JPH02301503A - Method and apparatus for manufacturing metal powder - Google Patents
Method and apparatus for manufacturing metal powderInfo
- Publication number
- JPH02301503A JPH02301503A JP12144589A JP12144589A JPH02301503A JP H02301503 A JPH02301503 A JP H02301503A JP 12144589 A JP12144589 A JP 12144589A JP 12144589 A JP12144589 A JP 12144589A JP H02301503 A JPH02301503 A JP H02301503A
- Authority
- JP
- Japan
- Prior art keywords
- metal powder
- powder
- slurry
- water
- iron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000843 powder Substances 0.000 title claims abstract description 131
- 239000002184 metal Substances 0.000 title claims abstract description 117
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 117
- 238000000034 method Methods 0.000 title claims abstract description 29
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 21
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 62
- 239000002002 slurry Substances 0.000 claims abstract description 58
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 56
- 238000003756 stirring Methods 0.000 claims abstract description 49
- 238000006243 chemical reaction Methods 0.000 claims abstract description 41
- 238000001914 filtration Methods 0.000 claims abstract description 36
- 238000001035 drying Methods 0.000 claims abstract description 25
- 229910052742 iron Inorganic materials 0.000 claims abstract description 13
- 239000002253 acid Substances 0.000 claims abstract description 9
- 238000006073 displacement reaction Methods 0.000 claims description 16
- 239000012295 chemical reaction liquid Substances 0.000 claims description 12
- 238000010438 heat treatment Methods 0.000 claims description 11
- 239000012530 fluid Substances 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 10
- 239000007864 aqueous solution Substances 0.000 claims description 8
- 239000000706 filtrate Substances 0.000 claims description 7
- 239000012266 salt solution Substances 0.000 claims description 7
- 150000008043 acidic salts Chemical class 0.000 claims description 6
- 238000001816 cooling Methods 0.000 claims description 6
- 239000002826 coolant Substances 0.000 claims description 4
- 230000018044 dehydration Effects 0.000 claims description 4
- 238000006297 dehydration reaction Methods 0.000 claims description 4
- 238000007599 discharging Methods 0.000 claims description 3
- 229910001111 Fine metal Inorganic materials 0.000 abstract description 12
- 150000003839 salts Chemical class 0.000 abstract description 9
- 230000003647 oxidation Effects 0.000 abstract description 6
- 238000007254 oxidation reaction Methods 0.000 abstract description 6
- 239000011261 inert gas Substances 0.000 abstract description 4
- 239000010419 fine particle Substances 0.000 abstract description 2
- 230000001376 precipitating effect Effects 0.000 abstract description 2
- 239000002244 precipitate Substances 0.000 abstract 1
- 239000007788 liquid Substances 0.000 description 13
- 239000003638 chemical reducing agent Substances 0.000 description 8
- 238000004140 cleaning Methods 0.000 description 8
- 238000010908 decantation Methods 0.000 description 7
- 239000011268 mixed slurry Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 238000005406 washing Methods 0.000 description 7
- 150000002505 iron Chemical class 0.000 description 6
- 238000011085 pressure filtration Methods 0.000 description 6
- 239000011164 primary particle Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000012452 mother liquor Substances 0.000 description 5
- 239000002699 waste material Substances 0.000 description 5
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 3
- 150000001805 chlorine compounds Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000004663 powder metallurgy Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910017052 cobalt Inorganic materials 0.000 description 2
- 239000010941 cobalt Substances 0.000 description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000005868 electrolysis reaction Methods 0.000 description 2
- -1 iron ion Chemical class 0.000 description 2
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 238000004806 packaging method and process Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 206010011224 Cough Diseases 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- QCEUXSAXTBNJGO-UHFFFAOYSA-N [Ag].[Sn] Chemical compound [Ag].[Sn] QCEUXSAXTBNJGO-UHFFFAOYSA-N 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 210000000988 bone and bone Anatomy 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- VFNGKCDDZUSWLR-UHFFFAOYSA-N disulfuric acid Chemical class OS(=O)(=O)OS(O)(=O)=O VFNGKCDDZUSWLR-UHFFFAOYSA-N 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000012778 molding material Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 238000010408 sweeping Methods 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Landscapes
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、イオン化傾向を利用して鉄粉から各種粒状微
細金属粉末を製造する方法および装置に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method and apparatus for producing various granular fine metal powders from iron powder by utilizing its ionization tendency.
粉末冶金用金属微粉末の製造法は多々あるが。 There are many methods for producing fine metal powder for powder metallurgy.
粉末冶金用原料粉末の製造法として多く使用されている
のは、電解法、還元法および機械的粉砕法である。また
これらを組み合わせて粉末を製造している場合も多い。The most commonly used methods for producing raw material powder for powder metallurgy are electrolysis, reduction, and mechanical pulverization. Powders are also often produced by combining these.
還元法の一つとして、金属塩水溶液中に還元剤を入れ、
還元剤を?8解すると同時に該金属の粉末を析出させる
方法が知られている。この場合、還元剤は、有機還元剤
、無機還元剤、金属粉末等が使用される。As one of the reduction methods, a reducing agent is placed in a metal salt aqueous solution,
A reducing agent? A method is known in which powder of the metal is precipitated at the same time as the metal is dissolved. In this case, the reducing agent used is an organic reducing agent, an inorganic reducing agent, metal powder, or the like.
発明者らはすでに鉄粉を還元剤として、金属のイオン化
傾向を利用した粒状微細金属粉末の製造法および微細粒
状合金粉の製造法について、それぞれ特願昭62−29
3144号および特願昭62−297701号に提案し
た。その要旨とするところは1粒径が0.1〜3.0μ
m、比表面積2.0〜4.0m’/Hの鉄粉を湿式破砕
機(例えば三井三池化工機■製のアトライタ)に入れて
スラリー化した後2反応槽中の金属塩水溶液中にこれを
注いで反応させ、生した金属粉末と鉄塩の混合スラリー
を、撹拌、静置、デカンテーションを繰り返してスラリ
ー中の鉄イオン濃度がO,1g/L以下になるまで洗浄
を行い、その後スラリーをフィルタープレスで濾過し、
in型の真空乾燥機で乾燥して金属粉末を得るもので
ある。The inventors have already filed patent applications in 1982-29 for a method for manufacturing fine granular metal powder and a method for manufacturing fine granular alloy powder using iron powder as a reducing agent and utilizing the ionization tendency of metals.
No. 3144 and Japanese Patent Application No. 62-297701. The gist of this is that the particle size is 0.1 to 3.0μ.
After putting iron powder with a specific surface area of 2.0 to 4.0 m'/H into a wet crusher (e.g., Attritor manufactured by Mitsui Miike Kakoki ■) and making it into a slurry, it was added to a metal salt aqueous solution in a reaction tank. The resulting mixed slurry of metal powder and iron salt is washed by repeating stirring, standing, and decantation until the iron ion concentration in the slurry is below 0.1 g/L, and then the slurry is washed. filtered with a filter press,
Metal powder is obtained by drying with an in-type vacuum dryer.
すなわち、生した金X@粉末と鉄塩の混合スラリーから
金属粉末を採取するのに、デカンテーションによる混合
スラリーの母液置換を行って洗浄するという処決を採用
した。That is, in order to collect the metal powder from the mixed slurry of raw gold X@ powder and iron salt, a procedure was adopted in which the mixed slurry was replaced with mother liquor by decantation and then washed.
