ス
イツチ入力信号に対して、該スイツチは約160K
Ω10KHzの交流被スイツチ入力信号に対して、
16KΩ程度のインピーダンスとしてしか作用しな
い。従つて、負荷抵抗を10KΩとした場合、1K
Hzの交流電圧に対して6%程度、10KHzで38%程
度の分圧が、スイツチオフ時にも、負荷端に表わ
れることになり、充分なスイツチ動作をしない。
By the way, a switch using a transistor is
Generally, due to the on-resistance of the transistor itself, there is a drawback that the series resistance is higher than that of conventional mechanical contact switches. Since the series resistance needs to be low enough to not interfere with the switch function, in the case of the solid-state switches shown in Figures 1 and 2, it is necessary to reduce the on-resistance by increasing the size of the field effect transistor. . In fact, in field effect transistors, an on-resistance of about 1Ω can be easily obtained by increasing the gate width, but at the same time, the drain capacitance increases significantly as the drain area increases. have For example, in the case of a high-voltage field effect transistor with a drain breakdown voltage of 150V or more and an on-resistance of about 1Ω, the drain capacitance is
It can be as high as 1000 pF . If such a field effect transistor is used in a solid-state AC switch as shown in FIGS. 1 and 2, the input capacitance at the switched end of the solid-state switch will be approximately 1000 pF , and the frequency characteristics of the switch will be significantly degraded. For example, for a 1KHz AC switched input signal, the switch will output approximately 160K
For an AC switched input signal of Ω10KHz,
It only acts as an impedance of about 16KΩ. Therefore, if the load resistance is 10KΩ, 1K
A partial voltage of about 6% for the Hz AC voltage and 38% for 10KHz appears at the load end even when the switch is turned off, and the switch does not operate satisfactorily.

第2図のスイツチは、第1図のスイツチに比べ
応答の遅いトランスではなく、コンデンサを使用
している点で周波数特性が改善されている。
The switch shown in FIG. 2 has improved frequency characteristics compared to the switch shown in FIG. 1 because it uses a capacitor instead of a transformer, which has a slower response.

第2図のスイツチではトランジスタ2個には端
子4,5から交流の被スイツチ電圧が加えられる
ので、正の大きな電圧から負の大きな電圧が加え
られることになる。大きな電圧がかかつている間
はどちらかのトランジスタのドレインのPN接合
が逆バイアスされ、容量が下がる結果、スイツチ
全体の容量は低減する。しかしOV付近の小さな
電圧がかかる間はドレイン容量が極めて大きくな
る。従つてこのスイツチは低いインピーダンスを
持つこととなり周波数応答に限界があり、改善の
必要があつた。
In the switch shown in FIG. 2, an alternating current switched voltage is applied to the two transistors from terminals 4 and 5, so that a large positive voltage to a large negative voltage is applied. While a large voltage is applied, the PN junction at the drain of either transistor is reverse-biased, reducing the capacitance and reducing the overall capacitance of the switch. However, while a small voltage near OV is applied, the drain capacitance becomes extremely large. Therefore, this switch has a low impedance and has a limited frequency response, necessitating improvement.

本発明の目的は、従来、相反する特性であつた
低オン抵抗と、良好な周波数特性とを兼ね備えた
小型化集積化可能な、新規な固体交流スイツチを
提供するところにある。
An object of the present invention is to provide a novel solid-state AC switch that has both low on-resistance and good frequency characteristics, which have conventionally been contradictory characteristics, and is capable of being miniaturized and integrated.

