JPH0229858B2 - - Google Patents

Info

Publication number
JPH0229858B2
JPH0229858B2 JP59141774A JP14177484A JPH0229858B2 JP H0229858 B2 JPH0229858 B2 JP H0229858B2 JP 59141774 A JP59141774 A JP 59141774A JP 14177484 A JP14177484 A JP 14177484A JP H0229858 B2 JPH0229858 B2 JP H0229858B2
Authority
JP
Japan
Prior art keywords
cylinder
injection amount
correction
engine
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59141774A
Other languages
Japanese (ja)
Other versions
JPS6123848A (en
Inventor
Takasuke Hayakawa
Takashi Hasegawa
Shuji Sakakibara
Toshimi Matsumura
Shinya Sumya
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP14177484A priority Critical patent/JPS6123848A/en
Priority to US06/752,732 priority patent/US4705000A/en
Publication of JPS6123848A publication Critical patent/JPS6123848A/en
Publication of JPH0229858B2 publication Critical patent/JPH0229858B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0085Balancing of cylinder outputs, e.g. speed, torque or air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B1/00Engines characterised by fuel-air mixture compression
    • F02B1/02Engines characterised by fuel-air mixture compression with positive ignition
    • F02B1/04Engines characterised by fuel-air mixture compression with positive ignition with fuel-air mixture admission into cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1015Engines misfires
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • F02D41/1498With detection of the mechanical response of the engine measuring engine roughness

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ガソリン機関、デイーゼル機関等の
燃料噴射式多気筒内燃機関(以下エンジンと称す
る)の気筒相互間に於ける燃料噴射量のバラツキ
を、エンジン回転数に基いて気筒別に補正する燃
料噴射量制御方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention is directed to solving the problem of variation in fuel injection amount between cylinders of a fuel injection multi-cylinder internal combustion engine (hereinafter referred to as engine) such as a gasoline engine or a diesel engine. This invention relates to a fuel injection amount control method in which the amount of fuel is corrected for each cylinder based on the engine speed.

〔従来の技術〕[Conventional technology]

従来、多気筒エンジンの燃料噴射量制御は、ガ
ソリン、デイーゼルを問わず、燃料噴射量を全気
筒共通に一律に制御していた。即ち、ガリソンエ
ンジンの公知の電子制御燃料噴射方法に於いて
は、各気筒に配設した電磁式燃料噴射弁の開弁時
間を全気筒共通に同一制御量で制御していたし、
また最近実用化された電子制御デイーゼルエンジ
ンに於いても、噴射量制御は前記気筒に共通の噴
射量調整部材であるコントロールラツクやスピリ
ングを、位置制御することによつて行なつてい
た。このため、各気筒間の噴射量のバラツキの低
減は、専ら噴射系部品(即ち噴射弁や噴射管な
ど)の特性を各気筒厳密に揃えることにより行な
われており、結果として、噴射系部品に高い製造
精度が要求され、そのコストを増大しているのが
現状であつた。
Conventionally, fuel injection amount control for multi-cylinder engines has uniformly controlled the fuel injection amount for all cylinders, regardless of gasoline or diesel engine. That is, in the known electronically controlled fuel injection method for the Garrison engine, the opening time of the electromagnetic fuel injection valve disposed in each cylinder is controlled with the same control amount for all cylinders.
Furthermore, in electronically controlled diesel engines that have recently been put into practical use, injection amount control has been carried out by controlling the positions of control racks and spills, which are injection amount adjusting members common to the cylinders. For this reason, reducing the variation in injection amount between cylinders is done exclusively by strictly matching the characteristics of injection system parts (i.e., injection valves, injection pipes, etc.) in each cylinder. The current situation is that high manufacturing precision is required, increasing the cost.

また更に、たとえ、前記気筒間の部品精度を限
界まで高めても、依然経時変化や、エンジン側の
例えば吸排気弁開閉タイミングのバラツキ等の外
乱には全く無力であり、その結果全気筒同一の安
定した燃料が得られず、特にアイドル回転に於け
る不快な周期的回転変動等を誘発する可能性が高
かつた。
Furthermore, even if the accuracy of the parts between the cylinders is raised to the limit, it is still completely powerless against changes over time and disturbances on the engine side, such as variations in the opening and closing timing of intake and exhaust valves, and as a result, all cylinders are the same. Stable fuel could not be obtained, and there was a high possibility that unpleasant periodic rotational fluctuations would occur, especially during idling.

近年、燃費向上の要求から一般にエンジンのア
イドル回転数は低めに抑えられ、また特に乗用車
に対しては快適性の面から、より滑らかなアイド
ル回転が要求されており、前述したアイドル回転
時の不快な周期的回転変動をいかに低減させ低く
て安定したアイドルを実現するかが、当面の大き
な課題となつて来ている。
In recent years, engine idle speeds have generally been kept low due to demands for improved fuel efficiency, and smoother idle speeds have been required for passenger cars in particular from the standpoint of comfort. A major issue for the time being is how to reduce periodic rotation fluctuations and achieve a low and stable idle.

この課題を解決するため、各気筒の燃料噴射前
後の回転速度の変動を検出し、この変動を各気筒
で均一とすべく各気筒ごとに燃料噴射量を補正し
て、各気筒の燃焼状態を均一にする方法が提案さ
れている(特開昭58−214627)。
To solve this problem, we detect variations in the rotational speed of each cylinder before and after fuel injection, and correct the fuel injection amount for each cylinder to equalize this variation in each cylinder, thereby adjusting the combustion state of each cylinder. A method for making it uniform has been proposed (Japanese Patent Application Laid-Open No. 58-214627).

