JPH02301728A - Nonlinear optical material and production thereof - Google Patents

Nonlinear optical material and production thereof

Info

Publication number
JPH02301728A
JPH02301728A JP12218689A JP12218689A JPH02301728A JP H02301728 A JPH02301728 A JP H02301728A JP 12218689 A JP12218689 A JP 12218689A JP 12218689 A JP12218689 A JP 12218689A JP H02301728 A JPH02301728 A JP H02301728A
Authority
JP
Japan
Prior art keywords
nonlinear optical
shg
crystal orientation
cooling
melting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12218689A
Other languages
Japanese (ja)
Other versions
JP2650418B2 (en
Inventor
Katsuya Wakita
克也 脇田
Tokihiko Shimizu
清水 時彦
Nobuo Sonoda
園田 信雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1122186A priority Critical patent/JP2650418B2/en
Publication of JPH02301728A publication Critical patent/JPH02301728A/en
Application granted granted Critical
Publication of JP2650418B2 publication Critical patent/JP2650418B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To provide the above material which has high orientability and exhibits high SHG by mixing and melting >=2 kinds of org. compds. which exhibit second order nonlinear optical characteristics and org. compds. which can arbitrarily unify crystal orientation directions, then cooling the mixture to solidify. CONSTITUTION:This optical material is constituted by mixing and melting >=2 kinds of the org. compds. which exhibit the second order nonlinear optical characteristics and the org. compds. which can arbitraring unify the crystal orientation directions, then cooling the mixture to solidify. Namely, the material has the structure in which a core 1 consisting of a compsn. formed by mixing and melting paranitroaniline (PNA) and diphenyl ethylenediamine (DPEN) and cooling the mixture to solidify is coated with a clad 2 consisting an SHG inert medium, such as glass. The molten mixture is injected into glass capillaries by utilizing capillarity to impart mechanical stimuli to the capillary ends. Crystal configuration is induced in the longitudinal direction of the capillaries in this way, by which the highly oriented and highly SHG active SHG element is obtd.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は非線形光学特性を示す各種光素子への応用が可
能な 結晶配向性の高い非線形光学材料及びその非線形
光学材料の結晶配向を任意に揃えることが可能な製造方
法に関する。
[Detailed Description of the Invention] Industrial Field of Application The present invention can be applied to various optical devices exhibiting nonlinear optical characteristics. Nonlinear optical materials with high crystal orientation and the ability to arbitrarily align the crystal orientation of the nonlinear optical material. This invention relates to a manufacturing method that allows for.

従来の技術 将来の光素子に有用な光学材料として、大きな非線形光
学特性を有し 高速応答する材料が求められている。こ
のような材料として(よ 格子振動が関与する無機化合
物結晶より耘 π電子系を有する有機化合物の方が優れ
ているとされ 設計指針としてはπ電子共役系を有する
分子に 強いドナー性置換基とアクセプター性置換基を
導入する方法が一般的であっ九 発明が解決しようとする課題 しかし このような方法では有機分子単一では非常に大
きな超分極率を持つにもかかわら咀 分子内部で誘起さ
れた双極子モーメントが他分子と相互作用を起こし 打
ち消し合うような中心対称性の結晶が形成される。そし
て、このような中心対称性の結晶においては2次の非線
形光学特性であるSHGは現れないという課題があっ池
課題を解決するための手段 2次の非線形光学特性を示す有機化合物と結晶配向方向
を任意に揃えられる有機化合物とを少なくとも2種以上
混合溶融し 冷却固化させた構成とする。
Conventional Technology Materials with large nonlinear optical properties and high-speed response are required as optical materials useful for future optical devices. As such materials, organic compounds with a π-electron system are said to be superior to inorganic compound crystals in which lattice vibrations are involved. A common method is to introduce an acceptor substituent, but the problem to be solved by this invention is that although a single organic molecule has a very large hyperpolarizability, hyperpolarizability is induced inside the molecule. A centrosymmetric crystal is formed in which the dipole moment interacts with other molecules and cancels each other out.It is said that SHG, which is a second-order nonlinear optical property, does not appear in such a centrosymmetric crystal. Problems AchievedMeans for Solving the Problems The present invention has a composition in which at least two kinds of organic compounds exhibiting second-order nonlinear optical characteristics and organic compounds whose crystal orientation can be arbitrarily aligned are mixed and melted, cooled, and solidified.

