JPH02301126A - X-ray exposure device - Google Patents

X-ray exposure device

Info

Publication number
JPH02301126A
JPH02301126A JP1122444A JP12244489A JPH02301126A JP H02301126 A JPH02301126 A JP H02301126A JP 1122444 A JP1122444 A JP 1122444A JP 12244489 A JP12244489 A JP 12244489A JP H02301126 A JPH02301126 A JP H02301126A
Authority
JP
Japan
Prior art keywords
mask
wafer
optical system
ray source
holder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1122444A
Other languages
Japanese (ja)
Inventor
Ryoji Tanaka
良治 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1122444A priority Critical patent/JPH02301126A/en
Publication of JPH02301126A publication Critical patent/JPH02301126A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To accurately superpose a mask with a wafer by connecting an alignment optical system to an X-ray source via a high rigidity vibration shielding member instead of securing the system to an anti-vibration base, and connecting the mask to a wafer aligning unit via a low rigidity vibration shielding member. CONSTITUTION:An X-ray generated from a focus 17 of an X-ray source 3 is externally output via a beryllium window 18, and a pattern on a mask 10 is transferred to a wafer 13. In this case, the positional deviation of the mask 10 from the wafer 13 is always detected by an alignment optical system 9, and a mask holder 12 or a wafer holder 14 is so controlled as not to generate the deviation. A surface plate 15 secured with a wafer stage 14 for the holder 12 is supported by an air spring 16, the deviation of the spring 16 is absorbed by a vibration shielding member 11 for coupling the system 9 to the holder 12, and even if the plate 15 is inclined, the system 9 is not inclined, and the positional relationship of the focus 17 of the source 3 is not varied. Vibration generated from a rotary target 19 of the source 3 is so shielded by a vibration shielding member 8 as not to transmit to the system 9.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 ターンを有する半導体集積回路製造に適応しうるX線露
光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to an X-ray exposure apparatus that is applicable to manufacturing semiconductor integrated circuits having turns.

〔従来の技術〕[Conventional technology]

従来の技術としては、例えば、特公昭53−34466
号公報に示されているように、電子線励起型X線源を用
いたX線露光装置がある。
As a conventional technique, for example, Japanese Patent Publication No. 53-34466
As shown in the above publication, there is an X-ray exposure apparatus using an electron beam excitation type X-ray source.

従来のX線露光装置は、X線源とマスクとウェハの位置
合わせ装置と前記マスクとウェハの位置合わせ装置を搭
載する除振装置とを含んで構成される。
A conventional X-ray exposure apparatus includes an X-ray source, a mask-wafer alignment device, and a vibration isolator equipped with the mask-wafer alignment device.

次に従来のX線露光装置について図面を参照して詳細に
説明する。
Next, a conventional X-ray exposure apparatus will be described in detail with reference to the drawings.

第2図は従来のX線露光装置の一例を示す側面図である
FIG. 2 is a side view showing an example of a conventional X-ray exposure apparatus.

第2図に示すX線露光装置は、床1に固定された架台2
と、前記架台2に固定されたX線源3と、マスクlOを
保持するマスクホルダ12と、ウェハ13を保持しウェ
ハ13の位置決めを行うウェハステージ14と、マスク
10とウェハ13の位置ずれを検出するアライメント光
学系9と、前記マスクホルダ12と前記ウェハステージ
14と前記アライメント光学系9が固定されている定盤
1゛5と、前記定盤15を支持する空気ばね16とを含
んでいる。
The X-ray exposure apparatus shown in FIG.
The X-ray source 3 fixed to the pedestal 2, the mask holder 12 that holds the mask 1O, the wafer stage 14 that holds the wafer 13 and positions the wafer 13, and the positional shift between the mask 10 and the wafer 13 are It includes an alignment optical system 9 for detection, a surface plate 15 to which the mask holder 12, the wafer stage 14, and the alignment optical system 9 are fixed, and an air spring 16 that supports the surface plate 15. .

ここでX線源13は回転ターゲット19上のX線焦点1
tからマスク10にX線を照射し、ウェハ13にマスク
パターンを転写するようになっている。
Here, the X-ray source 13 is an X-ray focal point 1 on a rotating target 19.
The mask 10 is irradiated with X-rays from t to transfer the mask pattern onto the wafer 13.