このような補正制御は、マイコン等を用いてデ
イジタル処理されるためのデイジタル演算の桁落
ちによる丸め誤差、あるいは各種センサーの特性
のばらつきなどの誤差は避け得ない。このような
誤差は各気筒の噴射量の補正ごとに発生し、結果
として各気筒の補正量の誤差の総和が必ずしも零
になるとは限らない。前記誤差の総和は正負いず
れの値も取るが、1回の補正ごとに独立して誤差
が発生するため、多数回の補正により前記誤差の
総和が順次累積されることが確率過程から予期さ
れる。事実、これら前記の補正の誤差の総和が順
次累積し大きな絶対値となり、各気筒の噴射量の
総和、つまりエンジン全体での噴射量に影響を与
えてしまい、エンジンの回転数、エミツシヨン、
ドライバビリテイ、エンジン性能などに悪影響を
与えることがある。
Such correction control cannot avoid errors such as rounding errors due to loss of digits in digital calculations due to digital processing using a microcomputer or the like, or variations in characteristics of various sensors. Such an error occurs each time the injection amount of each cylinder is corrected, and as a result, the sum of the errors in the correction amount of each cylinder does not necessarily become zero. The sum of the errors can take either a positive or negative value, but since an error occurs independently for each correction, it is expected from the stochastic process that the sum of the errors will be accumulated sequentially through multiple corrections. . In fact, the sum of these correction errors sequentially accumulates and becomes a large absolute value, which affects the sum of the injection amount of each cylinder, that is, the injection amount of the entire engine, and the engine speed, emissions,
This may adversely affect drivability, engine performance, etc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記の点に鑑み、気筒ごとの燃料噴射
量を補正する制御装置において、前記エンジン全
体での本体の噴射量に影響を及ぼすことなく、各
気筒ごとの燃料噴射量を補正する燃料噴射量制御
方法を提供することを目的とする。
In view of the above points, the present invention provides a control device that corrects the fuel injection amount for each cylinder, which corrects the fuel injection amount for each cylinder without affecting the injection amount of the main body of the entire engine. The purpose is to provide a quantity control method.

〔問題点を解決するための手段及び作用〕[Means and actions for solving problems]

このため本発明では、各気筒の生成トルクを均
一にすべく各気筒の燃料噴射量を増減補正する補
正量の総和に注目し、各気筒毎に補正される燃量
噴射量の補正量の総和が、零もしくは零に近い値
となるように前記燃料噴射量の補正量を増減補正
することにより、本来の燃料噴射量に影響を及ぼ
すことなく各気筒毎の燃料噴射量を補正し、全気
筒の生成トルクをそろえ、不快な回転数の振動を
抑えると共に、回転数が漸増したり漸減したりす
ることのない安定した回転を得るようにしてい
る。
Therefore, in the present invention, we focus on the sum of the correction amounts for increasing and decreasing the fuel injection amount of each cylinder in order to equalize the generated torque of each cylinder, and we focus on the sum of the correction amounts of the fuel injection amount corrected for each cylinder. By increasing or decreasing the correction amount of the fuel injection amount so that it becomes zero or a value close to zero, the fuel injection amount for each cylinder can be corrected without affecting the original fuel injection amount, and all cylinders can be adjusted. The generated torque is made uniform, suppressing unpleasant vibrations in rotational speed, and ensuring stable rotation without gradual increase or decrease in rotational speed.

〔実施例〕〔Example〕

以下図面に従つて、本発明の実施例を具体的に
説明する。第1図に本発明を適用した4気筒デイ
ーゼルエンジンの構成を模式的に示す。公知の4
気筒デイーゼルエンジン1には、噴射量電子制御
装置(いわゆる電子ガバナ)を備えた例えばボツ
シユVE式分配噴射ポンプ2が搭載され、図示せ
ぬギヤ、ベルト等によりエンジン回転数の1/2の
速度でエンジン1により駆動回転させられてい
る。エンジン1の各シリンダには、噴射ノズル3
1〜34が取付られ、このノズル31〜34と前
記分配型噴射ポンプ2とは、噴射鋼管41〜44
で接続されており、ポンプ2により所定のタイミ
ングで圧送された燃料が、前記各ノズル31〜3
4より、所定量だけエンジン1の各気筒の燃焼室
(又は副室)内へ噴射される。
Embodiments of the present invention will be specifically described below with reference to the drawings. FIG. 1 schematically shows the configuration of a four-cylinder diesel engine to which the present invention is applied. Publicly known 4
The cylindrical diesel engine 1 is equipped with, for example, a Botsushi VE type distribution injection pump 2 equipped with an electronic injection amount control device (so-called electronic governor). It is driven and rotated by an engine 1. Each cylinder of the engine 1 has an injection nozzle 3
1 to 34 are attached, and these nozzles 31 to 34 and the distribution injection pump 2 are connected to injection steel pipes 41 to 44.
The fuel pumped by the pump 2 at a predetermined timing is delivered to each of the nozzles 31 to 3.
4, a predetermined amount is injected into the combustion chamber (or auxiliary chamber) of each cylinder of the engine 1.

前記噴射ポンプ2の、ポンプ駆動軸には、第3
図に示すごとく、互いに22.5゜の角度間隔で、16
ケの突起を持つ円盤6が設けられ、更にこの突起
と近接して例えば公知の電磁ピツクアツプである
回転数センサ5が設けられている。そして前記噴
射ポンプ駆動軸は、エンジン2回転に1回転する
から、回転数センサ5からは、45゜クランク角毎
に即ちエンジン1回転当りに8ケのパルスが出力
される。以下この信号をN信号と呼称して説明を
進める。このN信号は、回転数及び一定クランク
角経過信号として第1図に示す制御コンピユータ
9へ出力され、コンピユータ9はさらに運転者よ
りアクセル踏込量に応じた電圧信号を得る例えば
ポテンシヨメータである負荷センサ10よりの信
号を受け、時々刻々変化するエンジン運転状態に
最適の燃料噴射量を演算して決定する。そして該
出力噴射量を実現すべく、噴射ポンプ2に取付け
られたリニアソレノイド等の噴射量制御アクチユ
エータ11へ、駆動信号を出力する。
The pump drive shaft of the injection pump 2 has a third
As shown in the figure, 16
A disk 6 having six protrusions is provided, and a rotation speed sensor 5, which is, for example, a known electromagnetic pickup, is provided adjacent to the protrusions. Since the injection pump drive shaft rotates once every two rotations of the engine, eight pulses are output from the rotation speed sensor 5 every 45° crank angle, that is, per one rotation of the engine. Hereinafter, this signal will be referred to as the N signal and the explanation will proceed. This N signal is output as a rotational speed and constant crank angle progress signal to the control computer 9 shown in FIG. It receives the signal from the sensor 10 and calculates and determines the optimal fuel injection amount for the constantly changing engine operating conditions. In order to achieve the output injection amount, a drive signal is output to an injection amount control actuator 11 such as a linear solenoid attached to the injection pump 2.