作用 本発明者等は 単独の結晶ではS、HG活性を示さない
化合物でも結晶配向性の高い他の化合物と混合溶融し 
冷却固化させることによって高効率のSHG活性を現わ
すことが可能であることを見いだし九 すなわち、分子の超分極率βは大きい力\ 中心対称性
の結晶を形成するために 単独ではS HG不活性であ
る化合物でも結晶配向性の高い他の化合物との複合系に
することにより中心対称性の存在しない構造(即ちS 
HG活性の構造)に変えることができる。
Effect The present inventors have discovered that even compounds that do not exhibit S or HG activity when used alone as crystals can be mixed and melted with other compounds that have high crystal orientation.
We found that it is possible to exhibit highly efficient SHG activity by cooling and solidifying.9 In other words, the hyperpolarizability β of the molecule is a large force, and in order to form a centrosymmetric crystal, SHG alone becomes inactive. Even if a compound has a structure with no central symmetry (i.e., S
structure of HG activity).

また 2次の非線形光学特性を示す有機化合物と結晶配
向性の高い有機化合物とを少なくとも2種以上混合溶融
させ、その混合溶融物を冷却固化させる過程において、
電気向 熱的あるいは機械的刺激を与えることにより任
意の方向に結晶配向を揃えた非線形光学素子の製造が可
能となる。
In addition, in the process of mixing and melting at least two organic compounds exhibiting second-order nonlinear optical properties and organic compounds with high crystal orientation, and cooling and solidifying the mixed melt,
By applying electrothermal or mechanical stimulation, it is possible to manufacture nonlinear optical elements with crystal orientation aligned in any direction.

実施例 以下に実施例を用いて本発明の詳細な説明する。Example The present invention will be described in detail below using examples.

実施例1 バラニトロアニリン(PNA、関東化学社製)及びジフ
ェニルエチレンジアミン(DPEN、関東化学社製)を
種々のモル比で混合し 溶融させた後、冷却固化させ九
 得られた組成物にNd:  YAGレーザ−(106
4nm)を用いてSHG強度の測定を行なったとこへ 
第1図で示すようにPNAのモル比(PNA/DPEN
)が0.2〜0.09の領域で非常に高い効率の(尿素
比40倍程度)のSHGが観測された 上記の化合物単
独で1isHGが全く観測されないことから、 2種以
上の有機化合物を混合溶融し冷却固化させることにより
、新たな組成物が形成され この組成物が極めて高いS
HG効率を示す構造を有しているものと考えら・れる。
Example 1 Varanitroaniline (PNA, manufactured by Kanto Kagaku Co., Ltd.) and diphenylethylenediamine (DPEN, manufactured by Kanto Kagaku Co., Ltd.) were mixed in various molar ratios, melted, and then cooled and solidified.9 Nd: YAG laser (106
4nm) was used to measure the SHG intensity.
As shown in Figure 1, the molar ratio of PNA (PNA/DPEN
) was observed in the region of 0.2 to 0.09, SHG with very high efficiency (approximately 40 times that of urea) was observed. Since no 1isHG was observed with the above compound alone, it was found that 1isHG was observed with two or more organic compounds. By mixing, melting, cooling and solidifying, a new composition is formed and this composition has an extremely high S
It is thought that it has a structure that exhibits HG efficiency.