マスクホルダ12.ウェハステージ14、およびアライ
メント光学系9は定盤15と空気ばね16により支持さ
れており、床1からの振動が伝わらないように、さらに
ウェハステージ14の移動などによって発生する振動を
抑えるようになっている。
Mask holder 12. The wafer stage 14 and the alignment optical system 9 are supported by a surface plate 15 and an air spring 16, and are designed to prevent vibrations from the floor 1 from being transmitted and to suppress vibrations generated by movement of the wafer stage 14, etc. ing.

また、X線源3の回転ターゲツト19から発生する振動
アライメント光学系9に伝わらないように、X線源3と
7ライメント光学系9は柔軟な部材21で接続されてい
る。
Further, the X-ray source 3 and the alignment optical system 9 are connected by a flexible member 21 so that vibrations generated from the rotating target 19 of the X-ray source 3 are not transmitted to the alignment optical system 9.

空気ばね16は弁22を備え、定盤15の高さを検出し
、定盤15の高さが一定に保たれるように制御される。
The air spring 16 is equipped with a valve 22, detects the height of the surface plate 15, and is controlled so that the height of the surface plate 15 is kept constant.

ところが、定盤15の高さを検出するセンサの不感帯な
どのため、高さ方向に1rffrfI程度の位置決め誤
差が生じる。
However, due to the dead zone of the sensor that detects the height of the surface plate 15, a positioning error of about 1rffrfI occurs in the height direction.

空気ばね16の位置決め誤差により定盤15が傾くと、
定盤15上のマスクホルダ12.ウェハステージ14、
およびアライメント光学系9も同様に傾き、アライメン
ト光軸上からX線源3の焦点17がずれるため、マスク
パターンがウェハ13上にずれて転写されるという問題
が発生する。
When the surface plate 15 tilts due to a positioning error of the air spring 16,
Mask holder 12 on surface plate 15. wafer stage 14,
The alignment optical system 9 is also tilted, and the focus 17 of the X-ray source 3 is shifted from the alignment optical axis, resulting in a problem that the mask pattern is transferred onto the wafer 13 with a shift.

たとえば、X線源3の焦点17とマスク10までの距離
をA1マスク10とウェハ13のギャップをB、空気ば
ね16の高さとX線源の焦点の距離なC5空気ばね16
の高さ方向の位置決め誤差をD、空気ばね16の支持間
隔をEとし、各部の寸法を以下のように仮定する。
For example, A1 is the distance between the focal point 17 of the X-ray source 3 and the mask 10, B is the gap between the mask 10 and the wafer 13, and C5 is the height of the air spring 16 and the distance between the focal point of the X-ray source.
It is assumed that the positioning error in the height direction is D, the support interval of the air springs 16 is E, and the dimensions of each part are as follows.

A= 500 mm B=0.04mm C=1000mm D ” 1 mm E=1000mm このとき、マスクパターンの転写ずれFは、A    
ル となる。
A = 500 mm B = 0.04 mm C = 1000 mm D '' 1 mm E = 1000 mm At this time, the transfer deviation F of the mask pattern is A
becomes le.

最小線幅0.5μm程度の微細パターン転写において、
転写ずれFは0.01μm以下に抑える必要があり、0
.08μmの転写ずれは許容できる範囲ではない。
In fine pattern transfer with a minimum line width of about 0.5 μm,
Transfer deviation F must be suppressed to 0.01 μm or less, and 0.
.. A transfer deviation of 0.8 μm is not within an acceptable range.

また、近年、より高輝度・高指向性のシンクロトロン放
射光(SR光)を光源としたX線露光装置が注目されて
いるが、この場合も同様な問題が生じる。
Furthermore, in recent years, X-ray exposure apparatuses that use synchrotron radiation (SR light) with higher brightness and higher directionality as a light source have attracted attention, but similar problems arise in this case as well.

SR光を光源としたX線露光装置の場合、X線源とマス
クまで距離Aと空気ばねの高さとX線源の距離Cが大き
く、A嬌Cとみなせるため、その他の条件を前述の仮定
通りとすれば、転写ずれFは となる。
In the case of an X-ray exposure device that uses SR light as a light source, the distance A between the X-ray source and the mask, the height of the air spring, and the distance C between the X-ray source are large and can be considered as A-C, so the other conditions are set as above assumptions. If this is true, the transfer deviation F will be as follows.