次に、分配型噴射ポンプ2の詳細な構成につ
き、第2図、第3図に基いて説明する。該噴射ポ
ンプのベースは公知のボツシユVE型噴射ポンプ
であり、燃料の吸入、圧送、分配及び噴射タイミ
ング制御部材及びその作動については全て公知の
VE型噴射ポンプと何ら変わるところはないため
説明を省略する。本ポンプの特徴は、燃料溢流調
量部材であるスピルリング21の軸方向変位を、
リニアソレノイドを用いたアクチユエータ11に
よつて制御し、以て噴射量をコンピユータ9によ
り電子制御する点にある。コンピユータ9より出
力される制御電流がアクチユエータ11のコイル
23に通電されると、ステータ24とムービング
コア25の間に、前記制御電流に応じた強さの磁
力が発生し、ムービングコア25はバネ30の反
力に打ちかつて図中左側に引かれる。該左方への
コア25の移動に伴ない、コア25と一端を接し
ているレバー26はバネ31の張力により、支点
27を中心に図中反時計廻りに回転する。前記レ
バー26は他端に於いてスピルリング21と接続
されており、以上の作動に伴なつてスピルリング
21は図中右側へ動かされる。VE型噴射ポンプ
に於いてはスピルリング21が図中右側へ移動す
るほど、燃料の溢流時期即ち噴射の終了時間はお
くれ、結果として噴射量を増加する。以上説明し
た如く、アクチユエータ11への通電電流を増せ
ば噴射量は増加し、電流を減じれば噴射量は減少
するため、該通電電流値をコンピユータ9により
制御すれば、噴射量の制御が可能である。
Next, the detailed configuration of the distribution type injection pump 2 will be explained based on FIGS. 2 and 3. The base of the injection pump is a well-known Botsushi VE type injection pump, and the fuel suction, pressure feeding, distribution and injection timing control members and their operations are all well-known.
There is no difference from the VE type injection pump, so the explanation will be omitted. The feature of this pump is that the axial displacement of the spill ring 21, which is a fuel overflow metering member, is
It is controlled by an actuator 11 using a linear solenoid, and the injection amount is electronically controlled by a computer 9. When a control current output from the computer 9 is applied to the coil 23 of the actuator 11, a magnetic force of a strength corresponding to the control current is generated between the stator 24 and the moving core 25, and the moving core 25 is moved by the spring 30. It is struck by the reaction force and is pulled to the left in the figure. As the core 25 moves to the left, the lever 26, which is in contact with the core 25 at one end, rotates counterclockwise in the figure about the fulcrum 27 due to the tension of the spring 31. The lever 26 is connected to the spill ring 21 at the other end, and the spill ring 21 is moved to the right in the figure in conjunction with the above operation. In the VE type injection pump, as the spill ring 21 moves to the right in the figure, the overflow timing of fuel, that is, the end time of injection, is delayed, and as a result, the injection amount is increased. As explained above, if the current applied to the actuator 11 is increased, the injection amount will increase, and if the current is decreased, the injection amount will be decreased. Therefore, if the current applied to the actuator 11 is controlled by the computer 9, the injection amount can be controlled. It is.

なお、制御精度を上げるために、前記ムービン
グコア25の実位置を検出し、位置の帰還制御に
よりアクチユエータ11への通電電流を修正すべ
く、位置センサ12がアクチユエータ11と同軸
的に取り付けられており、該位置センサ12はム
ービングコア25と一体同軸であつてフエライト
等より成るプローブ28及び位置検出コイル29
より成つている。通常の噴射量制御は、以上の説
明してきた第1図、第2図の構成により、回転数
検出器5よりのN信号と、負荷センサ10の信号
にもとづいて、コンピユータ9より最適なスピル
リング位置即ちアクチユエータ11のムービング
コア25の位置を指令し、該アクチユエータへの
通電電流を制御して目的の噴射量を得る。但し、
この基本的な噴射量だけでは、噴射量は4つの気
筒に対して同一共通の制御量で決定され、従つて
ノズル31〜34の開弁圧がばらついていたりす
れば、#1〜#4各気筒への噴射量は当然ばらつ
く。また、前述の通り、N信号はポンプ駆動軸4
に、一体的に設けられた16ケの突起を持つ円盤6
と、該突起と対向すべくポンプハウジングに取付
けられた例えば公知の電磁ピツクアツプである回
転センサ5とによつて、エンジンの45゜クランク
角ごとに出力される。
In order to improve control accuracy, a position sensor 12 is installed coaxially with the actuator 11 in order to detect the actual position of the moving core 25 and correct the current flowing to the actuator 11 through position feedback control. , the position sensor 12 is integrally coaxial with the moving core 25 and includes a probe 28 made of ferrite or the like and a position detection coil 29.
It consists of Normal injection amount control is performed using the configurations shown in FIGS. 1 and 2 described above, and the computer 9 determines the optimum spill ring based on the N signal from the rotation speed detector 5 and the signal from the load sensor 10. The position, ie, the position of the moving core 25 of the actuator 11, is commanded, and the current applied to the actuator is controlled to obtain a target injection amount. however,
With only this basic injection amount, the injection amount is determined by the same common control amount for the four cylinders, so if the opening pressures of nozzles 31 to 34 vary, Naturally, the amount of fuel injected into the cylinders varies. In addition, as mentioned above, the N signal is the pump drive shaft 4.
A disk 6 with 16 protrusions integrally provided on the
A rotation sensor 5, which is, for example, a known electromagnetic pickup, is mounted on the pump housing so as to face the protrusion, and is output at every 45° crank angle of the engine.

以上説明した基本的な噴射量制御に加えて、気
筒間の噴射量バラツキ補正処理を、コンピユータ
9内の演算処理にて行なう。以下まず第4図に従
つて、制御の概念を説明する。第4図は前記N
信号、は公知の4気筒デイーゼルエンジンのシ
ーケンスチヤートの一例を示す。
In addition to the basic injection amount control described above, a calculation process within the computer 9 performs a correction process for injection amount variation between cylinders. First, the concept of control will be explained with reference to FIG. Figure 4 shows the N
The signal shows an example of a sequence chart of a known four-cylinder diesel engine.

