JPH02301584A - Electrolytic cell of alkali chloride - Google Patents

Electrolytic cell of alkali chloride

Info

Publication number
JPH02301584A
JPH02301584A JP1120479A JP12047989A JPH02301584A JP H02301584 A JPH02301584 A JP H02301584A JP 1120479 A JP1120479 A JP 1120479A JP 12047989 A JP12047989 A JP 12047989A JP H02301584 A JPH02301584 A JP H02301584A
Authority
JP
Japan
Prior art keywords
ion exchange
exchange membrane
electrolytic cell
depth
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1120479A
Other languages
Japanese (ja)
Inventor
Koji Suzuki
公二 鈴木
Yoshihiko Saito
義彦 斉藤
Yoshiaki Higuchi
義明 樋口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP1120479A priority Critical patent/JPH02301584A/en
Publication of JPH02301584A publication Critical patent/JPH02301584A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

PURPOSE:To electrolyze alkali chloride at high current efficiency and low voltage by utilizing an ion exchange membrane having surface roughness of specified value for the cathodic face thereof and comparting between an anode and a cathode by the ion exchange membrane wherein uneven work for specifying depth and a pitch has been applied. CONSTITUTION:An ion exchange membrane having <=0.005mm surface roughness is utilized for the cathodic surface thereof. Furthermore the interval between an anode and a cathode is comparted by the ion exchange membrane wherein uneven work having >=0.01mm depth has been applied at a pitch of 0.1-1mm or below. The ion exchange membrane having fine surface roughness of >=0.005mm preferably <=0.002mm depth is utilized for the anodic surface thereof. Furthermore as the uneven shape of the anodic surface of the ion exchange membrane, >=0.01mm preferably >=0.025mm depth is favorable in the effect for preventing sticking of gas. The uneven pitch having >=0.1mm especially >=0.25mm is preferable to stabilize current efficiency. The power cost occupied in the production of caustic soda is drastically reduced.

Description

【発明の詳細な説明】 [産業上の利用分野下 本発明は、塩化アルカリ電解槽、更に詳しくは、摺電圧
が低(、かつ高い電流効率が得られる塩化アルカリ電解
槽に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an alkaline chloride electrolytic cell, and more particularly to an alkaline chloride electrolytic cell that has a low sliding voltage (and high current efficiency).

[従来の技術] 。[Conventional technology].

従来、イオン交換膜を用いる塩化アルカリ電解槽は、電
解時に発生するガスが膜面に付着する事により、比較的
摺電圧の高い事が知られていた。この現象を防ぐ為に膜
のガス付着を防止する親水性の不活性な無機物を膜面に
塗布し、多孔質層を形成することにより低い摺電圧を得
ることが見出されている。例えば、特開昭56−720
22号公報、特開昭57−39185号公報に明らかに
されている。
Conventionally, alkaline chloride electrolyzers using ion exchange membranes have been known to have relatively high sliding voltages due to gases generated during electrolysis adhering to the membrane surface. In order to prevent this phenomenon, it has been found that a low sliding voltage can be obtained by coating the membrane surface with a hydrophilic inert inorganic substance that prevents gas adhesion to the membrane to form a porous layer. For example, JP-A-56-720
This is disclosed in Publication No. 22 and Japanese Patent Application Laid-Open No. 57-39185.

一方、特公昭60−45711号公報で述べられている
様に、イオン交換膜の陰極表面は、0.4〜1.3ミク
ロンの表面粗さにすることが高い電流効率を得る目的で
有効である。
On the other hand, as stated in Japanese Patent Publication No. 60-45711, it is effective to make the cathode surface of an ion exchange membrane have a surface roughness of 0.4 to 1.3 microns in order to obtain high current efficiency. be.

[発明の解決しようとする課題]  。[Problem to be solved by the invention].

特開昭56−72022号公報、特開昭57−3918
5号公報等に示されている従来技術は、ガス離脱を容易
にし、摺電圧を低下させる手法としては、大きな効果が
認められるが、その膜面への固着手法により以下の様な
問題点を有していた。
JP-A-56-72022, JP-A-57-3918
Although the conventional technology shown in Publication No. 5 and others is highly effective as a method for facilitating gas desorption and reducing the sliding voltage, it has the following problems due to its method of adhering to the film surface. had.

