JPH0230175Y2 - - Google Patents

Info

Publication number
JPH0230175Y2
JPH0230175Y2 JP1985141825U JP14182585U JPH0230175Y2 JP H0230175 Y2 JPH0230175 Y2 JP H0230175Y2 JP 1985141825 U JP1985141825 U JP 1985141825U JP 14182585 U JP14182585 U JP 14182585U JP H0230175 Y2 JPH0230175 Y2 JP H0230175Y2
Authority
JP
Japan
Prior art keywords
chip
tool body
cutting edge
tip
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985141825U
Other languages
Japanese (ja)
Other versions
JPS6250010U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985141825U priority Critical patent/JPH0230175Y2/ja
Publication of JPS6250010U publication Critical patent/JPS6250010U/ja
Application granted granted Critical
Publication of JPH0230175Y2 publication Critical patent/JPH0230175Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

[産業上の利用分野] この考案は、軸線を中心として回転される工具
本体の外周に、スローアウエイチツプが装着され
た転削工具に関するものである。 [従来の技術] 近年、エンドミル等の転削工具として、工具本
体の外周に一ないし複数のスローアウエイチツプ
(以下、チツプと略称する。)が着脱自在に装着さ
れた転削工具が多用されつつある。 第4図〜第6図は、従来のこの種の転削工具を
示すもので、図中符号1はこの転削工具の工具本
体を示すものである。 この工具本体1は、その基端部が図示されない
駆動源に軸線回りに回転自在に保持される円柱状
のもので、その先端部外周の直径方向に対称とな
る位置には、各々軸線方向に沿つて複数(図では
各2)の凹状のチツプ取付部2…が、それぞれ互
い違いになるように等間隔を隔てて形成されてい
る。そして、これらチツプ取付部2…の回転方向
の先端側には、それぞれこの工具本体1の一部分
が大きく切り欠かれてこれらチツプ取付部2…に
連続するチツプポケツト3,3が形成されてい
る。これにより、上記チツプ取付部2には、各々
この工具本体1の外周方向に面するチツプ取付座
4と、回転方向に面するチツプ係止面5と、軸線
方向に面するチツプ位置決め面6,6とが形成さ
れている。そして、上記チツプ取付部2…には、
それぞれチツプ7…がクランプネジ(図示せず)
により着脱自在に装着されている。 このチツプ7は、上下面8,9が平行な方形板
状のもので、その下面9をチツプ取付部2のチツ
プ取付座4に当接させ、かつその上面8の稜辺部
に形成された切刃10を工具本体1の外周1aか
ら半径方向を外方に、第6図中にN1で示す寸法
だけ突出させて上記チツプ取付部2に装着されて
いる。 ところで、上記従来の転削工具では、工具本体
1の外周1aに対するチツプ7の刃先10の上記
突出量N1をそのまま増加させてゆくと、これに
比例して刃先10に加わる力が増大し、よつて上
記チツプ7の着座剛性が劣化してしまうととも
に、加えて、上記チツプ7の工具本体1の半径方
向と直交する方向の剛性をも高める必要がある。
このため、上記刃先10の突出量N1は、通常1
〜2mm程度に設定されていた。 [考案が解決しようとする問題点] しかしながら、上記従来の転削工具にあつて
は、上記チツプ7の切刃10の突出量N1が小さ
いため、第6図に示すように、切削に際して上記
切刃10の送り量Szを大きくすると、工具本体
1の外周1aと被切削材11との間の隙間12が
僅かなものになつてしまうため、工具本体1にび
びりや振動が発生すると、上記工具本体1と被切
削材11とが互いに干渉してしまうという問題が
あつた。加えて、排出する切屑が上記隙間12に
おいて噛み込まれ易くなつてしまうため、これに
より上記チツプ7が損傷を受け易いという問題も
あつた。 [考案の目的] この考案は上記事情に鑑みてなされたもので、
切削中にびびりや振動が発生しても工具本体と被
切削材が干渉する恐れがなく、しかも切屑の排出
性能に優れる転削工具を提供することを目的とす
るものである。 [問題点を解決するための手段] この考案の転削工具は、軸線を中心として回転
される円柱状の工具本体の外周に、チツプがその
切刃を上記工具本体の外周側に位置させて装着さ
れてなる転削工具の、上記チツプの切刃の回転半
径R1と上記工具本体外周の半径R2との差Nを、 R1/8≦N≦R1/4 とするとともに、さらに上記チツプの、上記工具
本体の半径方向と直交する方向の厚さTを、 T≧2.4×Nとしたものである。 [実施例] 第1図〜第3図は、この考案の転削工具の一例
を示すもので、第4図〜第6図に示したものと共
通する部分には同一符号を付してその説明を省略
する。 第1図〜第3図において、この転削工具におい
ては、工具本体1のチツプ取付部2…にそれぞれ
チツプ20…が着脱自在に装着されている。ここ
で、上記チツプ20は、各々その上面21の稜辺
部に形成された切刃22を、工具本体1の外周1
aから半径方向を外方に向けて第3図中Nで示す
寸法突出させて装着されている。そして、この転
削工具では、上記チツプ20の切刃22の突出量
Nが上記切刃22の回転半径R1の1/8以上で、か
つ1/4以下とされるとともに、上記チツプ20の
切刃22位置における工具本体1の半径方向と直
交する方向の厚さTが上記突出量Nの2.4倍以上
となるように設定されている。 すなわち、例を挙げて具体的に示せば、チツプ
の回転半径が24mmの転削工具においては、そのチ
ツプの切刃の工具本体外周からの突出量Nが、3
mm以上かつ6mm以下の範囲内で、しかも上記チツ
プの切刃における上記厚さTが、例えば上記突出
量Nを5mmに設定した場合には、5×2.4=12mm
以上となるように設定されている。 ここで、上記チツプ20の切刃22における上
記厚さTを突出量Nの2.4倍未満にした場合には、
工具本体1のチツプ取付座4に当接するチツプ2
0の下面23の面積を充分に得ることができず、
よつて上記チツプ取付座との間の摩擦による保持
力が低下するためチツプ20の着座剛性が劣化し
てしまうとともに、この方向へのチツプ20の剛
性が不十分になつてしまい不適当である。また、
チツプ20の切刃22の上記突出量Nを切刃22
の回転半径R1の1/8末満にすると、工具本体1の
外周1aと被切削材11との間に充分な隙間を得
ることができず、他方上記突出量Nが切刃21の