なお、のシーケンス上に斜線部で示したの
が、各気筒への燃料噴射タイミングであり、本制
御を主に適用するアイドル状態に於いては、通
常、上死点後数度クランク角にて燃料噴射がなさ
れる。第4図は、コンピユータ9内にてN信号
を処理した出力であり、エンジンの45度クランク
角ごとの回転変動を示してる。を各気筒の噴
射、爆発の行程と対応させて細かく見ると、前記
Nセンサ出力は燃料の噴射、爆発の直後に急上昇
し、その後次の気筒の圧縮行程に入るにつれて下
降する。
Note that the shaded part on the sequence is the fuel injection timing to each cylinder.In the idling state where this control is mainly applied, the timing is usually several degrees of crank angle after top dead center. Fuel injection is performed. FIG. 4 shows the output obtained by processing the N signal in the computer 9, and shows the rotational fluctuation for each 45-degree crank angle of the engine. If we look closely at the relationship with the injection and explosion strokes of each cylinder, we can see that the N sensor output rises rapidly immediately after fuel injection and explosion, and then decreases as the next cylinder enters the compression stroke.

従つて、前記N信号の細かな変動は、エンジン
1/2回転に1度の周期をなし、また該変動の最大、
最小値はエンジンのほぼ90゜クランク角毎に現れ
ることが実験的に知られている。ここに、各気筒
毎のN変動の最大、最小の差をΔNi(iはその時
燃焼行程にある気筒番号)とすると、該ΔNiは、
エンジン1気筒ごとの燃焼による生成トルクと良
い相関関係にあることが知られており、従つて、
前記ΔNiを#1〜#4の全気筒にわたつて均一に
揃えれば、滑らかなアイドル回転が達成される。
そのため本実施例では、前記ΔN1〜ΔN4を算術
平均し、即ちΔ=4i=1 ΔNi/4を求めて、前記
各気筒ごとのΔNiを該Δに揃えるよう噴射量を
増減制御する。但し、本発明の実施例では、N信
号は単に45゜クランク角ごとに次々に出力される
ので、第4図で説明した如き、特定気筒の燃焼サ
イクルに対比させて気筒判別を行なうことはでき
ないので(これを実現するためには、例えばポン
プカム軸に今1ケの円盤を設け、該円盤上の例え
ば第1筒の圧縮上死点に一致する位置に1ケの突
起を設ければよい)、本例では、専らコンピユー
タ9内のソフト処理のみにより、前記気筒判別ま
でも行なうようにしている。
Therefore, the fine fluctuations in the N signal have a period of once every 1/2 rotation of the engine, and the maximum of the fluctuations is
It is experimentally known that the minimum value appears approximately every 90° crank angle of the engine. Here, if the difference between the maximum and minimum N fluctuation for each cylinder is ΔNi (i is the cylinder number in the combustion stroke at that time), then ΔNi is
It is known that there is a good correlation with the torque generated by combustion for each engine cylinder, and therefore,
If the ΔNi is made uniform across all cylinders #1 to #4, smooth idle rotation can be achieved.
Therefore, in this embodiment, the ΔN 1 to ΔN 4 are arithmetic averaged, that is, Δ= 4i=1 ΔNi/4 is obtained, and the injection amount is controlled to increase or decrease so that the ΔNi of each cylinder is equal to the ΔN. . However, in the embodiment of the present invention, the N signal is simply output one after another at every 45° crank angle, so cylinder discrimination cannot be performed by comparing the combustion cycle of a specific cylinder as explained in FIG. (In order to achieve this, for example, one disk should be provided on the pump cam shaft, and one protrusion should be provided on the disk, for example, at a position that corresponds to the compression top dead center of the first cylinder.) In this example, even the cylinder discrimination is performed solely by software processing within the computer 9.

即ち、連続して検出した4つのN信号のうち、
最小のN信号が検出された時点を、1つの気筒の
上死点と判定し、つまり第4図でNminが入力
された位置を上死点と判定し、以後順次、各気筒
を特定することにより気筒判別を行つている。
That is, among the four consecutively detected N signals,
The point in time when the minimum N signal is detected is determined to be the top dead center of one cylinder, that is, the position where Nmin is input in Fig. 4 is determined to be the top dead center, and each cylinder is identified sequentially thereafter. Cylinder discrimination is performed by

次に、以上述べた制御思想を実行するコンピユ
ータ9内の構成と、コンピユータ9内で実行され
る実際の処理を第5、第6図に従い説明する。第
5図にて100は燃料噴射量を制御するための演
算を行なうマイクロプロセツサ(MPU)である。
101は前記N信号のカウンタで、電磁ピツクア
ツプ5からのN信号より、エンジン回転数をカウ
ントする。また、このN信号カウンタ101は、
エンジン回転に同期して割り込み制御部102
に、各気筒の圧縮上死点及び上死点後45゜カムア
ングルごとの割り込み制御信号を送る。
Next, the internal configuration of the computer 9 that executes the control concept described above and the actual processing executed within the computer 9 will be explained with reference to FIGS. 5 and 6. In FIG. 5, 100 is a microprocessor (MPU) that performs calculations for controlling the fuel injection amount.
Reference numeral 101 denotes the N signal counter, which counts the number of engine revolutions based on the N signal from the electromagnetic pickup 5. Moreover, this N signal counter 101 is
Interrupt control unit 102 in synchronization with engine rotation
An interrupt control signal is sent to each cylinder for each compression top dead center and 45° cam angle after top dead center.