(1)膜面に加熱、加圧して無機物を埋め込んだ場合に
は、無機物による表面粗さが増大し、電流効率を低下さ
せる傾向がある。従来この問題に対し、粒子の大きさを
小さ目にする事、埋め込みの程度を必要以上に過大にし
ない事により、電流効率を低下させない様対応して来た
。しかしながら、無機多孔質層を埋め込まない表面粗さ
2ミクロン以下の表面を有する膜の電流効率に比べ、1
〜2%低(なる傾向があった。
(1) When an inorganic substance is embedded in the film surface by heating and pressurizing it, surface roughness due to the inorganic substance increases, which tends to reduce current efficiency. Conventionally, this problem has been dealt with by reducing the size of the particles and by not increasing the degree of embedding more than necessary, so as not to reduce the current efficiency. However, compared to the current efficiency of a membrane with a surface roughness of 2 microns or less without embedding an inorganic porous layer,
~2% lower (there was a tendency to become lower).

(2)膜面に膜に固着する様な糊と無機物の混合物を例
えば、スプレーにより噴霧し吹き付けた後、熱処理する
事により、塗布する手法がある。この場合、無機物の埋
め込みによる表面粗さの増大が防止出来、高い電流効率
が達成される。しかし膜材料と十分な接合力を有する膜
材料がない為、電解槽内で経時的な無機粒子の脱落が起
り、これに対応した経時的な摺電圧の上昇がある。
(2) There is a method of applying a mixture of a glue and an inorganic substance that will stick to the membrane onto the membrane surface by, for example, spraying the mixture and then heat-treating the mixture. In this case, increase in surface roughness due to embedding of inorganic substances can be prevented, and high current efficiency can be achieved. However, since there is no membrane material that has sufficient bonding strength with the membrane material, inorganic particles fall off over time within the electrolytic cell, and there is a corresponding increase in the sliding voltage over time.

本発明は、従来の技術で達成する事が困難であった低い
摺電圧と高い電流効率を両立させ、且つ経時的な上記特
性の安定化を達成させた塩化アルカリ電解槽の提供を目
的としたものである。
The present invention aims to provide an alkaline chloride electrolytic cell that achieves both low sliding voltage and high current efficiency, which have been difficult to achieve with conventional techniques, and also achieves stabilization of the above characteristics over time. It is something.

[課題を解決するための手段] 本発明は、前述の目的を達成させるべ(なされたもので
あり、膜面へのガス付着性が表面の親水性、疎水性によ
るものだけでなく、形状的因子、とりわけ凹凸形状によ
り差のあるという実験事実から案出されたものである。
[Means for Solving the Problems] The present invention has been made to achieve the above-mentioned object, and gas adhesion to the membrane surface is not only due to the hydrophilicity and hydrophobicity of the surface, but also due to the shape. This was devised based on the experimental fact that there are differences depending on factors, especially the shape of the unevenness.

すなわち、面粗さが0.005mm以下を有するイオン
交換膜の陰極面に、更に深さ0.01mm以上の凹凸加
工をピッチ0.1mm〜1mm以下でほどこされたイオ
ン交換膜で陽極間を区画したことを特徴とする塩化アル
カリ電解槽を提供するものである。
That is, on the cathode surface of the ion exchange membrane having a surface roughness of 0.005 mm or less, the anode is partitioned by an ion exchange membrane which is further textured with a depth of 0.01 mm or more at a pitch of 0.1 mm to 1 mm or less. The present invention provides an alkali chloride electrolytic cell characterized by the following characteristics.

本発明で使用されるイオン交換膜は、少なくとも陽極面
に深さ0.005mm以下、好ましくは0、002mm
以下の細かな凹凸の面粗さを有するものが使用される。
The ion exchange membrane used in the present invention has a depth of at least 0.005 mm or less on the anode surface, preferably 0.002 mm.
A material having a surface roughness of the following fine irregularities is used.