本発明によれば、ゲートシヤント抵抗を有する
電界効果トランジスタのドレイン、ソース端間に
p形トランジスタならばアノードを、n形トラン
ジスタならばカソードをドレイン側に向けて2個
直列接続したダイオード列を2組設け、それぞれ
のダイオード列の中点を被スイツチ端とし、駆動
用パルス電源の出力端と該電界効果トランジスタ
のゲート電極側端、および駆動用パルス電源の接
地電極端該電界効果トランジスタのソース電極側
端同志のうち、少なくとも、駆動用パルス電源の
出力端と該電界効果トランジスタのゲート電極側
端とを、コンデンサで接続し、駆動用パルス入力
電圧列によつて該コンデンサのゲート電極側端と
ソース電極側端間に生ずるパルス電圧列を、該コ
ンデンサのゲート電極側端と、電界効果トランジ
スタのゲート電極間に設けた整流平滑化回路によ
り、整流平滑化し、電界効果トランジスタの直流
ゲート入力となしたることを特徴とする固体交流
スイツチが得られる。
According to the present invention, two sets of diodes are connected in series between the drain and source terminals of a field effect transistor having a gate shunt resistance, with the anode facing the drain side for a p-type transistor and the cathode facing the drain side for an n-type transistor. The middle point of each diode row is the switched end, and the output end of the driving pulse power source, the gate electrode side end of the field effect transistor, and the ground electrode end of the driving pulse power source and the source electrode side of the field effect transistor. Among the ends, at least the output end of the driving pulse power source and the gate electrode side end of the field effect transistor are connected by a capacitor, and the driving pulse input voltage train connects the gate electrode side end of the capacitor and the source. The pulse voltage train generated between the electrode side ends was rectified and smoothed by a rectification and smoothing circuit provided between the gate electrode side end of the capacitor and the gate electrode of the field effect transistor, and was used as a DC gate input of the field effect transistor. A solid-state AC switch is obtained.

以下、本発明を一実施例を示す図面を用いて詳
細に説明する。
Hereinafter, the present invention will be explained in detail using drawings showing one embodiment.

第3図は、本発明の一実施例を示す固体スイツ
チの回路図である。本発明にかかる固体交流スイ
ツチは、コンデンサ6,7を介して、入力された
パルス状駆動電圧をダイオード10および抵抗1
2によつて整流平滑化し、電界効果トランジスタ
1を導通させて動作させるもので同図の如く、ダ
イオード13〜16のブリツジ構成の中に電界効
果トランジスタ1を入れることにより双方向の信
号をオンオフすることができる。
FIG. 3 is a circuit diagram of a solid state switch showing one embodiment of the present invention. The solid state AC switch according to the present invention transfers the input pulsed drive voltage to the diode 10 and the resistor 1 through the capacitors 6 and 7.
2 performs rectification and smoothing, and operates the field effect transistor 1 by making it conductive. As shown in the figure, bidirectional signals are turned on and off by inserting the field effect transistor 1 into a bridge configuration of diodes 13 to 16. be able to.

本構成の固体交流スイツチは、スイツチ用トラ
ンジスタとして、オン抵抗1Ω以下、ドレイン容
量1000pF以上の電界効果トランジスタを用いて
いるのにもかかわらず、高周波交流信号のスイツ
チが充分可能となつた。これは、電界効果トラン
ジスタ1がオフの場合、電界効果トランジスタ1
とダイオードの交点17および18が、一定振幅
の被スイツチ交流入力信号に対してそれぞれ、正
および負の一定電圧まで直流的にバイアスされて
しまうので、トランジスタ1のドレイン−ソース
端には常に入力信号の最大振幅と同じ電圧の直流
電圧が加わることによる。このことが従来例と大
きく相違している点である。端子18が負に、端
子17が正の電位にバイアスされるのはダイオー
ドブリツジのダイオードの整流作用により、一旦
流入した電荷が流出できないためである。こうし
てトランジスタ1のドレイン、ソース間に入力信
号の最大振幅と同じ直流電圧が加わるので、トラ
ンジスタのドレイン領域が逆バイアスされ空乏化
するのでドレイン容量が数十分の1に低下する。
こうしてトランジスタ1の静電容量は小さい状態
に保たれるので入力信号に対してスイツチの直列