−aに、スラリー中の母液を置換し粉末を洗浄する操作
は、脱水機に形成されたケーキ層の一方の側から他方の
側に向けて所定量の洗浄水を通す方法がとられているの
が通常である。しかし01〜3.0μmといった微細な
金属粉末の場合、この方法を用いてもケーキ層内の洗浄
水流のかたよりや短絡などのため大量の水を用いてもな
お洗浄効果があまり上がらない。従って確実な洗浄をお
こなうためには、金属粉末と鉄塩との混合スラリーをa
縮脱水と希釈分散とを繰り返すのが最もよいと考えられ
る。ただし、あまり濃縮しすぎると再度金属粉末を均一
分散するのが難しいということがある。-a, the operation of replacing the mother liquor in the slurry and washing the powder is carried out by passing a predetermined amount of washing water from one side of the cake layer formed in the dehydrator to the other side. is normal. However, in the case of fine metal powders such as 01 to 3.0 .mu.m, even if this method is used, the cleaning effect will not be improved very much even if a large amount of water is used due to distortion of the cleaning water flow in the cake layer, short circuits, etc. Therefore, in order to perform reliable cleaning, it is necessary to use a mixed slurry of metal powder and iron salt.
It is considered best to repeat dehydration and dilution and dispersion. However, if it is too concentrated, it may be difficult to uniformly disperse the metal powder again.
一方、先のようにデカンテーションにより母液の置換洗
浄を行う場合、金属粉末の粒径が0.1〜3.0μmと
小さいと1沈降速度が遅いので滞留時間を一回当り30
〜40分と長くとる必要がある。従って母液中の鉄塩濃
度を0.1g/L以下にするには、洗浄時間が非常に長
くなる。また、ポンプにて上澄み液を除去する際にも一
緒に粉末を吸ってしまい回収率が低下するという問題点
があった。さらに該混合スラリーの′a縮脱水が不十分
な分だけ廃液量も多くなるという問題も付随した。On the other hand, when displacing the mother liquor by decantation as described above, if the particle size of the metal powder is as small as 0.1 to 3.0 μm, the sedimentation rate is slow, so the residence time is 30 μm per time.
It is necessary to take a long time of ~40 minutes. Therefore, in order to reduce the iron salt concentration in the mother liquor to 0.1 g/L or less, the washing time is extremely long. Furthermore, when the supernatant liquid is removed using a pump, powder is also sucked up, reducing the recovery rate. Furthermore, there was also the problem that the amount of waste liquid increased due to insufficient condensation and dehydration of the mixed slurry.
さらに、フィルタープレスを使用して金属粉末の脱水を
おこなう場合には、微細で比表面積が大きく酸化しやす
い金属粉末では、濾過後に濾布および濾板をその都度、
洗浄する必要があり、非常に時間がかかる。そして濾布
および濾板の枚数が多い分だけ洗浄による廃液量も多く
1金属粉末の付着による損失も多くなる。Furthermore, when dehydrating metal powder using a filter press, if the metal powder is fine and has a large specific surface area and is easily oxidized, the filter cloth and filter plate must be removed each time after filtration.
It needs to be cleaned and is very time consuming. As the number of filter cloths and filter plates increases, the amount of waste liquid due to cleaning increases, and the loss due to adhesion of metal powder also increases.
他方、このように洗浄された微細金属粉末の乾燥につい
ては、金属粉、末が熱的に敏感かつ不安定で経時変化に
よる品質劣化を招きやすいこと、さらには会合性液体で
ある水を金属粉末ケーキから短時間にかつ低温で除かな
ければならないこと等の理由によって、真空下で減圧乾
燥を行うことが必要である従来のいわゆる棚壁真空乾燥
機は異種の金属粉末を欄毎に分けて乾燥するには最適で
あるが、ケーキを静止状態で乾燥するものであるから、
ケーキが伝熱面から離れ、金属粉末個々の粒子間の熱抵
抗が太き(、伝熱効率が極端に悪いという問題があった
。そのため金属粉末の乾燥が終了するのに3〜4日を必
要とすることにもなった。On the other hand, when it comes to drying the fine metal powders that have been washed in this way, it is important to note that the metal powders are thermally sensitive and unstable, and are prone to quality deterioration due to changes over time. Due to reasons such as the need to remove the cake from the cake in a short time and at a low temperature, it is necessary to perform reduced pressure drying under vacuum. Conventional so-called shelf wall vacuum dryers separate different types of metal powder into columns. It is ideal for drying, but since it dries the cake in a stationary state,
There was a problem that the cake was separated from the heat transfer surface and the heat resistance between individual particles of the metal powder was large (and the heat transfer efficiency was extremely poor. Therefore, it took 3 to 4 days for the metal powder to dry. It was also decided that
さらに該乾燥機本体の加熱冷却機構は電熱加熱で自然冷
却のため室温まで冷却するのに1日を必要としていた。Furthermore, the heating and cooling mechanism of the main body of the dryer uses electric heating for natural cooling, so it takes one day to cool the dryer to room temperature.
また、大量の金属粉末を乾燥するには非常に広い面積が
必要であるという問題点のほか、棚壁真空乾燥機で乾燥
した金属粉末は塊状に凝集してしまうという問題があり
、ハンマーミル等で解砕するという後処理を必要とした
。その際。In addition to the problem that drying a large amount of metal powder requires a very large area, there is also the problem that metal powder dried in a shelf-wall vacuum dryer will aggregate into lumps, and hammer mills, etc. This required post-processing such as crushing. that time.
金属粉末の発熱による酸化があり、その対策としてハン
マーミル内部を窒素で置換して酸化を抑える等の対策が
必要であった。Oxidation occurs due to heat generation of metal powder, and countermeasures such as replacing the inside of the hammer mill with nitrogen to suppress oxidation were required.
このように2粒径が0.1〜3.0μmといった微粉の
還元鉄を還元剤として使用し、はぼ同径の微細な金属粉
末を金属塩溶液から置換析出させる微細金属粉末の製造
法においては、特にその母液からの濾過洗浄並びに乾燥
の点に多くの問題が残されており、残留鉄塩が少なくて
表面酸化度が低くかつ一次粒子に近い形態の良品質の粒
状微細金属粉末を安価に製造するには問題があった。In this method for producing fine metal powder, fine reduced iron powder with a particle diameter of 0.1 to 3.0 μm is used as a reducing agent, and fine metal powder of approximately the same diameter is precipitated by displacement from a metal salt solution. There are still many problems, especially in the filtration, washing and drying of the mother liquor, and it is difficult to obtain high-quality granular fine metal powders with low residual iron salts, low degree of surface oxidation, and a morphology similar to primary particles at low prices. There were problems in manufacturing.
本発明は1粒径が0.1〜3.0μmという微細な鉄粉
、特に、比表面積が2.0〜4.0 m ”/gの還元
鉄粉を還元剤として、鉄よりイオン化傾向の小さい金属
の酸性塩溶液から該金属の粉末を、使用した鉄粉とほぼ
同一の粒度分布をもつ粉末として置換析出させて微細金
属粉末を製造する以下の方法を提供するものである。The present invention uses fine iron powder with a grain size of 0.1 to 3.0 μm, especially reduced iron powder with a specific surface area of 2.0 to 4.0 m''/g, as a reducing agent, to reduce the ionization tendency of iron. The following method is provided for producing fine metal powder by displacement precipitating a small metal powder from an acidic salt solution as a powder having approximately the same particle size distribution as the iron powder used.
すなわち、鉄よりイオン化傾向の小さい金属の酸性塩水
溶液と鉄粉とを接触させて該金属の粉末を置換析出させ
る工程と、該工程で生成した反応後液を水と置換する工
程と、この工程で得られた金属粉末の水スラリーから脱
水する工程と1次いで脱水された金属粉末を減圧乾燥す
る゛工程とからなる金属粉末の製造法であって。That is, a step in which iron powder is brought into contact with an acidic salt aqueous solution of a metal that has a smaller ionization tendency than iron to precipitate the metal powder by displacement, a step in which the post-reaction liquid produced in this step is replaced with water, and this step 1. A method for producing metal powder, which comprises the steps of dehydrating the water slurry of metal powder obtained in step 1 and then drying the dehydrated metal powder under reduced pressure.