SR光を光源としたX線露光装置では最小線幅0.25
μm以下のより高解像度のパターン転写を目的としてい
るので、0.04μmの転写ずれは大きな問題となる。
The minimum line width for X-ray exposure equipment using SR light as the light source is 0.25.
Since the purpose is to transfer a pattern with a higher resolution of .mu.m or less, a transfer deviation of 0.04 .mu.m becomes a big problem.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来のX線露光装置は、アライメント光学系が
空気ばねに支持された定盤上に固定されているため、空
気ばねに位置決め誤差が発生するとアライメント光軸上
からX線源の焦点がずれるので、マスクパターンの転写
ずれが発生するという欠点があった。
In the conventional X-ray exposure apparatus described above, the alignment optical system is fixed on a surface plate supported by an air spring, so if a positioning error occurs in the air spring, the focus of the X-ray source shifts from the alignment optical axis. Therefore, there is a drawback that transfer displacement of the mask pattern occurs.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のX線露光装置は、X線を発生するX線源と、剛
性の高い振動遮断部材によって前記X線源と接続された
マスクとウェハの位置ずれを検出するアライメント光学
系と、剛性の低い振動遮断部材によって前記アライメン
ト光学系に接続されたマスクとウェハの位置合わせ装置
と、前記マスクとウェハの位置合わせ装置を搭載する除
振台とを含んで構成される。
The X-ray exposure apparatus of the present invention includes an X-ray source that generates X-rays, an alignment optical system that detects a positional shift between a mask and a wafer, which are connected to the X-ray source through a highly rigid vibration isolation member, and a rigid vibration isolation member. The apparatus includes a mask and wafer alignment device connected to the alignment optical system by a low vibration isolation member, and a vibration isolation table on which the mask and wafer alignment device is mounted.

〔実施例〕〔Example〕

次に、本発明の実施例について、図面を参照して詳細に
説明する。
Next, embodiments of the present invention will be described in detail with reference to the drawings.

第1図は本発明の一実施例を示す側面図である。FIG. 1 is a side view showing an embodiment of the present invention.

第1図に示すX線露光装置は、床1に固定された架台2
と、架台2に固定されたX線源3と、剛性の高い硬質ゴ
ムなどでできた振動遮断部材8でX線源3に接続された
アライメント光学系9と、マスク10を保持しかつ剛性
の低い柔軟な材料でできた振動遮断部材11で7ライメ
ント光学系9に接続されたマスクホルダ12と、ウェハ
13をヤスク10と対向して設置し位置決めを行うウェ
ハステージ14と、マスクホルダ12とウェハステージ
14を搭載する定盤15と、定盤15を支持する空気ば
ね16とを含んで構成される。
The X-ray exposure apparatus shown in FIG.
, an X-ray source 3 fixed to a pedestal 2, an alignment optical system 9 connected to the X-ray source 3 by a vibration isolation member 8 made of highly rigid hard rubber, etc., which holds the mask 10 and is made of a rigid material. A mask holder 12 connected to the 7-line optical system 9 by a vibration isolation member 11 made of a low and flexible material, a wafer stage 14 for positioning the wafer 13 by placing it facing the yask 10, and the mask holder 12 and the wafer. It is configured to include a surface plate 15 on which a stage 14 is mounted, and an air spring 16 that supports the surface plate 15.

X線源3の焦点17から発生したX線はベリリウム窓1
8を通して外部に取り出され、マスク10上のパターン
をウェハ13に転写する。このとき、マスクlOとウェ
ハ13の位置ずれはアライメント光学系9によって常に
検出されており、位置ずれが発生しないようにマスクホ
ルダ12またはウェハステージ14を制御する。
The X-rays generated from the focal point 17 of the X-ray source 3 pass through the beryllium window 1.
The pattern on the mask 10 is transferred to the wafer 13. At this time, the alignment optical system 9 constantly detects the misalignment between the mask IO and the wafer 13, and controls the mask holder 12 or the wafer stage 14 so that no misalignment occurs.

マスクホルダ12行うウェハステージ14が固定されて
いる定盤15は空気ばね16で支持さhており、床lか
らの振動が伝わらないようにすると共に、ウェハステー
ジ14のステップ・アンド・リピート動作に伴う振動を
抑えるようになっている。
The surface plate 15 to which the wafer stage 14 carrying the mask holder 12 is fixed is supported by an air spring 16, which prevents vibrations from being transmitted from the floor l and also prevents the step-and-repeat operation of the wafer stage 14. It is designed to suppress the accompanying vibrations.