そして本発明では、更にイオン交換膜の陽極面に比較的
大きな凹凸形状が施こされる。本発明に用いられる凹凸
形状としては、深さ0.01mm以上、好ましくは深さ
0.025mm以上が、ガス付着防止効果から好ましい
。凹凸のピッチ(1つの凹から次の凹迄の距離)は1.
0.1mm以上、特には0.25mm以上が、電流効率
の安定的発現から好ましい。一方ガス付着防止の観点か
ら1mm以下である事が好ましい。
Further, in the present invention, relatively large irregularities are formed on the anode surface of the ion exchange membrane. The uneven shape used in the present invention preferably has a depth of 0.01 mm or more, preferably 0.025 mm or more from the viewpoint of preventing gas adhesion. The pitch of the concavities and convexities (distance from one concavity to the next) is 1.
A thickness of 0.1 mm or more, particularly 0.25 mm or more is preferable from the viewpoint of stable current efficiency. On the other hand, from the viewpoint of preventing gas adhesion, the thickness is preferably 1 mm or less.

大きな凹凸形状は連続したものであっても、独立したも
のであってもかまわない。なお、上記で凹凸形状の深さ
とは、画部分平均の高さと開部分平均の高さとの差を表
わす。
The large uneven shape may be continuous or independent. Note that the depth of the uneven shape described above represents the difference between the average height of the image area and the average height of the open area.

本発明に用いられるイオン交換膜の陽極面には、電極活
性のないガス及び液透過性の多孔質層を設ける事が好ま
しい。又、凹凸加工を施し、陰極面と同様にガス付着を
防止する方法もある。さらには、多孔質層を膜面に塗布
又は加圧加熱して転写してから、さらに凹凸加工を行う
方法もある。陽極面の処理としては、上記のいずれを施
してもよい。
It is preferable to provide a gas and liquid permeable porous layer with no electrode activity on the anode surface of the ion exchange membrane used in the present invention. Another method is to apply unevenness to the surface to prevent gas adhesion in the same way as the cathode surface. Furthermore, there is also a method in which the porous layer is transferred onto the membrane surface by coating or pressure heating, and then further roughening is performed. Any of the above treatments may be applied to the anode surface.

陽極側の凹凸加工の方法については、特開昭60−39
184に記載のものが好ましくは使用される。一方陰極
面への凹凸加工の手法については、例えば、網目状に網
んだ布、不織布等の加圧加上による転写、膜面に写しと
られる凹凸面と逆転した凹凸面を持った固体面の転写等
が考えられ、実際にも適用出来るが、形状の均一さから
、網目状の布の転写、固体面に彫刻等で機械加工された
凹凸形状の転写が好ましい。転写法としては、平板状プ
レス、ロール状プレス(圧延機)内にイオン交換膜と布
を同時に置いて加圧する方法。又プレス機の片面に凹凸
形状を有するロール又は平板を設置して加圧する方法が
ある。いずれの場合にも樹脂を流動させて容易に転写さ
れる様に加熱するのが一般的であり、通常80〜220
℃に設定される。80℃以下では、過剰な圧力が必要で
あり、220℃を超えると、転写させた布又は固体面の
離型が困難となり、より好ましくは、100℃〜180
℃である。
Regarding the method of uneven processing on the anode side, please refer to Japanese Patent Application Laid-Open No. 60-39.
184 are preferably used. On the other hand, methods for processing unevenness on the cathode surface include, for example, transfer by pressurizing a mesh-like cloth, non-woven fabric, etc., and a solid surface with an uneven surface that is the opposite of the uneven surface transferred to the membrane surface. Although it is possible to transfer the image to a solid surface, and it can be applied in practice, transfer of a mesh-like cloth or transfer of an uneven shape machined by engraving or the like onto a solid surface are preferable in view of the uniformity of the shape. The transfer method involves placing the ion exchange membrane and cloth at the same time in a flat press or roll press (rolling machine) and applying pressure. There is also a method of applying pressure by installing a roll or a flat plate having an uneven shape on one side of a press machine. In either case, it is common to heat the resin so that it flows and is easily transferred, usually at a temperature of 80 to 220
Set to ℃. Below 80°C, excessive pressure is required, and above 220°C, it becomes difficult to release the transferred cloth or solid surface, and more preferably between 100°C and 180°C.
It is ℃.