その一つの特徴は1反応後液を水と置換する前記の工程
を実施するにあたり、置換析出した金属粉末が懸濁した
反応容器内のスラリーを、この反応容器から撹拌翼付き
の加圧濾過室に連続的に圧送し、この加圧濾過室を通過
したスラリーを再び該反応容器に循環させると共に、該
加圧濾過室から濾液を分離除去し且つ水を該循環系に供
給するという操作を反応後液が水と実質的に置換される
まで実施すること、にあり。One of its features is 1. When carrying out the above-mentioned step of replacing the post-reaction liquid with water, the slurry in the reaction vessel in which the metal powder precipitated by displacement is suspended is transferred from the reaction vessel to a pressurized filtration chamber equipped with stirring blades. The slurry that has passed through the pressurized filtration chamber is circulated again into the reaction vessel, the filtrate is separated and removed from the pressurized filtration chamber, and water is supplied to the circulation system. The process should be carried out until the after-liquid is substantially replaced with water.
さらに一つの特徴は、金属粉末の水スラリーを脱水する
工程をバスケット式遠心分離機によって実施すること、
にあり。Another feature is that the process of dewatering the water slurry of metal powder is carried out using a basket centrifuge;
There is.
さらに今一つの特徴は、減圧乾燥する工程が。Another feature is the vacuum drying process.
温熱媒と冷熱媒とを切替可能に循環させるジャケットを
周面にもち且つ撹拌Rを備えた減圧容器内に該金属粉末
の脱水ケーキを装填したうえ、!A熱媒による加熱下で
且つ減圧撹拌下で実施し9次いで冷熱媒によって冷却す
る操作を実施すること。The dehydrated cake of metal powder is loaded into a vacuum container equipped with a stirring R and a jacket on the circumference that allows switching between heating and cooling media to circulate, and then! A. Perform the operation under heating with a heating medium and stirring under reduced pressure. 9. Then, perform the operation of cooling with a cooling medium.
にある。It is in.
そして、この方法を有利に実施する装置として本発明は
、鉄粉の水スラリーを得るための湿式破砕機と、鉄粉と
金属の酸性塩水?8液とを撹拌下で反応させるための反
応容器と、この反応容器内のスラリーを再び該反応容器
に戻すスラリー循環路に介装されたポンプおよび連続式
濾過装置と、該循環路内のスラリーを受け入れてこれを
脱水する遠心骨N機と、該遠心分離機で脱水された脱水
ケーキを減圧加熱下で乾燥する撹拌式減圧乾燥機とから
なる金属粉末の製造装置を提供するものである。As an apparatus for carrying out this method advantageously, the present invention includes a wet crusher for obtaining an aqueous slurry of iron powder, and an acid salt solution of iron powder and metal. 8 liquid under stirring, a pump and a continuous filtration device interposed in a slurry circulation path for returning the slurry in the reaction container to the reaction container, and a slurry in the circulation path. The present invention provides an apparatus for producing metal powder, which comprises a centrifugal bone N machine that receives and dehydrates the same, and an agitating vacuum dryer that dries the dehydrated cake dehydrated in the centrifuge under vacuum heating.
〔作用] 本発明の金属粉末の製造方法の一つの特徴は。[Effect] One feature of the method for producing metal powder of the present invention is as follows.
金属粉末と鉄塩との混合スラリーの洗浄8つまり反応後
液中に金属粉末が懸濁したスラリーから反応後液を分離
して水と置換する操作を連続加圧濾過洗浄によって行う
点にある。すなわち、置換析出した金属粉末が8濁した
反応容器内のスラリーを1 この反応容器から撹拌翼付
きの加圧濾過室に連続的に圧送し、この加圧濾過室を通
過したスラリーを再び該反応容器に循環させると共に、
該加圧濾過室では濾液を分離し、水を該循環系に供給す
るという操作を反応後液が水と実質的に置換されるまで
実施するのであるが、これによって、濃縮脱水と希釈分
散とが短時間に連続的に繰り返すことかで谷、既述のデ
カンテーション法での問題点が解決された。Washing of the mixed slurry of metal powder and iron salt 8, that is, the operation of separating the post-reaction liquid from the slurry in which the metal powder is suspended in the post-reaction liquid and replacing it with water, is carried out by continuous pressure filtration and washing. That is, the slurry in the reaction vessel, which is cloudy with the metal powder precipitated by displacement, is continuously pumped from this reaction vessel to a pressure filtration chamber equipped with a stirring blade, and the slurry that has passed through this pressure filtration chamber is returned to the reaction vessel. Along with circulating it in the container,
In the pressurized filtration chamber, the filtrate is separated and water is supplied to the circulation system until the post-reaction liquid is substantially replaced with water. The problem with the decantation method mentioned above was solved by repeating the process continuously in a short period of time.
普通の静止加圧濾過では濾過面に形成されるケーキ層は
濾過時間とともに成長するために、濾過速度はd!過最
に逆比例して減少し続けるし、またケーキが一定の厚さ
に達した後にそれを機械的に除去しなければならない。In ordinary static pressure filtration, the cake layer formed on the filtration surface grows with the filtration time, so the filtration rate is d! It continues to decrease inversely over time and must be removed mechanically after the cake reaches a certain thickness.
従ってこの方式では木質的に非連続濾過を余儀なくされ
ていた。本発明では9反応容器内の混合スラリーを撹拌
翼付きの加圧濾過室に連続的に供給して濾液を分離し、
そのスラリーを再び反応容器に戻すという循環を繰り返
すことによって (ただし、循環系に適量の水を添加し
続ける)、該加圧濾過室では濾過面に堆積する固体粒子
が掃流効果によって剥離し、スラリー中に再懸濁し、ス
ラリーはそこで濃縮作用をうけると共にケーキ層はその
厚さ以上には成長しない、従って高能率で定圧定速濾過
が進行し、かつデカンテーションのように滞留時間を取
る必要がないので短時間で洗浄が終了する。これによっ
てデカンテーションと静止加圧濾過を実施する場合に比
べて約115の時間でスラリーの洗浄が終了する。また
、加圧濾過室では濃縮されたスラリーは、そのチキソト
ロピーと撹拌作用とによって高濃度に至るまで流動性を
維持しながら反応槽にもどるため、再分散は非常に容易
であり、凝集などの問題も生じないし、デカンテーショ
ンの約2倍の濃縮ができるから廃液量も約半分となる。Therefore, this method necessitates discontinuous filtration due to wood quality. In the present invention, the mixed slurry in the 9 reaction vessels is continuously supplied to a pressurized filtration chamber equipped with stirring blades to separate the filtrate,
By repeating the cycle of returning the slurry to the reaction vessel (while continuing to add an appropriate amount of water to the circulation system), the solid particles deposited on the filtration surface in the pressurized filtration chamber are peeled off by the sweeping effect. The slurry is resuspended in the slurry, and the slurry is concentrated there, and the cake layer does not grow beyond that thickness.Therefore, high efficiency, constant pressure, constant speed filtration proceeds, and it is necessary to take residence time like in decantation. Since there is no water, cleaning can be completed in a short time. As a result, cleaning of the slurry is completed in approximately 115 hours compared to the case where decantation and static pressure filtration are performed. In addition, the concentrated slurry in the pressure filtration chamber returns to the reaction tank while maintaining fluidity until it reaches a high concentration due to its thixotropy and stirring action, so redispersion is very easy and problems such as aggregation occur. Since the concentration is about twice that of decantation, the amount of waste liquid is also about half.