この組成物の構造について(よ 現在のところ詳細は不
明である力丈 各々の分子が持っている双極子モーメン
トを打ち消し合わない構成 即ち非中心対称の構造を有
するものと考えられる。また 2種の分子が錯体もしく
は分子化合物を形成し全体として中心対称の無い構造を
とっているとも考えられる。
Regarding the structure of this composition (the details are currently unknown), it is thought that it has a structure in which the dipole moments of each molecule do not cancel each other out, that is, it has a non-centrosymmetric structure. It is also thought that the molecules form a complex or a molecular compound, and the structure as a whole lacks central symmetry.

本発明でいうπ電子系共役系有機化合物と(上上記のP
NA等のニトロアニリン系化合物誘導体の他にドナー性
及びアクセプター性の置換基を有する芳香環化合1扱 
スチルベン系化合物誘導体やベンザルアセトフェノン誘
導体等の共役オレフィン化合1扱 ベンゾオキサジアゾ
ール誘導体やニトロピリジン誘導体等の複素環化合1扱
 ベンジリデンアニリン誘導体等の芳香環を有するシッ
フベース化合物等が本発明に適用可能である。具体的に
(よ1.4置換ナフタレン誘導体 4−ジメチルアミノ
−4−スチルベン、3−(4−メトキシフェニル)−1
−(4−アミノフェニル)−2−プロペン−1−オン、
カルコン誘導体 4−ニトロ−7−クロロベンゾオキサ
ジアゾール4′−ニトロベンジリデン−3−アセチルア
ミノ−4−メトキシアニリン、N−(4−ピリジニルメ
チレン)−4−ジメチルアミノベンゼナミン・ジメチル
スルフェート、N−[2−(5−ニトロベンジリデン)
]−]4−メトキシベンゼナミン及びこれらの類似化合
物が適用可能である。本発明で言うドナー性置換基とし
て(よ例えば アミ人 モノメチルアミ人 ジメチルア
ミ人 ジエチルアミ人 n−ブチルアミ人 t−ブチル
アミノ等のアミノ暴L−(2−ヒドロキシメチル)−ピ
ロリジニ/k L−アラニニノL/X L−セリ二ノk
L−チロシニル等光学活性アミノ基 ヒドロキシ、メト
キシ、エトキシ、 n−ブトキシ等のアルコキシ展メチ
ル、エチル、 n−プロピ)Iy、  n−ブチ)It
、  n−ペンデル n−オクタデシル等の鎖状または
分岐状のアルキル展 ハロゲン等が挙げられ 一方、ア
クセプター性の置換基として(よ ニトロ、シア人イソ
シアナト、ホルミ/lz、  カルボン酸メチル、カル
ボン酸エチル等のアルコキシカルボニ/は スルフォニ
ル、ハロゲン等が挙げられる。ハロゲンはドナー性、ア
クセプター性、両方の性質を持っているたム どちらの
範鴎にも入る。また本発明で言うカルボニル基を有する
溶媒としてζよ アセトン、メヂルエチルケトン、シク
ロヘキザノス ジエチルケトン、2−ブタノン等のケト
ン類及びアセトフェノン、アセトアルデヒド、ポルムア
ルデヒド等のアルデヒド類が挙げられる。
The π-electron conjugated organic compound referred to in the present invention (the above P
Aromatic ring compounds having donor and acceptor substituents in addition to nitroaniline compound derivatives such as NA
Conjugated olefin compounds such as stilbene derivatives and benzalacetophenone derivatives (1) Heterocyclic compounds (1) such as benzoxadiazole derivatives and nitropyridine derivatives Schiff base compounds with aromatic rings such as benzylideneaniline derivatives are applicable to the present invention. It is. Specifically (1.4-substituted naphthalene derivatives 4-dimethylamino-4-stilbene, 3-(4-methoxyphenyl)-1
-(4-aminophenyl)-2-propen-1-one,
Chalcone derivatives 4-nitro-7-chlorobenzoxadiazole 4'-nitrobenzylidene-3-acetylamino-4-methoxyaniline, N-(4-pyridinylmethylene)-4-dimethylaminobenzenamine dimethylsulfate , N-[2-(5-nitrobenzylidene)
]-]4-methoxybenzenamine and similar compounds thereof are applicable. In the present invention, the donor substituents (for example, amino groups such as amino group, monomethyl group, dimethyl group, diethyl group, n-butylamino group, t-butylamino group, L-(2-hydroxymethyl)-pyrrolidini/k L-alaninino L/ XL-Selinino k
Optically active amino groups such as L-tyrosinyl, alkoxy groups such as hydroxy, methoxy, ethoxy, n-butoxy, methyl, ethyl, n-propy)Iy, n-buty)It
, n-pendel, n-octadecyl, and other linear or branched alkyl-extended halogens.On the other hand, acceptor substituents include (nitro, cyanide isocyanato, formi/lz, methyl carboxylate, ethyl carboxylate, etc.). Examples of alkoxycarbonyl/ include sulfonyl, halogen, etc. Halogen has both donor and acceptor properties, so it falls into both categories.Also, as a solvent having a carbonyl group in the present invention, Examples include ketones such as acetone, medylethyl ketone, cyclohexanos diethyl ketone, and 2-butanone, and aldehydes such as acetophenone, acetaldehyde, and pormaldehyde.