加圧力は温度条件により3〜200kg/cm2の範囲
内で実施されるが、これに限定されるものではない。
The pressing force is carried out within the range of 3 to 200 kg/cm2 depending on the temperature conditions, but is not limited thereto.

本発明に用いられるイオン交換膜の種類としては、スル
ホン酸基又はカルボン酸基を有するフルオロカーボンポ
リマーからなるものであって、単層でも良く、又、これ
らポリマーの複層膜であっても良い。又、補強としての
布又は多孔質ポリマー(例えばPTFE)が積層された
ものであってもかまわない。
The type of ion exchange membrane used in the present invention is one made of a fluorocarbon polymer having a sulfonic acid group or a carboxylic acid group, and may be a single layer or a multilayer membrane of these polymers. Further, it may be laminated with cloth or porous polymer (for example, PTFE) as reinforcement.

かくして得られるイオン交換膜を使用して本発明の塩化
アルカリ電解槽を構成する場合、か\るイオン交換膜を
陽極と陰極間に配置される。各種とイオン交換膜とは間
隔をおいて配置してもよいし、また接触して配置しても
よい。
When the ion exchange membrane thus obtained is used to construct the alkaline chloride electrolytic cell of the present invention, the ion exchange membrane is placed between the anode and the cathode. Each species and the ion exchange membrane may be arranged at intervals or may be arranged in contact with each other.

塩化アルカリ電解槽のこれらの構成は、既知の方法に従
って行なわれる。
These constructions of the alkaline chloride electrolyzer are carried out according to known methods.

[作用] 本発明において、凹凸がガス付着を防止する機構は必ず
しも明確ではないが、電解槽で発生するガスの大きさと
、そのガスの膜面への付着が、凹凸の深さとピッチのあ
る範囲内で、起り難くなる事によるか、付着したガスの
生長に伴って、泡が、凹凸ピッチよりも太き(なると、
点状に泡を支持する様になって膜面からの離脱が起り易
くなる所為のいずれかと考えられる。
[Function] In the present invention, the mechanism by which the unevenness prevents gas adhesion is not necessarily clear, but the size of the gas generated in the electrolytic cell and the adhesion of that gas to the membrane surface are determined by the depth and pitch of the unevenness. The bubbles become thicker than the pitch of the unevenness (as the bubbles become thicker than the pitch of the unevenness), or as the attached gas grows.
This is thought to be due to the fact that the bubbles become supported in a dotted manner, making them more likely to separate from the membrane surface.

[実施例コ 実施例1 テトラフルオロエチレンと CFz=CFO(CF−)3cOOcH1とを、アゾビ
スイソブチロニトリルを触媒としてトリクロロトリフル
オロエタン溶媒中で共重合してそれぞれイオン交換容量
1,25ミリ当量/g乾燥樹脂の共重合体とイオン交換
容量1.45ミリ当量の共重合体とを製造した。
[Example Example 1 Tetrafluoroethylene and CFz=CFO(CF-)3cOOcH1 were copolymerized in a trichlorotrifluoroethane solvent using azobisisobutyronitrile as a catalyst to obtain an ion exchange capacity of 1.25 mm, respectively. A copolymer with equivalent weight/g dry resin and an ion exchange capacity of 1.45 milliequivalents was prepared.

上記イオン交換容量1.25ミリ当量の厚さ20ミクロ
ンのフィルムとイオン交換容量1.45ミリ当量の厚さ
170μのフィルムとを金属ロールとゴムロールを有す
る加圧ロール型ラミネートプレスで積層し、2層積層膜
を得た。
The 20 micron thick film with an ion exchange capacity of 1.25 milliequivalents and the 170 μm thick film with an ion exchange capacity of 1.45 milliequivalents are laminated using a pressure roll type laminating press having a metal roll and a rubber roll. A laminated film was obtained.