回転半径R1の1/4を超えるとこの突出量Nに対応
してチツプ20の厚さTが増大し過ぎ、工具本体
1のチツプ取付部2の形状が大きくなり過ぎて工
具本体1自体の強度が劣化するとともに、チツプ
20自体も大型化して高価なものとなり不経済に
なつてしまうため、それぞれ不適当である。 しかして、このような転削工具にあつては、装
着したチツプ20の切刃22の回転半径R1と工
具本体1外周1aの半径R2との差Nを、上記回
転半径R1の1/8以上でかつ1/4以下にしてあるの
で、工具本体1と被切削材11との間に大きな隙
間25を得ることができる。このため、上述した
送り量Szを大きくし、なおかつ工具本体1にび
びりや振動が発生しても、上記工具本体1と被切
削材11とが互いに干渉する恐れがないうえ、さ
らに広い上記隙間25を介して切屑を円滑に排出
させることができる。しかも、上記チツプ20の
切刃22の位置における工具本体1の半径方向と
直交する方向の厚さTを、上記突出量Nの2.4倍
以上にしてあるので、チツプ20に加わる力が増
大しても、これに比例してチツプ20の下面23
と工具本体1のチツプ取付座4との間の当接面積
が増大することになる。したがつて、チツプ20
の下面23と工具本体1のチツプ取付座4との間
の摩擦力による上記チツプ20の保持力が増加す
るため、上記チツプ20の着座剛性が劣化する恐
れもない。さらに、チツプ厚さTを切刃突出量N
に応じて上記範囲に設定することに伴い、例えば
第7図に示すようにチツプ20をクランプネジ3
0で固定するような場合には、より一層チツプ2
0の保持力が増大する。 すなわち、第7図において切刃22からクラン
プネジ30の端部までの距離tを一定(例えば10
mm)とした場合、チツプ20に埋め込むことがで
きるクランプネジ30の頭の外径は(T−2t)が
最大である。しかるに、本実施例では、切刃突出
量Nに応じてチツプ厚さTが増大するため、これ
に伴つて使用し得るクランプネジ30の外径も大
きくなり、この結果チツプの保持力が切刃突出量
Nに対応してきくなつてチツプの着座剛性の劣化
がより確実に回避されるのである。 ここで、本考案の効果を明らかにすべく、切刃
突出量Nを適宜変化させて切削を行う第1の切削
試験とチツプ厚さTを適宜変化させて切削を行う
第2の切削試験とを行なつた。なお各試験の内容
及び加工条件は以下に示す通りであり、それぞれ
の結果は第1表及び第2表に示した。 (第1の切削試験) 切刃の突出量Nの相違による切削状況の差を比
較するため、下記の加工条件において切刃突出量
Nを適宜変化させて切削を行い、突出量Nの各設
定値について工具本体、切刃の損傷状況、切削時
の振動、加工面の状態を検査した。 ・ 切削速度……120mm/min ・ 被削材送り速度……250mm/min ・ 一刃あたりの工具送り量……0.31mm ・ 工具外径……48mm ・ 切刃突出量Nの変化範囲……1.5、3.0、6.0、
7.0mmの4段階 ・ チツプ厚さT……2.4N ・ 切削面寸法……工具軸方向40mm×被削材送り
方向300mm ・ 切込深さ及び切削回数……5mm×10回 ・ 被削材……SCM440(硬度HB220) (第2の切削試験) チツプ厚さTの相違によるチツプ着座剛性の差
を比較するため、下記の加工条件においてチツプ
厚さTを適宜変化させて切削を行い、チツプ破損
等の欠陥が生じるまでの切削回数を計測した。 ・ 切刃突出量N……3.0mm ・ チツプ厚さTの変化範囲……2.0N、2.4N、
5.0Nの三段階 ・ その他の加工条件は、切削回数を除いて上記
第1の試験と同様である。 なお、いずれの試験でもチツプの工具本体への
取付は、工具外周側からクランプネジを捩込む方
式によるものとした。
[Industrial Application Field] This invention relates to a milling tool in which a throw-away tip is attached to the outer periphery of a tool body that is rotated about an axis. [Prior Art] In recent years, milling tools such as end mills that have one or more throw-away chips (hereinafter referred to as chips) removably attached to the outer periphery of the tool body have been increasingly used. be. 4 to 6 show a conventional milling tool of this kind, and reference numeral 1 in the figures indicates the tool body of this milling tool. This tool body 1 has a cylindrical shape whose base end is rotatably held around an axis by a drive source (not shown), and diametrically symmetrical positions on the outer periphery of the tip end are each axially rotated. A plurality of concave chip attachment portions 2 (two in the figure) are formed along the same line at equal intervals so as to alternate with each other. A portion of the tool main body 1 is largely cut out on the tip end side of each of the tip attaching parts 2 in the rotational direction, and chip pockets 3, 3 are formed which are continuous with the tip attaching parts 2. As a result, the tip attaching portion 2 includes a tip attaching seat 4 facing the outer circumferential direction of the tool body 1, a tip locking surface 5 facing the rotational direction, a tip positioning surface 6 facing the axial direction, and a tip retaining surface 5 facing the rotation direction. 6 is formed. And, in the chip mounting part 2...
Each tip 7... is a clamp screw (not shown)