実施例2 バラニトロアニリン(PNA、関東化学社製)及びジフ
ェニルエチレンジアミン(DPEN、関東化学社製)を
モル比(PNA/DPEN比)0.14で混合溶融させ
冷却固化させる際に固化が始まる過程で、結晶配向を揃
えさせたい方向に対し塗膜面内で垂直方向に機械的刺激
を加える。機械的刺激面に対し垂直方向に結晶が配向し
なから固化してゆくために高い配向性を持ったS HG
活性な非線形材料が得られることになる。この特性を活
かした応用例を第2図及び第3図に示も 第2図1isHG素子としての光フアイバー型光波長変
換素子の概略図である。PNAとDPENの混合溶融さ
せ冷却固化させた組成物からなるコア(1)がガラス等
のSHG不活性な媒質からなるクラッド(2)で被覆さ
れた構造を有している。混合溶融物をガラスキャピラリ
ー中に毛細管現象を利用して注入し キャピラリ一端に
機械的刺激を与えるとキャピラリーの長さ方向に結晶配
列が起こり高配向された高SHG活性なSHG素子を得
られる。まL  第3図はSHG素子としてのスラブ型
光波長変換素子の概略図である。光フアイバー型同様に
基盤上に溶融させた混合溶融物を注入し 固化が始まる
過程で、素子の末端に機械的刺激を与えることでスラブ
型導波路の導波方向に結晶配列が進行し 高配向された
高SHG活性なSHG素子を得られる。本発明におけへ
 結晶配向性の高い物質とはジフェニルエチレンジアミ
ンなどの芳香族ジアミノアルカン類 液晶材料とじて用
いられヘ コレステロールアセテート、コレステロール
ベンゾエートなどのコレステロール系化合I1.  P
−カルボキシフェニルN−アミルカルボネート、P−カ
ルボキシフェニルエチルカルボネートなどの炭酸エステ
ル類が挙げられる。
Example 2 Process in which solidification begins when varanitroaniline (PNA, manufactured by Kanto Kagaku Co., Ltd.) and diphenylethylenediamine (DPEN, manufactured by Kanto Kagaku Co., Ltd.) are mixed and melted at a molar ratio (PNA/DPEN ratio) of 0.14, and solidified by cooling. Then, mechanical stimulation is applied in the direction perpendicular to the direction in which the crystal orientation is desired to be aligned within the surface of the coating film. SHG has high orientation because the crystals are not oriented in the direction perpendicular to the mechanical stimulus surface and solidify.
An active nonlinear material will be obtained. Application examples that take advantage of this characteristic are shown in FIGS. 2 and 3. FIG. 2 is a schematic diagram of an optical fiber type optical wavelength conversion element as an HG element. It has a structure in which a core (1) made of a mixed melted composition of PNA and DPEN, cooled and solidified, is covered with a cladding (2) made of an SHG-inactive medium such as glass. When the mixed melt is injected into a glass capillary using capillary action and mechanical stimulation is applied to one end of the capillary, crystal alignment occurs in the length direction of the capillary, resulting in a highly oriented SHG element with high SHG activity. Figure 3 is a schematic diagram of a slab type optical wavelength conversion element as an SHG element. Similar to the optical fiber type, a molten mixture is injected onto the substrate, and during the process of solidification, mechanical stimulation is applied to the end of the element, which causes the crystal alignment to progress in the waveguide direction of the slab type waveguide, resulting in highly oriented Thus, an SHG element with high SHG activity can be obtained. In the present invention, substances with high crystal orientation include aromatic diaminoalkanes such as diphenylethylenediamine; cholesterol-based compounds such as cholesterol acetate and cholesterol benzoate; P
-Carboxyphenyl N-amyl carbonate, P-carboxyphenylethyl carbonate, and other carbonate esters.