割り込み制御部102は、この信号を受ける
と、コモンバス150を通じてマイクロプロセツ
サ100に割り込み信号を出力する。104はア
ナログマルチプレツサとA/D変換器から成るア
ナログ入力ポートで、前記アクセル開度即ちエン
ジン負荷センサ10からの信号をA/D変換し
て、順次マイクロプロセツサ100に読み込ませ
る機能を持つ。これら各ユニツト101,10
2,104の出力情報は、コモンバス150を通
してマイクロプロセツサ100に伝達される。1
05は電源回路で、バツテリ17にキースイツチ
18を通して接続され、コンピユータ9に電源を
供給する。
Upon receiving this signal, the interrupt control section 102 outputs an interrupt signal to the microprocessor 100 via the common bus 150. Reference numeral 104 denotes an analog input port consisting of an analog multiplexer and an A/D converter, which has the function of A/D converting the accelerator opening degree, that is, the signal from the engine load sensor 10, and sequentially reading it into the microprocessor 100. Each of these units 101, 10
The output information of 2,104 is communicated to microprocessor 100 through common bus 150. 1
A power supply circuit 05 is connected to a battery 17 through a key switch 18 to supply power to the computer 9.

107は、プログラム動作中一時使用され、遂
次記憶内容を書き込んだり読み出したりできる一
時記憶メモリ(RAM)であつて、該RAM内に
は、後述するエンジン一燃焼ごとの回転増分
ΔN1〜ΔN4、及び各燃焼ごとに燃料噴射量制御
アクチユエータ11への制御電流を修正する修正
値Q1〜Q4の各データをメモリするアドレススペ
ースが確保されている。108はプログラムや各
種の定数等を記憶しておく読み出し専用メモリ
(ROM)である。
Reference numeral 107 denotes a temporary memory (RAM) which is used temporarily during program operation and into which stored contents can be sequentially written and read.In the RAM, rotation increments ΔN 1 to ΔN 4 for each combustion of the engine, which will be described later, are stored. , and correction values Q 1 to Q 4 for correcting the control current to the fuel injection amount control actuator 11 for each combustion. A read-only memory (ROM) 108 stores programs, various constants, and the like.

109は、MPU100にて演算、決定したア
クチユエータ11への制御電流をセツトする出力
ポート、110は前記出力信号を実際の作動電流
に変換する駆動回路であり、前記リニアソレノイ
ド式アクチユエータ11に接続されている。11
1はタイマーで、経過時間を測定し、MPU10
0に伝達すると共に、一定時間毎に割込制御信号
を送る。前述のように、N信号カウンタ101
は、前記N信号をカウントしてエンジン各気筒の
圧縮上死点ごと、及び上死点後45゜カムアングル
ごとに2種類の割込指令信号を、前記割込み制御
部102に供給する。割込制御部102は、その
信号から割込み信号を発生し、マイクロプロセツ
サ100に以下第6図に従つて説明する割込処理
ルーチンを実行させる。
109 is an output port that sets the control current to the actuator 11 calculated and determined by the MPU 100, and 110 is a drive circuit that converts the output signal into an actual operating current, which is connected to the linear solenoid actuator 11. There is. 11
1 is a timer that measures the elapsed time and
0, and also sends an interrupt control signal at regular intervals. As mentioned above, the N signal counter 101
counts the N signal and supplies two types of interrupt command signals to the interrupt control unit 102 for each compression top dead center of each cylinder of the engine and for each 45° cam angle after top dead center. The interrupt control unit 102 generates an interrupt signal from the signal, and causes the microprocessor 100 to execute an interrupt processing routine that will be explained below with reference to FIG.

第6図はマイクロプロセツサ100における処
理のフローチヤートを示す。ステツプ(201)に
て上死点割込が開始されると、まずステツプ
(202)で、今回の処理が以下どの気筒に関して行
なわれるかを認識するための認識ナンバーi値に
1を加える。次いで、ステツプ(203)にて1を
加えたi値が5でないかを調べ、もしもi=5で
あつた時はステツプ(204)にてiを1にかえる。
これは、本実施例が4気筒エンジンについて開示
されているためである。即ち、i=4であれば、
今回の処理は4番めの気筒の回転変動に注目して
行ない、次回の割込ではi=4+1=5となるた
めi=1に書きかえ、再び第1番めの気筒につい
ての処理を行なうわけである。
FIG. 6 shows a flowchart of processing in the microprocessor 100. When the top dead center interrupt is started in step (201), first in step (202), 1 is added to the recognition number i value for recognizing which cylinder the current process will be performed on. Next, in step (203), it is checked whether the i value obtained by adding 1 is not 5, and if i=5, i is changed to 1 in step (204).
This is because this embodiment is disclosed for a four-cylinder engine. That is, if i=4,
This time, we will focus on the rotational fluctuations of the 4th cylinder, and in the next interrupt, i = 4 + 1 = 5, so we will rewrite it to i = 1 and perform the processing for the 1st cylinder again. That's why.

次いで、処理はステツプ(205)にて前記N信
号カウンタとタイマのカウントにより、瞬時の回
転数Nを読み込み、ステツプ(206)にて前記回
転数Nを今回の噴射前回転数NLiとして記憶し
て、ステツプ(207)で割込を終了する。
Next, in step (205), the instantaneous rotational speed N is read by the count of the N signal counter and the timer, and in step (206), the rotational speed N is stored as the current pre-injection rotational speed N L i. Then, in step (207), the interrupt is terminated.

以後、マイクロプロセツサは次の割込処理まで
は本制御に関する以外の他の処理を実行する等し
ているが、ステツプ(208)にて上死点後45゜カム
角経過ごとの第2の割込指令が入ると、再び本制
御のための割込処理を開始する。ステツプ(209)
で、この時の瞬時エンジン回転数Nを、前述した
とおりN信号カウンタとタイマより検出し、次い
でステツプ(210)にて該回転数Nを今回の燃料
噴射後回転数NHiとして記憶する。そして、ス
テツプ(211)にて、該NHiから前回の上死点割
込時に記憶してあつたNLiを減算し、この差NH
i−NLiを、今回の噴射によるエンジン回転増
分ΔNiとしてRAM内のΔNiデータを書きかえる。
次に、ステツプ(212)にて、RAM内のΔN1
N4の算術平均Δを求めて最新の平均回転増分
Δを毎回更新してゆく。即ち、今回の処理が第
4番めの気筒に関するもの(即ちi=4)であれ
ば、ΔN4だけが、ステツプ(211)にて1サイク
ル前の旧ΔN4から、新たに求めた新ΔN4に修正
され、その後Δの演算を行なうため、Δは常
に最も新らしい4回のΔNiを平均することにな
る。
From then on, the microprocessor executes other processes other than this control until the next interrupt process, but in step (208), the microprocessor executes the second process every 45° cam angle after top dead center. When an interrupt command is received, interrupt processing for main control is started again. Step (209)
The instantaneous engine speed N at this time is detected by the N signal counter and timer as described above, and then in step (210), the engine speed N is stored as the current post-fuel injection speed N H i. Then, in step (211), N L i stored at the previous top dead center interrupt is subtracted from the N H i, and this difference N H
The ΔNi data in the RAM is rewritten with i−N Li as the engine rotation increment ΔNi due to the current injection.
Next, in step (212), ΔN 1 ~
The arithmetic mean Δ of N 4 is calculated and the latest average rotation increment Δ is updated every time. That is, if the current processing is related to the fourth cylinder (i = 4), only ΔN 4 is the new ΔN newly calculated from the old ΔN 4 from one cycle before in step (211). 4 and then calculate Δ, so Δ is always the average of the four most recent ΔNi.