一方、粒径1uの酸化ジルコニウム粉末10部、メチル
セルロール(2%水溶液の粘度2000cpsとなるも
の)0.4部、水19部、シクロへキサノン1部を含む
混合物を混練し、ベーストを得た。該ペーストをメツシ
ュ数200、厚さ75μのテトロン製のスクリーン、そ
の下に厚さ30μのスクリーンマスクを施した印刷板及
びポリウレタン製のスキージを用いて、上記積層膜のイ
オン交換容量1.45ミリ当量の面にスクリーン印刷し
た。膜面に得られた付着層を空気中で乾燥した。この膜
を前述と同じプレスで、粒子層をイオン交換膜に圧着さ
せた。これで得られた膜面には酸化ジルコニウムが膜面
1 cm2当り1.0mg付着し、厚み10μの多孔質
層が形成された。こうして得られたイオン交換膜のイオ
ン交換容量1.25ミリ当量の面側を、以下の方法で凹
凸化した。飽和ポリエステル樹脂製のフィラメント(商
品名テトロン)で、22De (De ;デニールは、
9km当りのフィラメントの重量を示す)X 90Me
 (Me ;メツシュは1インチ(2,54cm)当り
のフィラメントの本数を示す)に直角に網み込んだ布を
、前述のプレスで、イオン交換容量1.25ミリ当量の
面側のイオン交換膜の上へ載せ、共流して加熱加圧し、
布目を膜面に転写させた。こうして得られたイオン交換
膜の陰極表面には、第1図に示す様な凹凸が形成された
On the other hand, a mixture containing 10 parts of zirconium oxide powder with a particle size of 1U, 0.4 parts of methylcellulose (2% aqueous solution having a viscosity of 2000 cps), 19 parts of water, and 1 part of cyclohexanone was kneaded to obtain a base. Ta. The ion exchange capacity of the laminated membrane was 1.45 mm by applying the paste using a Tetron screen with a mesh number of 200 and a thickness of 75 microns, a printing plate with a screen mask of 30 microns thick underneath, and a polyurethane squeegee. The equivalent side was screen printed. The adhesive layer obtained on the membrane surface was dried in air. The particle layer was pressed onto the ion exchange membrane using the same press as described above. On the membrane surface thus obtained, 1.0 mg of zirconium oxide was deposited per 1 cm 2 of the membrane surface, forming a porous layer with a thickness of 10 μm. The surface side of the ion exchange membrane thus obtained having an ion exchange capacity of 1.25 milliequivalents was made uneven by the following method. A filament made of saturated polyester resin (trade name Tetron) has a denier of 22De (De;
Indicates the weight of filament per 9km)X 90Me
(Me; mesh indicates the number of filaments per inch (2.54 cm)) A cloth meshed at right angles to the ion exchange membrane with an ion exchange capacity of 1.25 meq. Place it on top of it, heat and pressurize it,
The texture was transferred to the membrane surface. Asperities as shown in FIG. 1 were formed on the cathode surface of the ion exchange membrane thus obtained.

電子顕微鏡の拡大観察によると、深さ20〜50ミクロ
ン、ピッチ250〜320ミクロンの連続した溝が形成
された。さらに、これらの凹凸面に沿って、より細かな
凹凸の深さは、2ミクロン以下となっていた。
According to magnified observation using an electron microscope, continuous grooves with a depth of 20 to 50 microns and a pitch of 250 to 320 microns were formed. Further, along these uneven surfaces, the depth of finer unevenness was 2 microns or less.

か\るイオン交換膜を70°C125重量%の水酸化ナ
トリウム水溶液に16時間浸漬して、交換基の加水分解
を行い、交換基をナトリウムイオン型とした。かくして
得られる膜の陽極側にチタンのパンチトメタル(短径4
 mm、長径8+nm)に、RuO□と酸化イリジウム
と酸化チタンの固溶体を被覆した低い塩素過電圧を有す
る陽極を、また陰極側にSO3304製パンチトメタル
(短径4mm、長径8 mm)を52重量%の苛性ソー
ダ水溶液中、150℃で52時間エツチング処理し、低
い水素過電圧を有するようにした陰極を、イオン交換膜
に加圧接触させ、陽極室に5規定の塩化ナトリウム水溶
液を、一方陰極室に水を供給しつつ、陽極室の塩化ナト
リウム濃度を3.5規定に、また陰極側の苛性曹達濃度
を35重量%に保ちつつ、90℃、30A/dm2の条
件で電解を行ったこの結果、電流効率は、97.0%、
電圧は2.95Vであった。
The ion exchange membrane was immersed in a 125% by weight aqueous sodium hydroxide solution at 70° C. for 16 hours to hydrolyze the exchange groups and convert them into sodium ion type. Titanium punched metal (minor diameter 4
mm, major axis 8 + nm), an anode with low chlorine overvoltage coated with a solid solution of RuO□, iridium oxide, and titanium oxide, and a 52% by weight punched metal made of SO3304 (minor axis 4 mm, major axis 8 mm) on the cathode side. The cathode, which has been etched in a caustic soda aqueous solution at 150°C for 52 hours to have a low hydrogen overvoltage, is brought into pressure contact with an ion exchange membrane. Electrolysis was carried out at 90°C and 30 A/dm2 while supplying the sodium chloride concentration in the anode chamber at 3.5N and the caustic soda concentration at the cathode side at 35% by weight.As a result, the current Efficiency is 97.0%,
The voltage was 2.95V.