発明の効果 本発明によれば 単独ではSHG不活性となる結晶構造
をとる物質でも配向性の高い物質との混合結晶化によっ
て高配向性を持った高いSHGを示す物質をえることが
可能となる。また その結晶化の特性から効率の良い光
波長変換素子の製造が可能となる。
Effects of the Invention According to the present invention, even if a substance has a crystalline structure that is SHG-inactive when used alone, it is possible to obtain a substance exhibiting high SHG with high orientation through mixed crystallization with a highly oriented substance. . Moreover, its crystallization characteristics make it possible to manufacture highly efficient optical wavelength conversion elements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明により製造されたS HG活性な組成物
のSHG強度を示ず阻 第2図は本発明により得られた
SHG活性な組成物を用いた光フアイバー型光波長変換
素子を示す斜視図 第3図はスラブ型光波長変換素子を
示す斜視図である。 代理人の氏名 弁理士 粟野重孝 ほか1名第1図 第3図 ズラフ゛製光沢長文秋稟チ J躊Wj九引零。 措(loo)         ppy=NモA/亦学
 (%)
FIG. 1 shows the SHG intensity of the SHG-active composition produced according to the present invention. FIG. 2 shows an optical fiber type optical wavelength conversion device using the SHG-active composition obtained according to the present invention. Perspective View FIG. 3 is a perspective view showing a slab type optical wavelength conversion element. Name of agent: Patent attorney Shigetaka Awano and one other person. Measure (loo) ppy=NmoA/亦学(%)

Claims (4)