ステツプ(213)にて上記Δと前記今回の回
転増分ΔNiとの差d2Ni=(Δ−ΔNi)が演算さ
れる。その値から、ステツプ(214)にて、
RAM107内の各噴射ごとの制御電流修正項Qj
をさらに補正する変数項である、ばらつき補正積
分量ε=f(d2Ni)が求められる。前記εと前記
d2Niとは第7図に示すような関係を有し、前記
d2Niの値に従つて補正積分量εは正負の値を取
る。補正積分量εの値は予め用意されたROM1
08内のデータを前記d2Niの値から検索するこ
とにより求められる。ステツプ(215)では、
RAM107内のQiの値に前記εの値を加える。
Qiの値が補正積分量εの正負の符号に従つて増
減するのはいうまでもない。
At step (213), the difference d 2 Ni=(Δ−ΔNi) between the above Δ and the current rotational increment ΔNi is calculated. From that value, in step (214),
Control current correction term Qj for each injection in RAM107
A variation correction integral amount ε=f(d 2 Ni), which is a variable term for further correction, is determined. said ε and said
The relationship with d 2 Ni is as shown in Figure 7, and the above
The correction integral amount ε takes a positive or negative value according to the value of d 2 Ni. The value of the correction integral amount ε is stored in ROM1 prepared in advance.
It is obtained by searching the data within 08 from the value of d 2 Ni. In step (215),
The value of ε is added to the value of Qi in the RAM 107.
It goes without saying that the value of Qi increases or decreases according to the positive or negative sign of the correction integral amount ε.

なお、制御の開始時には、図示せぬ初期化ルー
チンによつてQ1=Q2=Q3=Q4=0とされている
ものとする。
It is assumed that at the start of the control, Q 1 =Q 2 =Q 3 =Q 4 =0 is set by an initialization routine (not shown).

次に、ステツプ(217)では、現在のエンジン
回転数絶対値を、前記NLiとNHiを平均して
求め、ステツプ(218)では、前記アナログ入力
ポート104から現在のエンジン負荷信号αを入
力する。そして、処理219にて、現在を処理の
次に燃料が噴射される気筒への、基本燃料噴射量
に対応したアクチユエータの基本制御電流Ioを、
例えば予め用意されたROM内のデータをとα
から2次元マツプ検索することによつて求める。
該基本制御電流Ioを、本制御ではエンジン一燃焼
ごとの回転積分の大小に基いて修正する訳である
が、ステツプ(219)までの処理では、すでに燃
料が噴射されてしまつた気筒に関してΔNiを求
め、これに基いて当該気筒に対する修正項Qiを
更新している。従つて、本処理の最後で出力する
アクチユエータ制御電流Iは、今回の処理で求め
た修正項Qiではなく、すぐ次に燃料が噴射され
る気筒についてすでに3サイクル前に更新され記
憶された修正項を反映したものでなくてはならな
い。ステツプ(220)では、そのために、処理2
19まで用いた認識ナンバーiに1を加えてこれ
を修正項気筒対応ナンバーjとし、j=5でなけ
ればこのjに基いてjに対する修正項Qjを、
RAM107より読み出してステツプ(223)に
てIoに加え、次の噴射にそなかてアクチユエータ
11を変位させるべく、出力ポートに出力する。
ステツプ(221)にてj=5であつた時は、ステ
ツプ(222)で改めてjに1をセツトして同じく
ステツプ(223)へ進む。即ち、ステツプ(219)
までの処理がi=3で、つまり第3番めの気筒に
ついて行なわれていたならば、次に燃料噴射が行
なわれるのは第4番めの気筒であるため、RAM
内から3サイクル前に予め更新されているQ4
読み出し、あるいはi=4で、つまり、第4番目
の気筒についてステツプ(219)までが行なわれ
ていたならば、j=4+1=5→J=1で、次回
噴射する第1番目の気筒への噴射制御電流をQ1
に基づいて修正する。
Next, in step (217), the absolute value of the current engine speed is calculated by averaging the N L i and N H i, and in step (218), the current engine load signal α is calculated from the analog input port 104. Enter. Then, in process 219, the basic control current Io of the actuator corresponding to the basic fuel injection amount to the cylinder where fuel will be injected next after processing the current is
For example, if the data in the ROM prepared in advance is
It is obtained by searching a two-dimensional map from .
In this control, the basic control current Io is corrected based on the magnitude of the rotation integral for each engine combustion, but in the processing up to step (219), ΔNi is corrected for the cylinders in which fuel has already been injected. Based on this, the correction term Qi for the relevant cylinder is updated. Therefore, the actuator control current I output at the end of this process is not the correction term Qi obtained in this process, but the correction term that has already been updated and stored three cycles ago for the cylinder to which fuel will be injected immediately next. must reflect the In step (220), processing 2 is performed for this purpose.
Add 1 to the recognition number i used up to 19 and use this as the correction term cylinder corresponding number j, and if j = 5, based on this j, the correction term Qj for j is,
It is read out from the RAM 107, added to Io in step (223), and outputted to the output port in order to displace the actuator 11 in preparation for the next injection.
When j=5 in step (221), j is set to 1 again in step (222), and the process also proceeds to step (223). i.e. step (219)
If the processing up to i=3 had been performed for the third cylinder, then the next fuel injection would be in the fourth cylinder, so the RAM
If i = 4 , that is, steps up to step (219) have been performed for the fourth cylinder, then j = 4 + 1 = 5 → J = 1, the injection control current to the first cylinder for next injection is Q 1
Modify based on.