It is removably attached. This chip 7 has a rectangular plate shape with upper and lower surfaces 8 and 9 parallel to each other, and its lower surface 9 is brought into contact with the chip mounting seat 4 of the chip mounting section 2, and the chip 7 is formed on the ridge of the upper surface 8. The cutting blade 10 is attached to the tip mounting portion 2 so as to protrude radially outward from the outer periphery 1a of the tool body 1 by a dimension indicated by N1 in FIG. By the way, in the above-mentioned conventional milling tool, if the above-mentioned protrusion amount N1 of the cutting edge 10 of the chip 7 with respect to the outer circumference 1a of the tool body 1 is increased as it is, the force applied to the cutting edge 10 increases in proportion to this, As a result, the seating rigidity of the tip 7 deteriorates, and in addition, it is necessary to increase the rigidity of the tip 7 in a direction perpendicular to the radial direction of the tool body 1.
Therefore, the protrusion amount N 1 of the cutting edge 10 is usually 1
It was set at ~2mm. [Problems to be solved by the invention] However, in the conventional milling tool described above, since the protrusion amount N1 of the cutting edge 10 of the chip 7 is small, as shown in FIG. When the feed amount Sz of the cutting blade 10 is increased, the gap 12 between the outer periphery 1a of the tool body 1 and the workpiece 11 becomes small, so if chatter or vibration occurs in the tool body 1, the above-mentioned There was a problem that the tool body 1 and the workpiece 11 interfered with each other. In addition, since the chips to be discharged tend to get caught in the gap 12, there is a problem in that the chip 7 is easily damaged. [Purpose of the invention] This invention was made in view of the above circumstances.
It is an object of the present invention to provide a milling tool which is free from interference between the tool body and the workpiece even if chatter or vibration occurs during cutting, and which has excellent chip evacuation performance. [Means for solving the problem] The milling tool of this invention has a chip on the outer periphery of a cylindrical tool body that is rotated about an axis, with its cutting edge positioned on the outer periphery side of the tool body. The difference N between the turning radius R 1 of the cutting edge of the chip and the radius R 2 of the outer periphery of the tool body of the attached milling tool is set to R 1 /8≦N≦R 1 /4, and further The thickness T of the chip in a direction orthogonal to the radial direction of the tool body is T≧2.4×N. [Example] Figures 1 to 3 show an example of a milling tool of this invention, and parts common to those shown in Figures 4 to 6 are denoted by the same reference numerals. The explanation will be omitted. 1 to 3, in this milling tool, chips 20 are removably attached to the chip attachment portions 2 of the tool body 1, respectively. Here, each of the tips 20 has a cutting edge 22 formed on the ridge of the upper surface 21 of the tip 20 at the outer periphery of the tool body 1.