[比較例1コ 実施例1に於いて、イオン交換容量1.25ミリ当量側
の面に凹凸加工処理しなかった他は、全く同じイオン交
換膜を使用し、且つ同じ電解槽で電解したところ、電流
効率97.5%であり、電圧は、3.10〜3.25V
であった。
[Comparative Example 1] The same ion exchange membrane as in Example 1 was used, except that the surface on the side with an ion exchange capacity of 1.25 meq. , the current efficiency is 97.5%, and the voltage is 3.10 to 3.25V.
Met.

[比較例2] 実施例1に於いて、陰極側に陽極側の酸化ジルコニウム
の多孔層の形成手法と同様の手法でα−炭化ケイ素粒子
(平均粒径0.3ミクロン)の多孔層を形成させた他は
、全く同じイオン交換膜を使用し、且つ同じ電解槽で電
解したところ、電流効率95.5%であり、電圧は2.
95Vであった。この膜の陰極側表面は第2図に示す如
く、3〜6ミクロンの密な凹凸がイオン交換容量1,2
5ミリ当量の膜面に形成されていた。
[Comparative Example 2] In Example 1, a porous layer of α-silicon carbide particles (average particle size 0.3 microns) was formed on the cathode side using the same method as the method for forming the porous layer of zirconium oxide on the anode side. When electrolysis was performed using the same ion exchange membrane and the same electrolytic cell, the current efficiency was 95.5% and the voltage was 2.
It was 95V. As shown in Figure 2, the surface of this membrane on the cathode side has dense irregularities of 3 to 6 microns with an ion exchange capacity of 1 to 2.
It was formed on the membrane surface of 5 milliequivalents.

[実施例2] 実施例1に於いて、陰極側の凹凸加工に使用した装置が
、45°に交互した台形状の独立した窪みを持ち、その
中心間ピッチが、212ミクロンである、金属製の直径
150mmのロールと、ゴム硬度80℃で、10mmの
ライニング厚みを持つゴムロールからなっており、各々
150℃、60℃の表面温度に加熱した後、イオン交換
膜のイオン交換容量1.25ミリ当量面を金属ロール側
に向けて凹凸加工をほどこした他は、全く同じイオン交
換膜を使用し、且つ同じ電解槽で電解したところ、電流
効率97,0%であり、電圧は、2.92Vであった。
[Example 2] In Example 1, the device used to process the unevenness on the cathode side was a metal machine having independent trapezoidal depressions alternated at 45° and having a center-to-center pitch of 212 microns. It consists of a roll with a diameter of 150 mm and a rubber roll with a rubber hardness of 80 °C and a lining thickness of 10 mm. After heating to a surface temperature of 150 °C and 60 °C, respectively, the ion exchange capacity of the ion exchange membrane is 1.25 mm. When the same ion exchange membrane was used, except that the equivalent surface was textured toward the metal roll side, and electrolysis was performed in the same electrolytic cell, the current efficiency was 97.0%, and the voltage was 2.92V. Met.

この膜の陰極側表面には、第3図に示す様な最大高低差
30〜40ミクロン、ピッチ200〜230ミクロンの
独立した凹凸が形成され、さらに細かな面に沿った凹凸
は1.3ミクロン以下であった。
On the cathode side surface of this film, independent irregularities with a maximum height difference of 30 to 40 microns and a pitch of 200 to 230 microns are formed as shown in Figure 3, and the irregularities along the finer surface are 1.3 microns. It was below.