以上述べた処理を毎回くり返すことにより、一
燃焼ごとの回転増分が平均より大きい気筒につい
ては、噴射量が次第に減じられ、逆に一燃焼ごと
の回転増分が平均より小さい気筒については、噴
射量がしだいに増されて、最終的には全気筒で等
しい回転増分、即ち全気筒で等しい回転トルクを
生じる運転状態となる。
By repeating the above process each time, the injection amount is gradually reduced for cylinders where the rotation increment per combustion is larger than the average, and conversely, the injection amount is gradually reduced for cylinders where the rotation increment per combustion is smaller than the average. The engine speed is gradually increased until finally an operating condition is reached in which all cylinders have equal rotational increments, that is, all cylinders have equal rotational torque.

しかし、上述の制御だけでは、ステツプ
(205)、(209)でのN信号読込み時の最小桁ビツ
ト(LSB)の誤差、ステツプ(212)でのΔ演
算時の桁落ちによる丸め誤差、など種々の誤差に
より、あるいは、ステツプ(214)で求められる
補正積分量εがd2Niの一次関数になつていない
事により、各気筒の噴射修正項Qiの4気筒の総
和S=4i=1 Qiが零とはならない事が多い。そして、
この総和Sは、時間の経過と共に累積し、常に減
少もしくは増加する傾向がでてくる。総和Sの絶
対値Sが増大することはエンジン全体の噴射量に
影響を及ぼし、不具合を生じる。この不具合を解
消すべく、第8図のフローチヤートに従つて説明
する割込み処理ルーチンが実行される。
However, the above control alone can cause various errors such as the least significant bit (LSB) error when reading the N signal in steps (205) and (209), and rounding errors due to digit loss during Δ calculation in step (212). Due to the error or because the correction integral amount ε obtained in step (214) is not a linear function of d 2 Ni, the sum of the injection correction term Qi for each cylinder for the four cylinders S= 4i=1 Qi is often not zero. and,
This sum S accumulates over time and always tends to decrease or increase. An increase in the absolute value S of the total sum S affects the injection amount of the entire engine, causing problems. In order to solve this problem, an interrupt processing routine explained according to the flowchart of FIG. 8 is executed.

ステツプ(301)にて、一定時間毎にリアルタ
イム割込信号を受けて以后の処理(以下中立化補
正と称する。)が開始される。
At step (301), a real-time interrupt signal is received at regular intervals, and subsequent processing (hereinafter referred to as neutralization correction) is started.

次いでステツプ(302)にて、RAM107内
の各気筒の噴射量修正項Qiの総和S=ΣQiが算出
される。
Next, in step (302), the sum S=ΣQi of the injection amount correction terms Qi for each cylinder in the RAM 107 is calculated.

次いでステツプ(303)にて、上記総和Sの絶
対値|S|が、エンジンに悪影響を及ぼす値(例
えば0.5mm3/st)に相当する値より小さな値に設
定されたしきい値δとの大小を判定し、絶対値|
S|がしきい値δより小さければ、そのまま何も
実行せず処理を終了する。絶対値|S|がしきい
値δより大きければ、噴射量修正項Qiに補正を
加えるべく、次のステツプ(304)に進む。
Next, in step (303), the absolute value |S| of the above-mentioned sum S is compared with a threshold value δ set to a value smaller than a value corresponding to a value that has an adverse effect on the engine (for example, 0.5 mm 3 /st). Determine size and absolute value |
If S| is smaller than the threshold value δ, the process ends without executing anything. If the absolute value |S| is larger than the threshold value δ, the process proceeds to the next step (304) in order to correct the injection amount correction term Qi.

ステツプ(304)、(305)、(306)では、上記総
和Sの正負の符号に従い、全ての気筒の噴射量修
正項Qiに、一定の補正量Δを加え、あるいは減
ずる。この結果、噴射量修正項Qiの総和Sの絶
対値|S|は減少するように補正される。
In steps (304), (305), and (306), a fixed correction amount Δ is added to or subtracted from the injection amount correction term Qi of all cylinders according to the positive or negative sign of the sum S. As a result, the absolute value |S| of the sum S of the injection amount correction term Qi is corrected to decrease.

以上述べた処理を一定時間毎に繰り返すことに
より、上記総和Sの絶対値|S|は、しきい値δ
以内に抑えられる。
By repeating the above-mentioned processing at regular intervals, the absolute value |S| of the above-mentioned sum S can be determined by the threshold value δ
can be kept within.

ここでは、ステツプ(301)にてリアルタイム
割込みをするものとしたが、割込み処理とせず、
タイマー111をウオチドツグタイマーとして使
用し常時時間を監視して、一定時間毎にステツプ
(302)以下のルーチンを実行させることも、勿論
可能である。
Here, it is assumed that a real-time interrupt is performed in step (301), but it is not handled as an interrupt process.
Of course, it is also possible to use the timer 111 as a watchdog timer to constantly monitor the time and execute the routine following step (302) at regular intervals.

実際には、ステツプ(301)のリアルタイム割
込みを10mS毎とし、ステツプ(303)のしきい
値δとして0.2mm3/st相当の値とし、ステツプ
(305)、(306)の一定の補正量Δとして0.05mm3
st相当の値として良好な結果を得た。
In reality, the real-time interrupt of step (301) is set every 10 mS, the threshold value δ of step (303) is set to a value equivalent to 0.2 mm 3 /st, and the constant correction amount Δ of steps (305) and (306) is set. As 0.05mm 3 /
Good results were obtained as a value equivalent to st.