It is mounted so as to protrude outward in the radial direction from a by a dimension indicated by N in FIG. In this milling tool, the protruding amount N of the cutting edge 22 of the tip 20 is set to be 1/8 or more and 1/4 or less of the rotation radius R 1 of the cutting edge 22, and The thickness T in the direction orthogonal to the radial direction of the tool body 1 at the cutting edge 22 position is set to be 2.4 times or more the above-mentioned protrusion amount N. That is, to give a concrete example, in a milling tool with a tip rotation radius of 24 mm, the protrusion amount N of the cutting edge of the tip from the outer periphery of the tool body is 3.
If the thickness T at the cutting edge of the chip is within the range of 5 mm or more and 6 mm or less, for example, if the protrusion amount N is set to 5 mm, then 5 x 2.4 = 12 mm.
It is set to be the above. Here, if the thickness T of the cutting edge 22 of the tip 20 is less than 2.4 times the protrusion amount N,
Tip 2 that comes into contact with tip mounting seat 4 of tool body 1
It is not possible to obtain a sufficient area of the lower surface 23 of 0,
As a result, the holding force due to the friction between the chip 20 and the chip mounting seat decreases, and the seating rigidity of the chip 20 deteriorates, and the rigidity of the chip 20 in this direction becomes insufficient, which is inappropriate. Also,
The above protrusion amount N of the cutting edge 22 of the chip 20 is defined as the cutting edge 22
If the rotation radius R is less than 1/8 of 1 , it will not be possible to obtain a sufficient clearance between the outer periphery 1a of the tool body 1 and the workpiece 11, and on the other hand, the protrusion amount N will be reduced by the rotation of the cutting blade 21. If the radius R exceeds 1/4 , the thickness T of the tip 20 will increase too much corresponding to this protrusion amount N, and the shape of the tip attachment part 2 of the tool body 1 will become too large, reducing the strength of the tool body 1 itself. They are unsuitable because they deteriorate and the chip 20 itself becomes large and expensive, making it uneconomical. Therefore, in the case of such a milling tool, the difference N between the radius of rotation R1 of the cutting edge 22 of the attached chip 20 and the radius R2 of the outer periphery 1a of the tool body 1 is calculated as 1 of the radius of rotation R1. Since the gap is set to be 1/8 or more and 1/4 or less, a large gap 25 can be obtained between the tool body 1 and the workpiece 11. Therefore, even if the feed rate Sz is increased and chatter or vibration occurs in the tool body 1, there is no risk that the tool body 1 and the workpiece 11 will interfere with each other, and the gap 25 is further widened. Chips can be smoothly discharged through the Moreover, since the thickness T in the direction orthogonal to the radial direction of the tool body 1 at the position of the cutting edge 22 of the tip 20 is set to be more than 2.4 times the protrusion amount N, the force applied to the tip 20 increases. Also, in proportion to this, the lower surface 23 of the chip 20