本発明の金属粉末の製造方法の今一つの特徴は前工程で
得られた水中に金属粉末が懸濁したスラリーの脱水をバ
スケット式遠心分離(例えば、バスケット式竪型遠心分
離機)によって実施するものであり、従来のようにフィ
ルタープレス等は使用しない、これによって、a過面積
が少なく・なった分だけ付着による損失分が減少し、フ
ィルタープレスの場合に比べて、a械の洗浄時間もl/
10以下に短縮されこれに伴って洗浄廃液量も減少し。Another feature of the metal powder production method of the present invention is that the slurry in which metal powder is suspended in water obtained in the previous step is dehydrated by basket centrifugation (e.g., basket type vertical centrifuge). This method does not use a filter press, etc., as in the past.As a result, the amount of loss due to adhesion is reduced by the amount of excess area, and compared to the case of a filter press, the cleaning time of the machine is also reduced. /
10 or less, and the amount of cleaning waste liquid is also reduced accordingly.
また遠心分離機の遠心力により金属粉末ケーキの含水率
を10wt、%以上減少させ、約25wt、χにするこ
とができるようになり、従って全体的に製造コストを下
げることができる。Furthermore, the centrifugal force of the centrifuge can reduce the water content of the metal powder cake by more than 10 wt.% to about 25 wt.chi, thereby reducing the overall manufacturing cost.
本発明の金属粉末の製造方法の今一つの特徴は従来の棚
型真空乾燥機をFft拌式減圧乾燥機に代えたことにあ
るが、これによって乾燥時間が非常に短くなり、かつ乾
燥後の金属粉末の形態が一次粒子(使用した鉄粉の形態
)に近くなった。これは撹拌式減圧乾燥機の内部底面に
設けた撹拌翼の自転により常に金属粉末が混合され、容
器内湿分を均一化しながら伝熱面を更新するため、効率
のよい熱伝達が行われているためである。例えば重量7
8kg、含水率30%の金属粉末ケーキを乾燥する場合
、乾燥機の冷却時間を含めて約7時間で乾燥が終了する
。従来の硼型真空乾燥機では3〜4日間を必要としてい
たことを考えると非常に早い。また乾燥中の金属粉末ケ
ーキ中の水分は、濾過袋により同伴金属を除去した後、
水分のみコンデンサーにて濃縮液として回収できるので
、たとえ撹拌によって水分と共に微細な金属粉末が舞い
上がったとしても真空ポンプに到達してポンプを痛める
ようなことは防止できる。また、撹拌翼に加えてスクリ
ュー回転式の破砕機も取付けておくことができ、たとえ
乾燥途中に金属粉末が塊状に凝集しても、破砕機により
凝集を崩すことができる。これによって乾燥時間を短縮
でき且つ乾燥終了時に混合しながら破砕機を稼動させれ
ば、はぼ−成粒子の状態の金属粉末が採取できる。従っ
てハンマーミル等であらためて金属粉末の凝集塊を解砕
する必要がなくなり、解砕時の発熱によって生じる金属
粉末の酸化による品質低下を防止できるだけでなく、解
砕工程の省略による作業時間の短縮が可能となる。さら
に撹拌翼を利用して粉末の排出操作が簡単にでき、また
梱包も容易となる。Another feature of the metal powder manufacturing method of the present invention is that the conventional shelf-type vacuum dryer is replaced with an Fft stirring type vacuum dryer, which greatly shortens the drying time and The shape of the powder became close to that of primary particles (the shape of the iron powder used). This is because the metal powder is constantly mixed by the rotation of the agitating blades installed on the internal bottom of the agitating vacuum dryer, and the heat transfer surface is updated while equalizing the moisture inside the container, resulting in efficient heat transfer. This is because there is. For example, weight 7
When drying a metal powder cake weighing 8 kg and having a moisture content of 30%, drying is completed in about 7 hours, including the cooling time of the dryer. This is extremely fast considering that conventional vacuum dryers require 3 to 4 days. In addition, water in the metal powder cake during drying is removed after removing the entrained metal with a filter bag.
Since only the water can be recovered as a concentrated liquid in the condenser, even if fine metal powder is thrown up along with the water due to stirring, it can be prevented from reaching the vacuum pump and damaging the pump. In addition to the stirring blades, a screw-rotating type crusher can also be installed, so that even if the metal powder aggregates into lumps during drying, the crusher can break the agglomeration. This can shorten the drying time, and if the crusher is operated while mixing at the end of drying, metal powder in the form of coarse particles can be collected. Therefore, there is no need to crush metal powder agglomerates again using a hammer mill, etc., which not only prevents quality deterioration due to oxidation of metal powder caused by heat generated during crushing, but also reduces work time by omitting the crushing process. It becomes possible. Furthermore, the powder can be easily discharged by using a stirring blade, and packaging is also facilitated.
このようにして本発明によれば7粒状微細金属粉末を短
時間で経済的に製造でき、その品質は一次粒子に近く、
酸化度の低い良好な粉末となる。In this way, according to the present invention, 7-grain fine metal powder can be produced economically in a short time, and its quality is close to that of primary particles.
It becomes a good powder with a low degree of oxidation.
なお1本発明によって製造できる金属粉末は、鉄よりイ
オン化傾向の小さい金属であればその種類を問わないが
、具体的には、銅、ニッケル、コバルト、鉛、錫1銀等
の粉末を製造するのに有利である。また鉄よりイオン化
傾向の小さい複数種類の金属の酸性塩を含む複合液を反
応液に使用すれば該金属の合金粉末も製造できる。Note that the metal powder that can be produced according to the present invention may be of any type as long as it has a smaller ionization tendency than iron, but specifically, powders of copper, nickel, cobalt, lead, tin silver, etc. are produced. It is advantageous for Furthermore, if a composite solution containing acid salts of multiple types of metals having a smaller ionization tendency than iron is used as the reaction solution, alloy powders of the metals can also be produced.
第1図に1本発明を実施する装置例を系統的に示した。 FIG. 1 systematically shows an example of an apparatus for implementing the present invention.
その装置全体は1図示のように、鉄粉の水スラリーを得
るための湿式破砕機lと、鉄粉と金属の酸性塩水溶液と
を撹拌下で反応させるための反応容器2と、この反応容
器2内のスラリーを再び該反応容器2に戻すスラリー循
環路3に介装されたポンプ5および連続式濾過装置6と
、循環路3内のスラリーを受け入れてこれを脱水する遠
心分離機7と、遠心分離機7で脱水された脱水ケーキを
減圧加熱下で乾燥する撹拌式減圧乾燥機8とからなって
いる。As shown in the figure, the entire device consists of a wet crusher l for obtaining an aqueous slurry of iron powder, a reaction vessel 2 for reacting the iron powder with an aqueous metal acid salt solution under stirring, and this reaction vessel. a pump 5 and a continuous filtration device 6 installed in the slurry circulation path 3 for returning the slurry in the reaction vessel 2 to the reaction vessel 2; a centrifugal separator 7 for receiving the slurry in the circulation path 3 and dewatering it; It consists of a stirring type vacuum dryer 8 that dries the dehydrated cake dehydrated in the centrifugal separator 7 under vacuum heating.
湿式破砕機lは、破砕翼10をもつ通常の凝集物破砕機
であり、この中に水と鉄粉を入れて掻き混ぜることによ
って、鉄粉−水スラリーを得る。このスラリーは反応容
器2にスラリーポンプ11によって搬送される。Y!式
破砕機1では、鉄粉の濃度が約50%のスラリーとする
のがよい。The wet crusher 1 is a normal aggregate crusher having crushing blades 10, and water and iron powder are put therein and stirred to obtain an iron powder-water slurry. This slurry is transported to the reaction vessel 2 by a slurry pump 11. Y! In the type crusher 1, it is preferable that the slurry has an iron powder concentration of about 50%.