このときの空気ばね16の位置ずれはアライメント光学
系9とマスクホルダ12を連結する振動遮断部材11で
吸収され、定盤15が傾いてもアライメント光学系9が
傾くことはなく、アライメント光学系9とX線源3の焦
点17の位置関係は変化しない。
The positional deviation of the air spring 16 at this time is absorbed by the vibration isolation member 11 that connects the alignment optical system 9 and the mask holder 12, so that even if the surface plate 15 is tilted, the alignment optical system 9 will not be tilted. The positional relationship between the focal point 17 and the X-ray source 3 does not change.

したがって、空気ばね16の位置決め誤差によって定盤
16が傾いても、マスク10とウェハ13はX線源3の
焦点17に対し正確に位置ずれ検出が行え、転写ずれが
発生することはない。
Therefore, even if the surface plate 16 is tilted due to a positioning error of the air spring 16, the positional deviation between the mask 10 and the wafer 13 relative to the focal point 17 of the X-ray source 3 can be accurately detected, and transfer deviation will not occur.

X線源30回転ターゲット19から発生する振動は、ア
ライメント光学系9に伝わらないように、振動遮断部材
8で遮断される。
Vibrations generated from the X-ray source 30 rotating target 19 are blocked by the vibration isolation member 8 so as not to be transmitted to the alignment optical system 9.

回転ターゲット19から発生する振動は、周波数が高く
振幅が小さいため、振動遮断部材より剛性の高い硬質ゴ
ムなどでできた振動遮断部材によって遮断することがで
きる。
Since the vibration generated from the rotating target 19 has a high frequency and a small amplitude, it can be blocked by a vibration isolation member made of hard rubber or the like that is more rigid than the vibration isolation member.

そのため、X線源3と7ライメント光学系9の位置関係
がずれることはない。
Therefore, the positional relationship between the X-ray source 3 and the seven-line optical system 9 does not shift.

本実施例では電子線励起型X線源を用いたX線露光装置
について述べたが、SR光を用いたX線露光装置におい
ても同様の効果が期待できる。この場合、X線源に振動
を発生する回転ターゲット等は無いが、X線を通すビー
ムラインを超高真空に保つための真空ポンプなどから発
生する振動を、剛性の高い振動遮断部材で遮断すること
ができる。
In this embodiment, an X-ray exposure apparatus using an electron beam excitation type X-ray source has been described, but similar effects can be expected in an X-ray exposure apparatus using SR light. In this case, the X-ray source does not have a rotating target that generates vibrations, but a highly rigid vibration isolating member blocks the vibrations generated by the vacuum pump that maintains the beam line through which the X-rays pass in an ultra-high vacuum. be able to.

また、本実施例では、アライメント光学系9は気密室2
0に入れられており、X線源3およびマスクホルダ12
と振動遮断部材8,9を介して接続されることによって
気密性が保たれている。したがって、気密室20にX線
減衰の少ないヘリウムガスを充填することができ、大気
によるX線の減衰を防ぐことができる。
In addition, in this embodiment, the alignment optical system 9 is connected to the airtight chamber 2.
0, the X-ray source 3 and the mask holder 12
Airtightness is maintained by being connected to the vibration isolation members 8 and 9 via the vibration isolation members 8 and 9. Therefore, the airtight chamber 20 can be filled with helium gas that has low X-ray attenuation, and X-ray attenuation due to the atmosphere can be prevented.

〔発明の効果〕〔Effect of the invention〕

本発明のX線露光装置は、アライメント光学系を除振台
に固定する代わりに、X線源と高剛性の振動遮断部材に
よって接続しかつマスクとウェハの位置合わせ装置と低
剛性の振動遮断部材によって接続することによって、除
振台の位置ずれによって7ライメント光学系の位置がず
れることがないため、高精度のマスクとウェハの重ね合
わせができるという効果がある。
In the X-ray exposure apparatus of the present invention, instead of fixing the alignment optical system to a vibration isolation table, the X-ray source is connected to the vibration isolation member with high rigidity, and the alignment optical system of the mask and the wafer is connected to the vibration isolation member with low rigidity. By connecting them by , the position of the 7-line optical system will not shift due to the position shift of the vibration isolation table, so there is an effect that the mask and wafer can be superimposed with high accuracy.