This results in an increase in the contact area between the tool body 1 and the tip mounting seat 4 of the tool body 1. Therefore, tip 20
Since the holding force of the tip 20 due to the frictional force between the lower surface 23 of the tool body 1 and the tip mounting seat 4 of the tool body 1 increases, there is no fear that the seating rigidity of the tip 20 will deteriorate. Furthermore, the chip thickness T is the cutting edge protrusion amount N
For example, as shown in FIG.
If it is fixed at 0, the tip 2
0 retention force increases. That is, in FIG. 7, the distance t from the cutting edge 22 to the end of the clamp screw 30 is constant (for example, 10
mm), the maximum outer diameter of the head of the clamp screw 30 that can be embedded in the chip 20 is (T-2t). However, in this embodiment, since the tip thickness T increases in accordance with the cutting edge protrusion amount N, the outer diameter of the clamp screw 30 that can be used increases accordingly, and as a result, the holding force of the tip increases depending on the cutting edge. The deterioration of the seating rigidity of the chip, which increases in proportion to the amount of protrusion N, can be more reliably avoided. Here, in order to clarify the effects of the present invention, a first cutting test was carried out in which cutting was carried out while changing the cutting edge protrusion amount N as appropriate, and a second cutting test was carried out in which cutting was carried out while changing the chip thickness T as appropriate. I did this. The contents and processing conditions of each test are as shown below, and the results are shown in Tables 1 and 2. (First cutting test) In order to compare the difference in the cutting situation due to the difference in the protrusion amount N of the cutting edge, cutting was performed while changing the protrusion amount N of the cutting edge as appropriate under the following processing conditions, and each setting of the protrusion amount N was Regarding the value, we inspected the tool body, damage to the cutting edge, vibration during cutting, and condition of the machined surface. - Cutting speed...120mm/min - Workpiece feed rate...250mm/min - Tool feed rate per tooth...0.31mm - Tool outer diameter...48mm - Change range of cutting edge protrusion N...1.5 ,3.0,6.0,
4 stages of 7.0mm Chip thickness T...2.4N Cutting surface dimensions...Tool axis direction 40mm x Workpiece feed direction 300mm Cutting depth and number of cuts...5mm x 10 times Workpiece material... ...SCM440 (Hardness H B 220) (Second cutting test) In order to compare the difference in chip seating rigidity due to the difference in chip thickness T, cutting was performed while changing the chip thickness T as appropriate under the following processing conditions. The number of cuts until defects such as chip breakage occurred was measured.・Cutting blade protrusion amount N...3.0mm ・Change range of chip thickness T...2.0N, 2.4N,
Three stages of 5.0N Other machining conditions were the same as in the first test above, except for the number of cuts. In all tests, the tip was attached to the tool body by screwing in a clamp screw from the outer circumferential side of the tool.