反応容器2は、撹拌翼12を備えた通常の反応容器であ
るが、底部にスラリー導出口13を備えると共に、前記
の湿式破砕機1からの鉄粉スラリー供給口14.水供給
口15.およびスラリー戻り口16を上部に備えている
。The reaction vessel 2 is a normal reaction vessel equipped with a stirring blade 12, and is equipped with a slurry outlet 13 at the bottom, and an iron powder slurry supply port 14 from the wet crusher 1 described above. Water supply port 15. and a slurry return port 16 at the top.
この反応容器2に、おいて、鉄よりイオン化傾向の小さ
い金属の酸性塩水溶液と鉄粉とを接触させて当該金属の
粉末を置換析出させる工程を実施する。ここで、該金属
の酸性塩水溶液とは2例えば銅、ニッケル、コバルト、
鉛、錫、銀等の鉄よりイオン化傾向の小さい金属の塩化
物2硫酸塩、硝酸塩等を意味し、塩化物が好ましい、こ
の金属イオン含有溶液を作るには、市販の塩化物をその
まま水に溶解する。酸化物を塩酸で溶解する。塩酸水溶
液中で陽極電解して溶解する等の方法が適する。一方、
使用する鉄粉は5粒径が0.1〜3.0 tt m程度
の微細な還元鉄粉を使用するのがよい。かような微細な
鉄粉を分散させるには、前記の湿式破砕Jalの使用が
好適である。このような微細な鉄粉を十分に分散させた
場合には、該金属の酸性塩水溶液から鉄粉当量骨の金属
粉末が置換析出し。In this reaction vessel 2, a step is carried out in which iron powder is brought into contact with an aqueous acidic salt solution of a metal having a smaller ionization tendency than iron to precipitate the metal powder by displacement. Here, the acid salt aqueous solution of the metal is 2, for example, copper, nickel, cobalt,
This refers to chlorides, disulfates, nitrates, etc. of metals that have a smaller ionization tendency than iron, such as lead, tin, and silver, and chlorides are preferable.To make this metal ion-containing solution, add commercially available chlorides as they are to water. dissolve. Dissolve the oxide with hydrochloric acid. A suitable method is dissolution by anodic electrolysis in an aqueous hydrochloric acid solution. on the other hand,
The iron powder used is preferably fine reduced iron powder with a grain size of about 0.1 to 3.0 ttm. In order to disperse such fine iron powder, it is suitable to use the above-mentioned wet crushing Jal. When such fine iron powder is sufficiently dispersed, metal powder equivalent to the iron powder is precipitated by displacement from an aqueous solution of an acid salt of the metal.
鉄粉の全ては溶解して第一鉄塩水溶液となり、析出金属
粉末中に鉄が核として残存するようなことは避けられる
。この金属粉末の置換析出反応において、温度が高いほ
ど、酸性塩濃度が薄いほど。All of the iron powder is dissolved into an aqueous ferrous salt solution, and iron remains as a nucleus in the precipitated metal powder. In this displacement precipitation reaction of metal powder, the higher the temperature, the lower the acid salt concentration.
鉄粉の添加速度が速いほど、また撹拌が強いほどより微
細な金属粉末が置換析出する傾向があるが使用する鉄粉
の一次粒径が大きいほど析出する金属粉末の粒径も大き
くなり且つ析出速度も遅くなる。このようなことから5
粒径が0.1〜3.0μmで比表面積が2.0〜4.0
m ”/gの還元鉄粉を使用するのが有利となる。こ
の場合1反応は一般に10〜15分間で終了する。The faster the iron powder addition rate and the stronger the stirring, the more fine the metal powder tends to precipitate by displacement, but the larger the primary particle size of the iron powder used, the larger the particle size of the precipitated metal powder becomes. The speed will also be slower. Because of this, 5
Particle size is 0.1-3.0μm and specific surface area is 2.0-4.0
It is advantageous to use reduced iron powder of m''/g, in which case one reaction is generally completed in 10 to 15 minutes.
この置換析出反応が終了したら1次にその反応物である
金属粉末が液中に懸濁したスラリー中の反応後液(第一
鉄塩が溶解し更に未反応金属塩が溶解した水/8液)を
純粋な水と置換する工程を実施する。これは、循環路3
のポンプを駆動し2反応容器内の懸濁液を連続式濾過装
置6に連続的に圧送し、再び反応容器2に戻すという懸
濁液の強制Wi環によって実施する。After this displacement precipitation reaction is completed, the first step is to add the post-reaction solution in the slurry in which the metal powder, which is the reactant, is suspended in the solution (8 liquids of water in which the ferrous salt is dissolved and further unreacted metal salts are dissolved). ) is replaced with pure water. This is circulation path 3
This is carried out by a forced Wi cycle of the suspension in which a pump is driven to continuously pump the suspension in the two reaction vessels to the continuous filtration device 6 and return it to the reaction vessel 2 again.
これに使用する連続式濾過装置6は、中心に回転軸18
をもち且つ一端に流体導入口19を他端に流体導出口2
0をもつ筒状容器21内に、?3i数個の濾過板22が
軸とは直交する方向に間隙を開けて配置され、この濾過
板22の間隙で旋回するように撹拌翼23が該回転軸1
8に取付けられた装置である。図示の例では、各ill
過仮22は中空ディスク形状を有している。すなわち1
回転軸1日の外径よりも十分に大きな内径をもつ開口
を中央部に有すると共に1内部にd#液を浸出させるた
めの内部空間をもった中空円盤状となっており、この中
空円盤形状の全体が濾材によって構成され、その外周は
筒状容器21の内面に気密に接合されている。また、各
撹拌翼23は、各中空円盤形状の濾過板22の間隙中央
部で回転する円盤からなり1その中心部は回転軸18に
固設されると共にその半径は筒状容器21の内径よりも
小さくしである。この構成によって、一端の流体導入口
19から導入されるスラリーは、撹拌翼23に突き当た
り、撹拌翼23と濾過板22との間をジグザグにしかも
撹拌R23の回転によって抵抗を受けながら他方の流体
導出口20に向けて移動することになり、!過板22に
対して流動下で大きな押圧を与えられる。したがって、
il!過板22の内部空間にlil液が濾別されると共
にlIt過板22の外表面に集積する金属粉末は撹拌翼
23によってその層厚が 、厚くなることが抑制されな
がら、剥離した分は再度流体となって流体導出口20に
向かって流れることになる。そのさい、濾液が分離され
ただけスラリー濃度は高くなるが、ポンプ5によって付
与される液圧並びに撹拌翼23の回転動力によって1強
制的に移動がなされる。このような加圧連続濾過が実現
できるように耐圧構造に装置が構成されており、ポンプ
5の吐出圧力は2〜5 kg/cm”のものを使用する
。The continuous filtration device 6 used for this has a rotating shaft 18 at the center.
and a fluid inlet 19 at one end and a fluid outlet 2 at the other end.
In the cylindrical container 21 containing 0, ? 3i Several filter plates 22 are arranged with gaps in the direction orthogonal to the axis, and the stirring blades 23 are rotated in the gaps between the filter plates 22.
This is the device attached to 8. In the illustrated example, each ill
The temporary 22 has a hollow disk shape. i.e. 1
It has a hollow disk shape with an opening in the center that has an inner diameter sufficiently larger than the outer diameter of the rotating shaft in one day, and an internal space for leaching the d# liquid inside. is entirely composed of a filter medium, and its outer periphery is hermetically joined to the inner surface of the cylindrical container 21. In addition, each stirring blade 23 is a disk that rotates in the center of the gap between each hollow disk-shaped filter plate 22, and its center is fixed to the rotating shaft 18, and its radius is larger than the inner diameter of the cylindrical container 21. It is also small. With this configuration, the slurry introduced from the fluid inlet port 19 at one end hits the stirring blade 23, moves in a zigzag pattern between the stirring blade 23 and the filter plate 22, and receives resistance due to the rotation of the stirring R23, while the other fluid is introduced. We will be moving towards exit 20! A large pressure is applied to the overplate 22 under flowing conditions. therefore,
Il! While the lil liquid is filtered into the internal space of the filter plate 22, the metal powder that accumulates on the outer surface of the filter plate 22 is prevented from increasing in layer thickness by the stirring blades 23, and the peeled part is recycled again. The liquid becomes a fluid and flows toward the fluid outlet 20. At this time, the slurry concentration increases as the filtrate is separated, but the slurry is forcibly moved by the hydraulic pressure applied by the pump 5 and the rotational power of the stirring blades 23. The apparatus is constructed with a pressure-resistant structure so that such pressurized continuous filtration can be realized, and the pump 5 used has a discharge pressure of 2 to 5 kg/cm''.