等価容量としてはダイオードの容量のみが表われ
る。ダイオードの容量はもともとトランジスタの
ドレイン容量に比べ十分小さい。またダイオード
ブリツジを構成するダイオード16と15、13
と14のうち少なくともどちらか一つは常に逆バ
イアスとなるので低静電容量となる。その結果全
体として低容量となる。尚トランジスタの容量が
逆バイアスで低減することは、ジイー著(S.M.
Sze)「半導体デバイスの物理」(コロナ社)第1
巻86、87頁に記載されていて、順バイアスから逆
バイアスへ変わると、PN接合の容量が、1/100
程度に変化することが図9からわかる。ちなみ
に、ダイオードの容量は、耐圧数百V、平均整流
電流1A程度のものでも高々数十pFである。たと
えば、本発明の固体交流スイツチの直列入力容量
を10pFとすれば、先の例で、1KHzの交流信号に
対するインピーダンスは、16MΩ、10KHzの交流
信号に対しても、1.6MΩとなり、充分なスイツ
チ効果が得られることがわかる。
The solid-state AC switch of this construction is capable of sufficiently switching high-frequency AC signals even though a field effect transistor with an on resistance of 1 Ω or less and a drain capacitance of 1000 pF or more is used as a switching transistor. This means that when field effect transistor 1 is off, field effect transistor 1
Since the intersections 17 and 18 of the diodes 17 and 18 are DC biased to constant positive and negative voltages, respectively, with respect to the switched AC input signal of constant amplitude, the input signal is always present at the drain-source terminal of the transistor 1. This is due to the application of a DC voltage equal to the maximum amplitude of . This is a major difference from the conventional example. The reason why the terminal 18 is biased to a negative potential and the terminal 17 is biased to a positive potential is that the electric charge that has once flowed in cannot flow out due to the rectifying action of the diode of the diode bridge. In this way, a DC voltage equal to the maximum amplitude of the input signal is applied between the drain and source of the transistor 1, so that the drain region of the transistor is reverse biased and depleted, reducing the drain capacitance to several tenths.
In this way, the capacitance of the transistor 1 is kept small, so that only the capacitance of the diode appears as the series equivalent capacitance of the switch with respect to the input signal. The capacitance of a diode is originally much smaller than the drain capacitance of a transistor. In addition, diodes 16, 15, and 13 forming a diode bridge
and 14 are always reverse biased, resulting in low capacitance. As a result, the overall capacity is low. It should be noted that the capacitance of a transistor is reduced by reverse bias, as described by J.
Sze) “Physics of Semiconductor Devices” (Corona Publishing) No. 1
It is described in Volume 86 and Page 87 that when changing from forward bias to reverse bias, the capacitance of the PN junction decreases by 1/100.
It can be seen from FIG. 9 that the degree of change varies. Incidentally, the capacitance of a diode is at most several tens of pF even if the diode has a withstand voltage of several hundred volts and an average rectified current of about 1 A. For example, if the series input capacitance of the solid state AC switch of the present invention is 10 pF , the impedance for a 1KHz AC signal in the previous example is 16MΩ, and for a 10KHz AC signal it is 1.6MΩ, which is sufficient. It can be seen that a switch effect can be obtained.