【表】【table】

【表】【table】

【表】 第1表から明らかなように、切刃突出量Nが切
刃の回転半径R1に対して、 R1/8≦N≦R1/4 を満たす範囲、すなわち上記加工条件において
3.0mm〜6.0mmの範囲では工具外周及び切刃の損傷
の発生が認められなかつた。また、突出量Nが
6.0mmの場合において、加工面に無視し得る程度
の微小な段差の発生が認められている。従つて、
突出量Nの上限値としては6.0mmが限界であり、
これを超えて突出量Nを増加させた場合には段差
が無視できない程度に拡大して好ましくない。 一方、切刃突出量NをR1/8に満たない範囲
(1.5mm)に設定した場合には、工具外周と被削材
とが干渉した結果として工具外周に損傷が認めら
れ、また切屑排出性の劣化によつて切刃の損傷も
誘発されることが明らかとなつた。さらに、切刃
突出量NをR1/4を超える範囲(7.0mm)に設定
した場合には、チツプの着座剛性も不足し、切刃
に欠損が生じ易いことが確認された。 また、第2表から明らかなように、チツプ厚さ
Tが切刃突出量Nの2.4倍に満たない範囲では、
切削回数にしてわずか8回の初期段階でチツプ破
損を招き、ほとんど切削ができない。これに対し
てチツプ厚さTが2.4Nの場合には、切削回数に
して29回で初めて微小なチツピングが生じる程度
であり、さらにチツプ厚さTが5.0Nの場合には
切削回数が50回を超えても未だチツピング等が生
じることなく安定した切削を行うことができるこ
とが確認された。これは、チツプ厚さTを上記範
囲に設定した場合、チツプ着座面積の増増大及び
クランプネジ径の拡大によつてチツプ着座剛性の
劣化が有効に防止されるためと推測される。 以上の結果より、チツプの着座剛性を確保しつ
つ工具本体と被削材との干渉を防止して円滑な切
削を行うためには、切刃突出量NをR1/8〜
R1/4の範囲に設定するとともに、チツプ厚さ
Tを2.4N以上とすることが有意義であることが
確認された。 [考案の効果] 以上説明したようにこの考案の転削工具は、軸
線を中心として回転される円柱状の工具本体の外
周に、チツプがその切刃を上記工具本体の外周側
に位置させて装着されてなる転削工具の、上記チ
ツプの切刃の回転半径R1と上記工具本体外周の
半径R2との差Nを、 R1/8≦N≦R1/4 とするとともに、上記チツプの上記工具本体の半
径方向と直交する方向の厚さTを、 T≧2.4×Nとしたものである。よつて、この
転削工具にあつては、切削中にびびりや振動が発
生しても工具本体と被切削材が干渉する恐れがな
く、しかも優れた切屑の排出性能を得ることがで
きる。さらに、チツプを工具外周側から捩れ込ま
れるクランプネジによつて工具本体に取り付ける
ような場合には、チツプの着座面積の拡大に伴つ
てチツプ剛性を損なわずにより大径のクランプネ
ジを埋め込むことができるので、チツプ保持力を
一層増大させてチツプ着座剛性の劣化をより確実
に防止できる。
[Table] As is clear from Table 1, the cutting edge protrusion amount N satisfies R 1 /8≦N≦R 1 /4 with respect to the rotation radius R 1 of the cutting blade, that is, under the above processing conditions.
No damage to the tool periphery or cutting edge was observed in the range of 3.0 mm to 6.0 mm. Also, the protrusion amount N is
In the case of 6.0 mm, a negligible level difference was observed on the machined surface. Therefore,
The upper limit of the protrusion amount N is 6.0mm,
If the protrusion amount N is increased beyond this, the difference in level will increase to an extent that cannot be ignored, which is not preferable. On the other hand, when the cutting edge protrusion amount N is set to a range less than R 1/8 (1.5 mm), damage to the tool periphery is observed as a result of interference between the tool periphery and the workpiece material, and chip evacuation is reduced. It has become clear that damage to the cutting edge is also induced by deterioration of the properties. Furthermore, it was confirmed that when the cutting edge protrusion amount N was set to a range exceeding R 1 /4 (7.0 mm), the seating rigidity of the chip was insufficient and the cutting edge was likely to be damaged. Furthermore, as is clear from Table 2, in the range where the chip thickness T is less than 2.4 times the cutting edge protrusion N,
The chip breaks at the initial stage after only 8 cuttings, and cutting is almost impossible. On the other hand, when the chip thickness T is 2.4N, minute chipping only occurs after 29 cuttings, and when the chip thickness T is 5.0N, the number of cuttings is 50. It was confirmed that stable cutting could still be performed without chipping or the like even when the cutting speed was exceeded. This is presumed to be because when the chip thickness T is set within the above range, deterioration of the chip seating rigidity is effectively prevented by increasing the chip seating area and expanding the clamp screw diameter. From the above results, in order to prevent interference between the tool body and the workpiece material and perform smooth cutting while ensuring the seating rigidity of the chip, the cutting edge protrusion amount N should be set to R 1 /8 ~