濾過板22の内部に濾別された濾液は廃液として系外に
連続排出され、この連続式濾過装置6を通過して濃度の
高(なったスラリーは再び反応容器2に戻される。この
wI環を続行すると暫時スラリー濃度が高くなり、Wi
環に支障を来すので、適宜系内に水を導入する。これは
反応容器2の水供給口15から容器2内に水を供給する
ことによって行う。このようにして1lte、を系外に
排出しつつ、水を系内に導入するという液の置換を続行
しながら反応容器2と濾過装置6との間でスラリーの循
環を続けると、やがてスラリー中の反応後液はほぼ水と
置換されることになる。実際上は、この連続循環操作を
約1時間程度実施することにより、最終的に鉄塩濃度が
0.1g/L以下、p)15.0以上、好ましくは中性
の水とすることができる。The filtrate filtered inside the filter plate 22 is continuously discharged outside the system as waste liquid, passes through this continuous filtration device 6, and the slurry that has become highly concentrated is returned to the reaction vessel 2. If you continue, the slurry concentration will increase for a while, and Wi
Water may be introduced into the system as appropriate to prevent damage to the ring. This is done by supplying water into the reaction vessel 2 from the water supply port 15 of the reaction vessel 2. In this way, as the slurry continues to circulate between the reaction vessel 2 and the filtration device 6 while discharging 1lte out of the system and introducing water into the system, the slurry gradually becomes The post-reaction liquid is almost replaced with water. In practice, by carrying out this continuous circulation operation for about one hour, it is possible to finally obtain water with an iron salt concentration of 0.1 g/L or less, p) 15.0 or more, and preferably neutral water. .
この反応後液と水との置換が完了し、金属粉末の洗浄が
十分に達成されたなら1次にI#環路3の途中から分岐
させた分岐路25から咳金rI4#9J末の水スラリー
を抜き出す、これは2分岐路25に介装した弁26を開
き1分岐路25に介装したポンプ4の駆動によって行う
。そして3 この分岐路25から流出する金属わ)末の
水スラリーを遠心分離機7に供給する。この遠心分離機
7によって脱水工程を実施する。After the replacement of the post-reaction liquid with water has been completed and the metal powder has been sufficiently washed, the first step is to add water from the powder rI4#9J to the branch path 25 branched from the middle of the I# ring path 3. The slurry is extracted by opening the valve 26 installed in the two branch passages 25 and driving the pump 4 installed in the first branch passage 25. 3) The water slurry of metal powder flowing out from this branching path 25 is supplied to the centrifuge 7. This centrifugal separator 7 performs a dehydration process.
遠心分離67はバスケット式竪型遠心分離機であり、垂
直軸28によって軸を垂直にして回転する上部開口のバ
スケット27(濾材から構成されている)を用いたもの
である。このバスケット27内に前記の金属粉末の水ス
ラリーを投入し、約400Gの遠心力を付与することに
よって、含水率25〜30%の金属粉末ケーキにまで簡
単に脱水できる。この脱水ケーキを1次に撹拌式減圧乾
燥機8に移して、ここで、減圧乾燥する工程を実施する
。The centrifugal separator 67 is a basket-type vertical centrifuge, and uses a basket 27 (made of a filter medium) with an opening at the top that rotates around a vertical shaft 28 . By putting the aqueous slurry of metal powder into this basket 27 and applying a centrifugal force of about 400 G, it can be easily dehydrated to a metal powder cake with a moisture content of 25 to 30%. This dehydrated cake is first transferred to a stirring type vacuum dryer 8, where a step of drying under vacuum is carried out.
この撹拌式減圧乾燥機8は1周面に熱媒を通すジャケッ
ト30を有する竪型の円筒状容器31内に撹拌翼32が
備えられると共に、真空ポンプ33に通ずる排気口34
に濾過袋35が取付けられ、且つ容器内を不活性ガスで
W IAするためのガス導入口36と。This stirring type vacuum dryer 8 is equipped with stirring blades 32 in a vertical cylindrical container 31 having a jacket 30 on one circumference for passing a heat medium, and an exhaust port 34 communicating with a vacuum pump 33.
A filtration bag 35 is attached to the container, and a gas inlet 36 is provided for injecting inert gas into the container.
周囲雰囲気と遮断下で粉体を容器外に排出するための粉
体排出口37が設けられたものである。ジャゲント30
には、乾燥処理中は温熱媒例えば温水または水茎気が導
入され、乾燥処理終了後は冷熱媒例えば冷水が導入され
る。前工程を終了した金属粉末ケーキの投入は、ジャケ
ット30”をもつ蓋体42を開いて行い1M体42を閉
じてから、真空ポンプ33を駆動して排気し1 温熱媒
を該ジャケント30および30°に流して容器内を昇温
し、撹拌翼32を回転させて乾燥処理を行う。この減圧
、昇温、撹拌の操作によって該ケーキは解扮されつつ良
好に乾燥する。その際、金属粉末ケーキ中の水分は排気
中に移行するが2 この排気中には濾過袋35で同伴金
属が除去され、 FJF、出された排気中の水分はコン
デンサー39によって凝縮液として回収される。A powder discharge port 37 is provided for discharging the powder out of the container while being isolated from the surrounding atmosphere. Jagento 30
A heating medium such as hot water or water is introduced during the drying process, and a cooling medium such as cold water is introduced after the drying process is completed. The metal powder cake that has completed the previous process is introduced by opening the lid body 42 with a jacket 30'', and after closing the 1M body 42, the vacuum pump 33 is driven to exhaust the heat medium. ° to raise the temperature inside the container, and rotate the stirring blade 32 to dry the cake.By this operation of reducing the pressure, increasing the temperature, and stirring, the cake is dissolved and dried well.At this time, the metal powder The moisture in the cake is transferred to the exhaust gas, and the entrained metal is removed from this exhaust gas by a filter bag 35, and the moisture in the exhausted exhaust gas is recovered as a condensate by a condenser 39.
これによって微細金属粉末や水分による真空ポンプの故
障が防止される。This prevents failure of the vacuum pump due to fine metal powder or moisture.
またこの減圧乾燥機には、スクリュー回転式破砕8!4
0が取付けてあり、その破砕羽141を適当に下降させ
ることにより、たとえ撹拌翼32による撹拌途中に金属
粉末が塊状に凝集しても、その撹拌中に凝集塊が咳羽根
41の先端に接触してこれが崩れ、良好な分散状態が維
持される。こ゛れによって乾燥時間が長くなったり、凝
集塊が大きくなるのが防止できる。乾燥終了時点ではジ
ャケン)30゜30′に流す熱媒を水に切換えて容器全
体を冷却し。In addition, this vacuum dryer has a screw rotary crusher with 8!4
0 is attached, and by lowering the crushing blade 141 appropriately, even if the metal powder aggregates into lumps during stirring by the stirring blade 32, the agglomerated lumps will not come into contact with the tip of the coughing blade 41 during the stirring. This is then broken down and a good dispersion state is maintained. This can prevent the drying time from becoming longer and the agglomerates from becoming larger. At the end of drying, the heating medium flowing at 30°30' was changed to water to cool the entire container.