[発明の効果] 本発明は、高い電流効率、低い電圧で長期間安定した性
能を示し、苛性曹達製造に占める電力費を大幅に削減す
る事が出来る。
[Effects of the Invention] The present invention exhibits stable performance over a long period of time with high current efficiency and low voltage, and can significantly reduce the electricity cost for producing caustic soda.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例1により得られたイオン交換膜の断面の
概略図であり、図中1はイオン交換容量1.25ミリ当
量/gのポリマ一層、2は同1.44ミリ当量/gのポ
リマ一層、3はスクリーン印刷により膜面に塗布された
酸化ジルコニウム粒子層を表わす。 第2図は、比較例2により得られたイオン交換膜の断面
の概略図であり、図中4は、スクリーン印刷により膜面
に塗布された炭化カーバイトの粒子層を表わす。 第3図は、実施例2により得られたイオン交換膜の断面
の概略図である。
FIG. 1 is a schematic cross-sectional view of the ion exchange membrane obtained in Example 1, where 1 is a single layer of polymer with an ion exchange capacity of 1.25 meq/g, and 2 is a polymer layer with an ion exchange capacity of 1.44 meq/g. 3 represents a layer of zirconium oxide particles applied to the membrane surface by screen printing. FIG. 2 is a schematic cross-sectional view of the ion exchange membrane obtained in Comparative Example 2, and 4 in the figure represents a particle layer of carbide carbide applied to the membrane surface by screen printing. FIG. 3 is a schematic cross-sectional view of the ion exchange membrane obtained in Example 2.

Claims (1)

【特許請求の範囲】 (1)面粗さが0.005mm以下の陰極面に深さ0.
01mm以上の凹凸加工をピッチ0.1mm以上1mm
以下でほどこされたイオン交換膜で陽陰極間を区画され
た事を特徴とする塩化アルカリ電解槽。 (2)凹凸加工が連続した形状を有する特許請求の範囲
(1)の電解槽。 (3)凹凸加工が独立した形状を有する特許請求の範囲
(1)の電解槽。 (4)イオン交換膜の陽極側に、電極活性のないガス及
び液透過性の多孔質層を有する特許請求の範囲(1)、
(2)又は(3)の電解槽。 (5)イオン交換膜の陽極側に、0.001〜0.1m
mの深さをもった凹凸加工がほどこされた特許請求の範
囲(1)、(2)、(3)又は(4)の電解槽。 (6)陰極側の凹凸加工が、編目状の布、凹凸される形
状の反転面を持つロール又は平板状の固体面又は、不織
布の転写により形成される特許請求の範囲(1)〜(5
)のいずれかの電解槽。 (7)イオン交換膜が、スルホン酸基又はカルボン酸基
を有するフルオロカーボンポリマー層の単層又は複層か
らなる特許請求の範囲 (1)〜(6)の電解槽。
[Claims] (1) A depth of 0.0 mm on the cathode surface with a surface roughness of 0.005 mm or less.
Concave and convex machining of 0.1mm or more with a pitch of 0.1mm or more and 1mm
An alkali chloride electrolytic cell characterized in that an anode and a cathode are separated by an ion exchange membrane as described below. (2) The electrolytic cell according to claim (1), which has a continuous uneven pattern. (3) The electrolytic cell according to claim (1), in which the uneven processing has an independent shape. (4) Claim (1) comprising a gas and liquid permeable porous layer with no electrode activity on the anode side of the ion exchange membrane;
(2) or (3) electrolytic cell. (5) 0.001 to 0.1 m on the anode side of the ion exchange membrane
The electrolytic cell according to claim (1), (2), (3) or (4), wherein the electrolytic cell is textured with a depth of m. (6) Claims (1) to (5) in which the unevenness on the cathode side is formed by transfer of a mesh-like cloth, a roll or flat solid surface having an inverted surface of the uneven shape, or a nonwoven fabric.
) any electrolytic cell. (7) The electrolytic cell according to any of claims (1) to (6), wherein the ion exchange membrane comprises a single or multilayer fluorocarbon polymer layer having a sulfonic acid group or a carboxylic acid group.
JP1120479A 1989-05-16 1989-05-16 Electrolytic cell of alkali chloride Pending JPH02301584A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1120479A JPH02301584A (en) 1989-05-16 1989-05-16 Electrolytic cell of alkali chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1120479A JPH02301584A (en) 1989-05-16 1989-05-16 Electrolytic cell of alkali chloride