It has been confirmed that it is meaningful to set the chip thickness T to 2.4N or more while setting it within the range of R 1 /4. [Effects of the invention] As explained above, the milling tool of this invention has a chip on the outer periphery of a cylindrical tool body that is rotated about an axis, with its cutting edge positioned on the outer periphery of the tool body. The difference N between the turning radius R 1 of the cutting edge of the chip and the radius R 2 of the outer periphery of the tool body of the attached milling tool satisfies R 1 /8≦N≦R 1 /4, and the above The thickness T of the chip in the direction perpendicular to the radial direction of the tool body is T≧2.4×N. Therefore, with this milling tool, even if chatter or vibration occurs during cutting, there is no risk of interference between the tool body and the workpiece, and excellent chip evacuation performance can be obtained. Furthermore, when the chip is attached to the tool body using a clamp screw that is twisted from the outer circumference of the tool, it is possible to embed a larger diameter clamp screw without sacrificing chip rigidity as the seating area of the chip is expanded. Therefore, the chip holding force can be further increased and deterioration of the chip seating rigidity can be more reliably prevented.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図はこの考案の転削工具の一実施
例を示すもので、第1図は正面図、第2図は側面
図、第3図は上記転削工具による切削状態を示す
図、第4図〜第6図は従来の転削工具を示すもの
で、第4図は正面図、第5図は側面図、第6図は
上記従来の転削工具による切削状態を示す図であ
る。そして第7図は本考案の転削工具においてチ
ツプをクランプネジを用いて取り付けたときの状
態を示す図である。 1……工具本体、1a……外周、2……チツプ
取付部、3……チツプポケツト、4……チツプ取
付座、7,20……スローアウエイチツプ(チツ
プ)、8,21……上面、9,23……下面、1
0,22……切刃、11……被切削材、12,2
5……隙間、T……チツプ厚さ、R,R1……切
刃回転半径、R2……工具本体外周の半径、N…
…切刃の突出量、Sz……送り量。
Figures 1 to 3 show an embodiment of the milling tool of this invention, where Figure 1 is a front view, Figure 2 is a side view, and Figure 3 shows the state of cutting by the milling tool. Figures 4 to 6 show a conventional milling tool, where Figure 4 is a front view, Figure 5 is a side view, and Figure 6 is a diagram showing the state of cutting by the conventional milling tool. It is. FIG. 7 is a diagram showing a state in which a chip is attached using a clamp screw in the milling tool of the present invention. DESCRIPTION OF SYMBOLS 1...Tool body, 1a...Outer periphery, 2...Tip mounting portion, 3...Tip pocket, 4...Tip mounting seat, 7, 20...Throwaway tip (chip), 8, 21...Top surface, 9 , 23...bottom surface, 1
0,22... Cutting blade, 11... Cutting material, 12,2
5... Gap, T... Chip thickness, R, R 1 ... Cutting edge rotation radius, R 2 ... Radius of tool body outer periphery, N...
...Protrusion amount of cutting edge, Sz...Feed amount.