短時間に金属粉末を常温まで冷却し1次に不活性ガス導
入口36から例えば窒素ガスを容器内に導入し、常圧に
戻したのち撹拌翼32の回転を続行させて金属粉末を掻
き混ぜながら破砕機40も同時に所定時間 (例えば約
0.5〜1.0時間)駆動させる。The metal powder is cooled to room temperature in a short period of time, and then nitrogen gas, for example, is introduced into the container from the inert gas inlet 36, and after returning to normal pressure, the stirring blade 32 continues to rotate to stir the metal powder. At the same time, the crusher 40 is also driven for a predetermined time (for example, about 0.5 to 1.0 hours).
これによって反応容器2で置換析出した一次粒子の状態
(使用した鉄粉の形態に近い微細粒子)の金属↑す)末
を得ることができる。そして、この乾燥機からの金属粉
末の排出は、撹拌翼32を逆回転にして粉末排出口37
を全開にすれば自然に排出ができ9例えば包装袋に投入
することによって、処理が完了する。As a result, it is possible to obtain a metal powder in the state of primary particles (fine particles close to the form of the iron powder used) which is precipitated by displacement in the reaction vessel 2. The metal powder is discharged from the dryer by rotating the stirring blades 32 in the opposite direction through the powder discharge port 37.
If the container is fully opened, it can be discharged naturally, and the treatment can be completed by putting it into a packaging bag, for example.
以上のようにして本発明によれば、極めて微細な粒状の
金属粉末が一次粒子形態で且つ酸化度の低い状態で製造
でき、置換析出後の濾過−洗浄一説水一乾燥という一連
の工程がほぼ自動化できると共に処理時間の短縮と操作
の簡略化により品質の安定した金属粉末を経済的に製造
できる。これにより1通常の粉末冶金分野のみならず、
導電材料、多孔質電極材、触媒、磁性材f−1.射出成
形材料などの新しい分野への貢献がこれまで以上に朋待
できる。As described above, according to the present invention, extremely fine granular metal powder can be produced in the form of primary particles and in a state with a low degree of oxidation, and the series of steps of filtration, washing, water, and drying after displacement precipitation can be approximately performed. It can be automated, and metal powder with stable quality can be economically produced by shortening processing time and simplifying operations. As a result, 1. not only the normal powder metallurgy field, but also
Conductive material, porous electrode material, catalyst, magnetic material f-1. Now more than ever, we look forward to contributing to new fields such as injection molding materials.
第1図は本発明を実施する装置の実施例を示した機器配
置系統図である。
1・・l兄式破砕機、 2・・反応容器。
3・・スラリーWi環路、 5・・循環ポンプ。
6・・連続式濾過装置、 7・・遠心分離機。
8・・撹拌式減圧乾@機、 18・・回転軸。
22・・濾過板、23・・濾過装置の撹拌翼。
32・・乾燥機の撹拌翼、33・・真空ポンプ。
35・・濾過袋、36・・不活性ガス導入口。
37・・粉末排出口、40・・スクリュー回転式破砕機
。FIG. 1 is an equipment layout system diagram showing an embodiment of an apparatus for carrying out the present invention. 1. Big brother type crusher, 2. Reaction vessel. 3. Slurry Wi ring path, 5. Circulation pump. 6. Continuous filtration device, 7. Centrifugal separator. 8. Stirring type vacuum dryer @ machine, 18. Rotating shaft. 22... Filter plate, 23... Stirring blade of the filtration device. 32...Dryer stirring blade, 33...Vacuum pump. 35...Filtering bag, 36...Inert gas inlet. 37...Powder discharge port, 40...Screw rotary crusher.
Claims (7)
と鉄粉とを接触させて該金属の粉末を置換析出させる工
程と、該工程で生成した反応後液を水と置換する工程と
、この工程で得られた金属粉末の水スラリーから脱水す
る工程と、次いで脱水された金属粉末を減圧乾燥する工
程とからなる金属粉末の製造法であって、 反応後液を水と置換する前記の工程を実施するにあたり
、置換析出した金属粉末が懸濁した反応容器内のスラリ
ーを、この反応容器から撹拌翼付きの加圧濾過室に連続
的に圧送し、この加圧濾過室を通過したスラリーを再び
該反応容器に循環させると共に、該加圧濾過室で濾液を
分離除去し且つ水を該循環系に供給するという操作を反
応後液が水と実質的に置換されるまで実施することを特
徴とする金属粉末の製造法。(1) A step in which iron powder is brought into contact with an acidic salt aqueous solution of a metal that has a smaller ionization tendency than iron to precipitate the metal powder by displacement, and a step in which the post-reaction liquid produced in this step is replaced with water; A method for producing metal powder, comprising the steps of dehydrating a water slurry of metal powder obtained in the step, and then drying the dehydrated metal powder under reduced pressure, the step of replacing the post-reaction liquid with water. In carrying out this process, the slurry in the reaction vessel in which the metal powder precipitated by displacement is suspended is continuously pumped from this reaction vessel to a pressurized filtration chamber equipped with stirring blades, and the slurry that has passed through this pressurized filtration chamber is The filtrate is circulated again to the reaction vessel, the filtrate is separated and removed in the pressurized filtration chamber, and water is supplied to the circulation system, which are carried out until the post-reaction liquid is substantially replaced with water. A method for producing metal powder.
もち他端に流体導出口をもつ筒状の濾過室内に、その軸
とは直交する方向に多数の濾過板が互いに間隔を開けて
配置され、該濾過板の間隙に撹拌翼が配置された濾過装
置である請求項1に記載の金属粉末の製造法。(2) A pressurized filtration chamber with stirring blades is a cylindrical filtration chamber with a fluid inlet at one end and a fluid outlet at the other end, and a large number of filtration plates spaced apart from each other in a direction perpendicular to its axis. 2. The method for producing metal powder according to claim 1, wherein the filtration device is arranged with a gap between the filter plates and a stirring blade arranged in the gap between the filter plates.
と鉄粉とを接触させて該金属の粉末を置換析出させる工
程と、該工程で生成した反応後液を水と置換する工程と
、この工程で得られた金属粉末の水スラリーから脱水す
る工程と、次いで脱水された金属粉末を減圧乾燥する工
程とからなる金属粉末の製造法であって、 金属粉末の水スラリーを脱水する工程がバスケット式遠
心分離機によって実施されることを特徴とする金属粉末
の製造法。(3) A step in which iron powder is brought into contact with an acidic salt aqueous solution of a metal that has a smaller ionization tendency than iron to precipitate the metal powder by displacement, and a step in which the post-reaction liquid produced in this step is replaced with water; A method for producing metal powder comprising the steps of dehydrating a water slurry of metal powder obtained in the process and then drying the dehydrated metal powder under reduced pressure, the step of dewatering the water slurry of metal powder being a basket. 1. A method for producing metal powder, characterized in that it is carried out using a centrifugal separator.
と鉄粉とを接触させて該金属の粉末を置換析出させる工
程と、該工程で生成した反応後液を水と置換する工程と
、この工程で得られた金属粉末の水スラリーから脱水す
る工程と、次いで脱水された金属粉末を減圧乾燥する工
程とからなる金属粉末の製造法であって、 前記の減圧乾燥する工程は、温熱媒と冷熱媒とを切替可
能に循環させるジャケットを周面にもち且つ撹拌翼を備
えた減圧容器内に該金属粉末の脱水ケーキを装填したう
え、温熱媒による加熱下で且つ減圧撹拌下で実施し、次
いで、冷熱媒によって冷却する操作からなる金属粉末の
製造法。(4) A step in which iron powder is brought into contact with an acidic salt aqueous solution of a metal that has a smaller ionization tendency than iron to precipitate the metal powder by displacement, and a step in which the post-reaction liquid produced in this step is replaced with water; A method for producing metal powder comprising the steps of dehydrating an aqueous slurry of metal powder obtained in the process, and then drying the dehydrated metal powder under reduced pressure, the method comprising: drying the dehydrated metal powder under reduced pressure; The dehydrated cake of the metal powder is loaded into a reduced pressure container having a jacket on the circumference for switchable circulation of a cooling medium and a stirring blade, and the dehydration cake is carried out under heating with a heating medium and under reduced pressure stirring, Next, a method for producing metal powder comprising cooling with a cooling medium.