【特許請求の範囲】[Claims] (1)2次の非線形光学特性を示す有機化合物と結晶配
向方向を任意に揃えられる有機化合物とを少なくとも2
種以上混合溶融し、冷却固化させることにより得られた
非線形光学材料。
(1) At least two organic compounds exhibiting second-order nonlinear optical properties and an organic compound whose crystal orientation can be arbitrarily aligned.
A nonlinear optical material obtained by mixing and melting two or more species, cooling and solidifying.
(2)2次の非線形光学特性を示す有機化合物が電子供
与性(ドナー性)及び電子吸引性(アクセプター性)の
置換基を備えたπ電子共役系有機化合物であることを特
徴とする請求項1に記載の非線形光学材料。
(2) A claim characterized in that the organic compound exhibiting second-order nonlinear optical properties is a π-electron conjugated organic compound having substituents with electron-donating properties (donor properties) and electron-withdrawing properties (acceptor properties). 1. The nonlinear optical material according to 1.
(3)任意に結晶配向を揃えることができる有機化合物
の1種がジフェニルエチレンジアミンであることを特徴
とする請求項1に記載の非線形光学材料。
(3) The nonlinear optical material according to claim 1, wherein one of the organic compounds whose crystal orientation can be arbitrarily aligned is diphenylethylenediamine.
(4)2次の非線形光学特性を示す有機化合物と任意に
結晶配向を揃えることができる有機化合物とを少なくと
も2種以上混合溶融し、冷却固化させる過程において、
電気的・熱的あるいは機械的刺激を与えることで結晶配
向方向を任意に揃えることを特徴とする請求項1に記載
の非線形光学材料を用いた非線形光学素子の製造方法。
(4) In the process of mixing and melting at least two organic compounds exhibiting second-order nonlinear optical properties and an organic compound whose crystal orientation can be arbitrarily aligned, and cooling and solidifying the mixture.
2. A method for manufacturing a nonlinear optical element using the nonlinear optical material according to claim 1, wherein the crystal orientation direction is arbitrarily aligned by applying electrical, thermal, or mechanical stimulation.
JP1122186A 1989-05-16 1989-05-16 Nonlinear optical material and manufacturing method thereof Expired - Lifetime JP2650418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1122186A JP2650418B2 (en) 1989-05-16 1989-05-16 Nonlinear optical material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1122186A JP2650418B2 (en) 1989-05-16 1989-05-16 Nonlinear optical material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH02301728A true JPH02301728A (en) 1990-12-13
JP2650418B2 JP2650418B2 (en) 1997-09-03

Family

ID=14829705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1122186A Expired - Lifetime JP2650418B2 (en) 1989-05-16 1989-05-16 Nonlinear optical material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2650418B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62161131A (en) * 1986-01-10 1987-07-17 Toray Ind Inc Organic nonlinear optical material and its preparation
JPS6413122A (en) * 1987-07-06 1989-01-18 Sumitomo Electric Industries Optical wavelength converting element

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62161131A (en) * 1986-01-10 1987-07-17 Toray Ind Inc Organic nonlinear optical material and its preparation
JPS6413122A (en) * 1987-07-06 1989-01-18 Sumitomo Electric Industries Optical wavelength converting element

Also Published As

Publication number Publication date
JP2650418B2 (en) 1997-09-03

Similar Documents

Publication Publication Date Title
US5009815A (en) Composition of nonlinear optical materials and a method for preparing the same
JPH02301728A (en) Nonlinear optical material and production thereof
JPH0351828A (en) Composition of nonlinear optical material and production thereof
JPS6321627A (en) Deuterium substituted organic nonlinear optical compound
JP2539840B2 (en) Non-linear optical element
DE69307189T2 (en) Nonlinear optical material, process for its production and wavelength converter
US5514807A (en) 5-amino-5-nitropyridinium halide crystal structure
JPH03274531A (en) Nonlinear optical material
JPS6326639A (en) Non-linear optical element
JPH0268527A (en) Nonlinear optical material
JPH02259605A (en) Production of optical waveguide consisting of organic single crystal
JPH03123324A (en) Nonlinear optical material
JPH01193815A (en) Second-order organic nonlinear optical material
JPH07117672B2 (en) Nonlinear optical organic material
JPH05319999A (en) Production of organic crystal thin film
JPS59133530A (en) Waveguide type nonlinear optical element and its manufacture
JP2713422B2 (en) Organic nonlinear optical material
DE69122354T2 (en) Using a nonlinear optical connection
JPH01101523A (en) Nonlinear optical material and nonlinear optical element formed by using said material
JPH04168430A (en) Organic nonlinear optical material and manufacture thereof
JPH05249517A (en) Organic nonlinear optical material
JPH02251824A (en) Nonlinear optical thin film and production thereof
JPH02228637A (en) Recording medium and recording method
JP2539849B2 (en) Nonlinear optical material and nonlinear optical element using the same
JPH04306623A (en) Manufacture of single crystal thin film wave guide