すなわち、本構成の固体交流スイツチにおいて
は、ドレイン容量の大きな電界効果トランジスタ
や、ゲート入力側にスイツチ制御回路との電気的
分離のためのコンデンサーが使われているにもか
かわらず、被スイツチ端の直列等価入力容量をき
わめて小さくすることができるから、小型、集積
化可能で且つ、高周波信号のスイツチが充分行な
える固体交流スイツチが実現されることになる。
In other words, in the solid state AC switch of this configuration, although a field effect transistor with a large drain capacitance and a capacitor are used on the gate input side for electrical isolation from the switch control circuit, the Since the series equivalent input capacitance can be made extremely small, a solid-state AC switch can be realized that is compact, can be integrated, and can sufficiently switch high-frequency signals.

尚、第3図に示した固体交流スイツチ回路は、
あくまで本発明の一実施例を説明するためのもの
であつて、本発明の主旨に沿つて、種々、異なつ
た回路構成が選択可能なことは言うまでもない。
たとえば、本発明の固体交流スイツチは駆動用パ
ルス電源の接地側端と電界効果トランジスタのソ
ース電極側とを結ぶコンデンサ7を省略しても、
被スイツチ回路系の寄生容量の存在等により駆動
用パルスに対して、スイツチ制御回路と被スイツ
チ回路を結ぶ等価的な閉回路が存在する場合には
充分動作が可能である。又、駆動用パルス入力に
対する整流平滑化回路は図の様な簡単な構成のも
のから、直流ゲート入力のリツプルを減少させる
ような、より複雑な形式のものまで、スイツチの
使用目的に合わせて選択することができる。また
使用されるトランジスタとしては、いわゆるpチ
ヤンネル、nチヤンネルMOS形トランジスタの
外接合形電界効果トランジスタ、静電誘導形電界
効果トランジスタ等、種々の電界効果形トランジ
スタの使用が可能である。
The solid state AC switch circuit shown in Figure 3 is as follows:
This is merely for explaining one embodiment of the present invention, and it goes without saying that various different circuit configurations can be selected in accordance with the spirit of the present invention.
For example, in the solid state AC switch of the present invention, even if the capacitor 7 connecting the ground side end of the driving pulse power source and the source electrode side of the field effect transistor is omitted,
Due to the presence of parasitic capacitance in the switched circuit system, sufficient operation is possible when there is an equivalent closed circuit connecting the switch control circuit and the switched circuit with respect to the driving pulse. In addition, the rectifying and smoothing circuit for the drive pulse input can be selected depending on the purpose of the switch, ranging from a simple configuration as shown in the figure to a more complex configuration that reduces ripples at the DC gate input. can do. Various field effect transistors can be used as the transistors, such as so-called p-channel and n-channel MOS transistors, external junction field effect transistors, and electrostatic induction field effect transistors.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のトランスを用いた固体交流スイ
ツチの回路構成、第2図は従来の改良された小型
化可能な固定交流スイツチの回路構成、第3図は
本発明の小型化可能で且つ、高周波特性に優れた
固体交流スイツチの回路構成例を示し、各図にお
いて、1,2は電界効果トランジスタ、3はトラ
ンス、4,5は被スイツチ端、6,7は入力信号
端コンデンサ、8,9はスイツチの入力信号端、
10は整流用ダイオード、11はゲートシヤント
抵抗、12は平滑化のための抵抗、13〜16は
双方向スイツチを構成するためのダイオード、1
7および18は、電界効果トランジスタのソース
電極端およびドレイン電極端をそれぞれ示す。
FIG. 1 shows the circuit configuration of a conventional solid-state AC switch using a transformer, FIG. 2 shows the circuit configuration of a conventional improved fixed AC switch that can be downsized, and FIG. 3 shows the circuit configuration of the present invention, which can be downsized and An example of the circuit configuration of a solid-state AC switch with excellent high frequency characteristics is shown. In each figure, 1 and 2 are field effect transistors, 3 is a transformer, 4 and 5 are switched ends, 6 and 7 are input signal end capacitors, 8, 9 is the input signal end of the switch,
10 is a rectifying diode, 11 is a gate shunt resistor, 12 is a smoothing resistor, 13 to 16 are diodes for forming a bidirectional switch, 1
7 and 18 indicate the source and drain electrode ends of the field effect transistor, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 ゲートシヤント抵抗を有する電界効果トラン
ジスタのドレイン、ソース端間に、p形トランジ
スタならばアノードを、n形トランジスタならば
カソードをドレイン側に向けて2個直列接続した
ダイオード列を2組設け、それぞれのダイオード
列の中点を被スイツチ端とし、駆動用パルス電源
の出力端と該電界効果トランジスタのゲート電極
側端、および駆動用パルス電源の接地電極端と該
電界効果トランジスタのソース電極側端同志のう
ち少なくとも、駆動用パルス電源の出力端と該電
界効果トランジスタのゲート電極側端とをコンデ
ンサで接続し、駆動用パルス入力電圧列によつて
該コンデンサのゲート電極側端と、ソース電極側
端間に生ずるパルス電圧列を、該コンデンサのゲ
ート電極側端と、電界効果トランジスタのゲート
電極間に設けた整流平滑化回路により整流平滑化
し、電界効果トランジスタの直流ゲート入力とな
したることを特徴とする固体交流スイツチ。
1. Two sets of diodes connected in series are provided between the drain and source terminals of a field effect transistor having a gate shunt resistance, with the anode facing the drain side for a p-type transistor and the cathode facing the drain side for an n-type transistor. The middle point of the diode string is the switched end, and the output end of the driving pulse power source and the gate electrode side end of the field effect transistor, and the ground electrode end of the driving pulse power source and the source electrode side end of the field effect transistor are connected to each other. At least the output end of the driving pulse power source and the gate electrode side end of the field effect transistor are connected by a capacitor, and the voltage between the gate electrode side end and the source electrode side end of the capacitor is connected by a driving pulse input voltage train. The pulse voltage train generated in the capacitor is rectified and smoothed by a rectification and smoothing circuit provided between the gate electrode side end of the capacitor and the gate electrode of the field effect transistor, and is used as a DC gate input of the field effect transistor. Solid AC switch.
JP4401579A 1979-04-11 1979-04-11 Solidstate alternating current switch Granted JPS55136720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4401579A JPS55136720A (en) 1979-04-11 1979-04-11 Solidstate alternating current switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4401579A JPS55136720A (en) 1979-04-11 1979-04-11 Solidstate alternating current switch

Publications (2)