鉄粉と金属の酸性塩水溶液とを撹拌下で反応させるため
の反応容器2と、この反応容器2内のスラリーを再び該
反応容器2に戻すスラリー循環路3に介装されたポンプ
5および連続式濾過装置6と、該循環路3内のスラリー
を受け入れてこれを脱水する遠心分離機7と、該遠心分
離機7で脱水された脱水ケーキを減圧加熱下で乾燥する
撹拌式減圧乾燥機8とからなる金属粉末の製造装置。(5) a wet crusher 1 for obtaining water slurry of iron powder;
A reaction vessel 2 for reacting iron powder and an aqueous metal acid salt solution with stirring, a pump 5 interposed in a slurry circulation path 3 for returning the slurry in the reaction vessel 2 to the reaction vessel 2, and a continuous a centrifugal separator 7 that receives the slurry in the circulation path 3 and dehydrates it, and an agitating vacuum dryer 8 that dries the dehydrated cake dehydrated in the centrifugal separator 7 under vacuum heating. Metal powder manufacturing equipment consisting of.
に流体導入口を他端に流体導出口をもつ筒状容器内に、
複数個の濾過板が軸とは直交する方向に間隙を開けて配
置され、この濾過板の間隙で旋回するように撹拌翼が該
回転軸に取付けられた装置である請求項5に記載の金属
粉末の製造装置。(6) A continuous filtration device is a cylindrical container that has a rotating shaft at the center, a fluid inlet at one end, and a fluid outlet at the other end.
6. The metal device according to claim 5, wherein a plurality of filter plates are arranged with gaps in a direction perpendicular to the axis, and a stirring blade is attached to the rotating shaft so as to rotate in the gap between the filter plates. Powder manufacturing equipment.
トを有する円筒状容器内に撹拌翼が備えられると共に真
空ポンプに通ずる排気口に濾過袋が取付けられ、且つ容
器内を不活性ガスで置換するためのガス導入口と、周囲
雰囲気と遮断下で粉体を容器外に排出するための粉体排
出口が設けられている請求項6に記載の金属粉末の製造
装置。(7) A stirring type vacuum dryer is equipped with stirring blades inside a cylindrical container that has a jacket around its periphery that allows heat medium to pass through, and a filter bag is attached to the exhaust port leading to the vacuum pump, and the inside of the container is kept inert. 7. The metal powder manufacturing apparatus according to claim 6, further comprising a gas introduction port for replacing the powder with gas and a powder discharge port for discharging the powder out of the container while being isolated from the surrounding atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12144589A JPH02301503A (en) | 1989-05-17 | 1989-05-17 | Method and apparatus for manufacturing metal powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12144589A JPH02301503A (en) | 1989-05-17 | 1989-05-17 | Method and apparatus for manufacturing metal powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02301503A true JPH02301503A (en) | 1990-12-13 |
Family
ID=14811316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12144589A Pending JPH02301503A (en) | 1989-05-17 | 1989-05-17 | Method and apparatus for manufacturing metal powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02301503A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107860186A (en) * | 2016-09-21 | 2018-03-30 | 孙英根 | For the drying device and drying means of the metal dust for manufacturing secondary cell |
KR20180073881A (en) * | 2016-12-23 | 2018-07-03 | 주식회사 포스코 | Online stirrer for throughput enlargement of powder sample in belt type furnace |
KR102069468B1 (en) * | 2019-04-30 | 2020-01-22 | 하임테크(주) | Drying device for precursor and drying method Thereof |
KR102069461B1 (en) * | 2019-02-07 | 2020-02-11 | 하임테크(주) | Metal powders drying device for cell battery manufacturing and drying method Thereof |
KR102069462B1 (en) * | 2019-02-08 | 2020-02-11 | 하임테크(주) | Metal powders drying system for improved secondary cell battery manufacturing using negative pressure and drying method Thereof |
CN111536775A (en) * | 2019-02-07 | 2020-08-14 | 哈盈技术株式会社 | System and method for drying metal powder using negative pressure |
-
1989
- 1989-05-17 JP JP12144589A patent/JPH02301503A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107860186A (en) * | 2016-09-21 | 2018-03-30 | 孙英根 | For the drying device and drying means of the metal dust for manufacturing secondary cell |
KR20180073881A (en) * | 2016-12-23 | 2018-07-03 | 주식회사 포스코 | Online stirrer for throughput enlargement of powder sample in belt type furnace |
KR101879094B1 (en) * | 2016-12-23 | 2018-07-16 | 주식회사 포스코 | Online stirrer for throughput enlargement of powder sample in belt type furnace |
KR102069461B1 (en) * | 2019-02-07 | 2020-02-11 | 하임테크(주) | Metal powders drying device for cell battery manufacturing and drying method Thereof |
CN111536775A (en) * | 2019-02-07 | 2020-08-14 | 哈盈技术株式会社 | System and method for drying metal powder using negative pressure |
KR102069462B1 (en) * | 2019-02-08 | 2020-02-11 | 하임테크(주) | Metal powders drying system for improved secondary cell battery manufacturing using negative pressure and drying method Thereof |
KR102069468B1 (en) * | 2019-04-30 | 2020-01-22 | 하임테크(주) | Drying device for precursor and drying method Thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US1956293A (en) | Process of and apparatus for producing liquid dispersions | |
US2398725A (en) | Magnetic separation | |
KR20090107647A (en) | Manufaturing process of nano-particle and nano-colloid | |
JPH02301503A (en) | Method and apparatus for manufacturing metal powder | |
US4047939A (en) | Slimes treatment process | |
CN102191389A (en) | Rinsing method and device of potassium fluotantalate product obtained through sodium reduction | |
CN107745536A (en) | A kind of vertical helical screen cloth dewaterer | |
CN110898515B (en) | Method for removing magnetic substance from lithium carbonate slurry | |
CN107459027A (en) | A kind of pitch prepares the separating technology and device of MCMB | |
WO2023062986A1 (en) | Method for producing cobalt sulfate crystal | |
CN106566933A (en) | Method for reducing content of cobalt in mixed slag generated in nickel sulfate production | |
CN107986302A (en) | A kind of hydro-thermal purification process | |
JP3165184B2 (en) | Method for producing spherical fine powder of amorphous nylon resin | |
WO2021193664A1 (en) | Production system and production method for catalyst for electrode | |
CN108529680A (en) | A method of processing ammonium paratungstate oversize | |
CN202193757U (en) | Microwave-assisted continuous extraction device of oil shale | |
CN107099660A (en) | A kind of leaching of Rare Earth Production, alkali turn, excellent molten, removal of impurities and precipitation technique | |
CN110734080B (en) | Method for washing lithium carbonate | |
CN111774580B (en) | Continuous post-treatment system and method for preparing nano material by supercritical hydrothermal synthesis | |
CN110902701B (en) | Device for washing lithium carbonate | |
JP7431386B1 (en) | Closed type filtration device and treatment method using closed type filtration device | |
CN110898516B (en) | Device for removing magnetic substances from lithium carbonate slurry | |
CN219944080U (en) | Solid waste treatment system for waste battery recycling industrial chain | |
Urie | Pilot plant production of rare earth hydroxides and thorium oxalate from monazite | |
JP2005054261A (en) | Method for regenerating rare earth alloy powder, and washing device used therefor |