Publications (1)

Publication Number Publication Date
JPH02301584A true JPH02301584A (en) 1990-12-13

Family

ID=14787194

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1120479A Pending JPH02301584A (en) 1989-05-16 1989-05-16 Electrolytic cell of alkali chloride

Country Status (1)

Country Link
JP (1) JPH02301584A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032098A1 (en) * 2005-09-14 2007-03-22 Asahi Kasei Chemicals Corporation Cation-exchange fluorinated membrane for electrolysis and process for producing the same
WO2021157639A1 (en) * 2020-02-06 2021-08-12 Agc株式会社 Ion exchange membrane with catalyst layer, ion exchange membrane, and electrolytic hydrogenation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007032098A1 (en) * 2005-09-14 2007-03-22 Asahi Kasei Chemicals Corporation Cation-exchange fluorinated membrane for electrolysis and process for producing the same
JP2007077453A (en) * 2005-09-14 2007-03-29 Asahi Kasei Chemicals Corp Fluorine based cation exchange membrane for electrolysis, and its production method
KR100990063B1 (en) * 2005-09-14 2010-10-26 아사히 가세이 케미칼즈 가부시키가이샤 Cation-exchange fluorinated membrane for electrolysis and process for producing the same
US7938941B2 (en) 2005-09-14 2011-05-10 Asahi Kasei Chemicals Corporation Cation-exchange fluorinated membrane for electrolysis and process for producing the same
JP4708133B2 (en) * 2005-09-14 2011-06-22 旭化成ケミカルズ株式会社 Fluorine cation exchange membrane for electrolysis and method for producing the same
WO2021157639A1 (en) * 2020-02-06 2021-08-12 Agc株式会社 Ion exchange membrane with catalyst layer, ion exchange membrane, and electrolytic hydrogenation device

Similar Documents

Publication Publication Date Title
US4909912A (en) Ion exchange membrane cell and electrolytic process using thereof
CA1193575A (en) Ion exchange membrane with roughened surface located close to electrode
JPH0212495B2 (en)
JPH0116630B2 (en)
JPS5827352B2 (en) Manufacturing method of ion exchange membrane with electrode layer attached
US4655886A (en) Ion exchange membrane cell and electrolysis with use thereof
US4496451A (en) Ion exchange membrane manufacture for electrolytic cell
EP0061080B1 (en) Ion exchange membrane electrolytic cell
CN1008190B (en) Method for producing alkali metal hydroxide and electrolytic cell useful for the method
JPH02301584A (en) Electrolytic cell of alkali chloride
US4738741A (en) Method for forming an improved membrane/electrode combination having interconnected roadways of catalytically active particles
US4561946A (en) Electrolytic cell for the electrolysis of an alkali metal chloride and process of using said cell
JPS6317913B2 (en)
EP0066102B1 (en) Ion exchange membrane cell and electrolysis with use thereof
CA1175781A (en) Forming fluorinated ion exchange polymer on removable thin layer over perforated electrode
US4889577A (en) Method for making an improved supported membrane/electrode structure combination wherein catalytically active particles are coated onto the membrane
EP0069772B1 (en) Sacrificial reinforcement in cation exchange membrane
JP7464313B1 (en) Electrode for chlor-alkali electrolysis using ion exchange membrane method, its manufacturing method and zero gap type ion exchange membrane electrolytic cell using same
JP2623571B2 (en) Method for producing alkali hydroxide
JPH06279600A (en) Formation of groove on the surface of cation exchange membrane
JPH0377880B2 (en)
JPS6255535B2 (en)
JPH0756079B2 (en) Method for producing alkali hydroxide
JPS5867878A (en) Preparation of alkali hydroxide
JPH06306193A (en) Grooving of cation exchange membrane