Publication Number Publication Date
JPS55136720A JPS55136720A (en) 1980-10-24
JPH0230206B2 true JPH0230206B2 (en) 1990-07-05

Family

ID=12679851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4401579A Granted JPS55136720A (en) 1979-04-11 1979-04-11 Solidstate alternating current switch

Country Status (1)

Country Link
JP (1) JPS55136720A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9537481B2 (en) 2011-06-06 2017-01-03 Optex Co., Ltd. DC insulation semiconductor relay device

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58107629U (en) * 1982-01-18 1983-07-22 株式会社チノ− switch drive circuit
JPS58107634U (en) * 1982-01-19 1983-07-22 株式会社チノ− switch drive circuit
JPS58139742U (en) * 1982-03-16 1983-09-20 ファナック株式会社 Non-polar contactless relay
JPS58139741U (en) * 1982-03-16 1983-09-20 ファナック株式会社 Non-contact relay
US4485342A (en) * 1982-07-27 1984-11-27 General Electric Company Load driving circuitry with load current sensing
US4581540A (en) * 1984-03-16 1986-04-08 Teledyne Industries, Inc. Current overload protected solid state relay
GB8423574D0 (en) * 1984-09-18 1984-10-24 Smiths Ind Plc Ac Switch
JPH07107974B2 (en) * 1985-06-03 1995-11-15 株式会社日立製作所 Switching semiconductor element drive circuit
JPS63151112A (en) * 1986-12-15 1988-06-23 Fujisoku:Kk Semiconductor relay
JP4618164B2 (en) * 2005-09-20 2011-01-26 株式会社デンソー Switch circuit
JP5776011B2 (en) * 2010-12-10 2015-09-09 パナソニックIpマネジメント株式会社 Capacitance insulation type semiconductor relay using an insulation capacitor
JP5660492B2 (en) * 2010-12-10 2015-01-28 パナソニックIpマネジメント株式会社 Capacitance insulation type semiconductor relay using an insulation capacitor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845844A (en) * 1971-10-14 1973-06-30
JPS53140962A (en) * 1977-05-16 1978-12-08 Hitachi Denshi Ltd Electronic switch circuit
JPS5429961A (en) * 1976-08-10 1979-03-06 Gen Electric Isolation semiconductor gate controller

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5016981Y2 (en) * 1971-12-08 1975-05-26
JPS52101351U (en) * 1976-01-28 1977-08-01

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4845844A (en) * 1971-10-14 1973-06-30
JPS5429961A (en) * 1976-08-10 1979-03-06 Gen Electric Isolation semiconductor gate controller
JPS53140962A (en) * 1977-05-16 1978-12-08 Hitachi Denshi Ltd Electronic switch circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9537481B2 (en) 2011-06-06 2017-01-03 Optex Co., Ltd. DC insulation semiconductor relay device

Also Published As

Publication number Publication date
JPS55136720A (en) 1980-10-24

Similar Documents

Publication Publication Date Title
TWI362169B (en)
EP3231090B1 (en) A regulated high side gate driver circuit for power transistors
US6747880B2 (en) Self-powered synchronous rectifiers
EP0079937B1 (en) Semiconductor current regulator and switch
JP2815838B2 (en) Improved charge pump circuit for high side switch
US20060145746A1 (en) On chip power supply
JPH0230206B2 (en)
CN105814786A (en) Rectification device, alternator, and power conversion device
JP2004146862A (en) Switch semiconductor integrated circuit
US20090201078A1 (en) Single-chip common-drain JFET device and its applications
JPH0481892B2 (en)
CN108111023B (en) Control circuit for half-bridge diode
KR950000320B1 (en) Semiconductor relay circuit using photovoltaic diodes
US6441654B1 (en) Inductive load driving circuit
EP0675598B1 (en) Gate drive circuit device for voltage-driven semiconductor element
US6313513B1 (en) AC switch device used for switching AC circuit and AC switch circuit having the AC switch device
JPS6322149B2 (en)
US5449936A (en) High current MOS transistor bridge structure
WO2016170724A1 (en) Solid state relay
JPH08294275A (en) Switching power unit
CN113746305B (en) Gate driving circuit and multiphase intelligent power module
JP2024011982A (en) Driving circuit, semiconductor device including the same, and switching power supply device including the same
JPH0230207B2 (en)
JP2761555B2 (en) Frequency converter
JP2020167840A (en) Conversion circuit