Claims (1)

【実用新案登録請求の範囲】 軸線を中心として回転される円柱状の工具本体
の外周に、スローアウエイチツプがその切刃を上
記工具本体の外周側に位置させて装着されてなる
転削工具において、上記スローアウエイチツプの
切刃の回転半径R1と上記工具本体外周の半径R2
との差Nを、 R1/8≦N≦R1/4 とするとともに、工具軸線方向からの正面視にお
ける上記スローアウエイチツプの、上記工具本体
の半径方向と直交する方向の厚さTを、 T≧2.4×N としたことを特徴とする転削工具。
[Scope of Claim for Utility Model Registration] A milling tool in which a throw-away tip is attached to the outer periphery of a cylindrical tool body that rotates about an axis with its cutting edge positioned on the outer periphery of the tool body. , the rotation radius of the cutting edge of the throw-away tip R 1 and the radius of the outer circumference of the tool body R 2
The difference N between the two and , T≧2.4×N.
JP1985141825U 1985-09-17 1985-09-17 Expired JPH0230175Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985141825U JPH0230175Y2 (en) 1985-09-17 1985-09-17

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985141825U JPH0230175Y2 (en) 1985-09-17 1985-09-17

Publications (2)

Publication Number Publication Date
JPS6250010U JPS6250010U (en) 1987-03-27
JPH0230175Y2 true JPH0230175Y2 (en) 1990-08-14

Family

ID=31049972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985141825U Expired JPH0230175Y2 (en) 1985-09-17 1985-09-17

Country Status (1)

Country Link
JP (1) JPH0230175Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917529U (en) * 1982-07-23 1984-02-02 株式会社松島機械研究所 limit switch

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5917529U (en) * 1982-07-23 1984-02-02 株式会社松島機械研究所 limit switch

Also Published As

Publication number Publication date
JPS6250010U (en) 1987-03-27

Similar Documents

Publication Publication Date Title
KR100959339B1 (en) Throwaway tip and throwaway type milling tool
JP4540764B2 (en) Cutting tools
US8287213B2 (en) Indexable cutting tool insert for cutting tools
JP2002301603A (en) Throwaway cutting tip and method of positioning cutting tip holder and throwaway cutting tip
WO1996003242A1 (en) Tool-bit holder
JPH0230175Y2 (en)
JP4449895B2 (en) Throw-away inserts and throw-away cutting tools
JPH09225724A (en) Tip for milling
JPH031138Y2 (en)
JPH0790411B2 (en) Throw-away type rolling tool
JP3348534B2 (en) Indexable milling tools
JP3266479B2 (en) Rotary bite
JP2559865Y2 (en) Indexable inserts
KR200388583Y1 (en) Washer for protecting the cutter body
JP2002326113A (en) Deburring cutter
JPH11333615A (en) Throw away cutter
JPH023376Y2 (en)
JPH0639318U (en) Throw-away type grooving cutter
JPH0760510A (en) Throwaway tip
JP2002321114A (en) Milling cutter
JPH0533204Y2 (en)
JPH0453849Y2 (en)
JPS6243685Y2 (en)
JPS601928Y2 (en) throw away tool
JPH0732211A (en) Built-up reamer