更に、サーボ機構の付いていない安価な除振台を使用で
きるため、装置が安価になるという効果がある。
Furthermore, since an inexpensive vibration isolating table without a servo mechanism can be used, there is an effect that the device is inexpensive.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す側面図、第2図は従来
の一例を示す側面図である。 1・・・・・・床、2・・・・・・架台、3・・・・・
・X線源、8゜11・・・・・・振動遮断部材、9・・
・・・・アライメント光学系、lO・・・・・・マスク
、12・・川・マスクホルダ、13・・・・・・ウェハ
、14・・・・・・ウェハステージ、15・・川・定盤
、16・・・・・・空気ばね。
FIG. 1 is a side view showing an embodiment of the present invention, and FIG. 2 is a side view showing a conventional example. 1... Floor, 2... Frame, 3...
・X-ray source, 8゜11... Vibration isolation member, 9...
...Alignment optical system, lO...Mask, 12...Masked holder, 13...Wafer, 14...Wafer stage, 15...Masked Board, 16...Air spring.

Claims (1)

【特許請求の範囲】[Claims] X線を発生するX線源と、剛性の高い振動遮断部材によ
って前記X線源と接続されたマスクとウェハの位置ずれ
を検出するアライメント光学系と、剛性の低い振動遮断
部材によって前記アライメント光学系に接続されたマス
クとウェハの位置合わせ装置と、前記マスクとウェハの
位置合わせ装置を搭載する除振台とを含むことを特徴と
するX線露光装置。
An X-ray source that generates X-rays, an alignment optical system that detects a positional shift between a mask and a wafer, which are connected to the X-ray source through a vibration isolation member with high rigidity, and an alignment optical system that uses a vibration isolation member with low rigidity. An X-ray exposure apparatus comprising: a mask and wafer alignment device connected to the mask and wafer alignment device; and a vibration isolation table on which the mask and wafer alignment device is mounted.
JP1122444A 1989-05-15 1989-05-15 X-ray exposure device Pending JPH02301126A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1122444A JPH02301126A (en) 1989-05-15 1989-05-15 X-ray exposure device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1122444A JPH02301126A (en) 1989-05-15 1989-05-15 X-ray exposure device

Publications (1)

Publication Number Publication Date
JPH02301126A true JPH02301126A (en) 1990-12-13

Family

ID=14836002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1122444A Pending JPH02301126A (en) 1989-05-15 1989-05-15 X-ray exposure device

Country Status (1)

Country Link
JP (1) JPH02301126A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786156A (en) * 1993-07-21 1995-03-31 Canon Inc Processing system and fabrication of device employing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0786156A (en) * 1993-07-21 1995-03-31 Canon Inc Processing system and fabrication of device employing

Similar Documents

Publication Publication Date Title
US7230257B2 (en) Electron beam exposure apparatus
JP3576176B2 (en) Supporting device with gas bearing
WO2000014779A1 (en) Exposure apparatus and exposure method, and device and method for producing the same
US20110085152A1 (en) Vibration control apparatus, vibration control method, exposure apparatus, and device manufacturing method
JP2005315426A (en) Vibration insulating system, vibration insulating method, lithography device, and method for manufacturing the device
JP2013128126A (en) Exposure device and device manufacturing method
JPS63283022A (en) Method and apparatus for changing projection scale of x-ray lithography
EP1089001B1 (en) Static pressure gas bearing, stage device using it, and optical device using it
JPS59101833A (en) X-ray exposure device
JP2005276932A (en) Aligner and device-manufacturing method
KR100524265B1 (en) Isolation mounts for use with vacuum chambers and their application in lithographic projection apparatus
JPH02301126A (en) X-ray exposure device
TW200931188A (en) Exposure apparatus and device manufacturing method
JP2003068609A (en) Processing equipment linder atmospheric pressure, energy beam irradiation equipment and aligner
JPH04136943A (en) X-ray exposing device
JP3290233B2 (en) Positioning method
JPH10270349A (en) Substrate transferring device and exposure device
JP3031947B2 (en) Exposure equipment
US20030189177A1 (en) Isolated frame caster
US20230152717A1 (en) Interface plate, inspection system and method of installing an inspection system
TW201903532A (en) Exposure apparatus, exposure method, method of manufacturing flat panel display, and component manufacturing method
JP4120361B2 (en) Measuring device, stage device, and measuring method
US10503086B2 (en) Lithographic apparatus and device manufacturing method
JP2003031646A (en) Stage unit and aligner
KR20020036698A (en) Stage apparatus and exposure apparatus