リアルタイム割込みの時間間隔が長すぎると、
該処理による中立化補正のスピード(上記補正量
Δと単位時間当りの中立化補正回転の積)が、各
気筒の噴射修正量Qiの学習補正スピード(前記
εと単位時間当りの爆発行程の回数の積)に追い
つけず、補正処理開始時や過渡時、更には前記
Qiの学習補正時に、中立化補正の効果が充分発
揮されず、過渡的に噴射量修正項Qiの総和Sが
大きな値となり、既述の不具合が生じる。
If the time interval between real-time interrupts is too long,
The speed of neutralization correction by this process (the product of the above correction amount Δ and the neutralization correction rotation per unit time) is the learning correction speed of the injection correction amount Qi of each cylinder (the above ε and the number of explosion strokes per unit time). (product of
During the learning correction of Qi, the effect of the neutralization correction is not sufficiently exerted, and the sum S of the injection amount correction term Qi becomes a large value transiently, causing the above-mentioned problem.

また、中立化補正の一回の補正量Δが大きすぎ
ると、中立化補正による噴射量の不連続な変化が
大きすぎることに起因する、エンジンの一時的な
振れなどが発生する。
Furthermore, if the one-time correction amount Δ of the neutralization correction is too large, temporary vibration of the engine will occur due to too large a discontinuous change in the injection amount due to the neutralization correction.

従つて、中立化補正のスピードは、噴射量修正
量Qiの学習補正スピードと同程度か、あるいは
やや速いことが望ましい。
Therefore, it is desirable that the speed of the neutralization correction be equal to or slightly faster than the learning correction speed of the injection amount correction amount Qi.

上記中立化補正は、各気筒毎の噴射修正項Qi
を同時に一定量だけ変化させるため、その総和S
は補正されるものの、各気筒毎の噴射量のばらつ
きを補正する量は、気筒毎の噴射修正項Qiの差
(Qi−Qk)として保存される。従つて、上記中立
化補正を行うにあたつて特別な条件を附すること
は不要であり、常時、上記中立化補正を実行させ
ても、エンジンに何ら悪影響を与えることはな
い。
The above neutralization correction is based on the injection correction term Qi for each cylinder.
to change by a certain amount at the same time, the total sum S
is corrected, but the amount for correcting the variation in injection amount for each cylinder is stored as the difference (Qi - Qk) between the injection correction terms Qi for each cylinder. Therefore, there is no need to impose any special conditions when performing the neutralization correction, and even if the neutralization correction is always performed, there will be no adverse effect on the engine.

また、気筒毎の噴射量補正量に上下限を設けた
場合には、上記中立化補正を行うことにより、噴
射量補正量の総和が零附近に保たれるため、噴射
量補正のダイナミツクレンジが一定となる利点が
ある。
In addition, when upper and lower limits are set for the injection amount correction amount for each cylinder, by performing the above neutralization correction, the sum of the injection amount correction amounts is kept close to zero, so the dynamic range of the injection amount correction is has the advantage of being constant.

〔その他の実施例〕[Other Examples]

前述第1の実施例では、定期的に一定時間毎に
一定の量Δだけ一率に補正をしていた。本実施例
では、気筒毎の噴射補正量を算出する毎に、中立
化補正を実行するものである。
In the first embodiment described above, the correction is performed periodically by a fixed amount Δ at fixed intervals. In this embodiment, neutralization correction is executed every time the injection correction amount for each cylinder is calculated.

すなわち、第6図に示すフローチヤートにおい
て、ステツプ(215)にて気筒毎の噴射量修正項
Qiが算出された後、第9図に示すフローチヤー
トで説明される中立化補正処理を実行し、次いで
第6図のフローチヤートに戻り、ステツプ(217)
以下の噴射量制御アクチユエータ11の電流値を
決定するルーチンが実行される。つまり第2の実
施例では、第6図のフローチヤートのととの
間に、第9図のフローチヤートに示すステツプが
挿入され、噴射量の制御が行なわれる。
That is, in the flowchart shown in FIG. 6, in step (215), the injection amount correction term for each cylinder is
After Qi is calculated, the neutralization correction process explained in the flowchart shown in FIG. 9 is executed, and then the process returns to the flowchart shown in FIG.
The following routine for determining the current value of the injection amount control actuator 11 is executed. That is, in the second embodiment, the steps shown in the flowchart of FIG. 9 are inserted between and in the flowchart of FIG. 6, and the injection amount is controlled.

第9図を参照し、ステツプ(402)では、
RAM107内の噴射量修正項Qiの総和S=4i=1 Qi
が演算される。
Referring to FIG. 9, in step (402),
Total sum of injection quantity correction terms Qi in RAM107 = 4i=1 Qi
is calculated.

次いでステツプ(403)にて、上記総和Sを気
筒数で除した、気筒当りの偏差β=S/4が算出
される。
Next, in step (403), the deviation per cylinder β=S/4 is calculated by dividing the above-mentioned sum S by the number of cylinders.

次にステツプ(404)、(405)にて、全気筒の噴
射量修正項Qiから上記偏差βが差引かれ、新た
な噴射量修正項QiとしてRAM内に記憶される。
噴射量修正項Qiの値が偏差βの正負の符号に従
つて増減されるのはいうまでもない。
Next, in steps (404) and (405), the deviation β is subtracted from the injection quantity correction term Qi for all cylinders and stored in the RAM as a new injection quantity correction term Qi.
It goes without saying that the value of the injection amount correction term Qi is increased or decreased according to the positive or negative sign of the deviation β.

以上で中立化補正を終了し、次には第6図ステ
ツプ(217)に移る。
With this, the neutralization correction is completed, and next, the process moves to step (217) in FIG.

この結果、噴射量修正項Qiの総和Sは常に零
となり、全気筒で等しい安定した回転トルクを生
成し、エンジンは極めて安定で平滑な運転状態と
なる。
As a result, the sum S of the injection quantity correction terms Qi is always zero, and an equal and stable rotational torque is generated in all cylinders, resulting in an extremely stable and smooth operating state of the engine.

以上説明した実施例では、4気筒デイーゼルエ
ンジンで回転数を検出し、各気筒の噴射量補正を
行う燃料噴射量制御装置への、本発明の適用例に
ついて詳述した。本発明が、多気筒内燃機関で気
筒毎の噴射量補正を行う制御装置であれば他の制
御装置、たとえば、各気筒毎の燃焼前後の振動加
速度を検出し、噴射量補正を行う装置などにも同
様に適用できるのは勿論である。
In the embodiment described above, an application example of the present invention to a fuel injection amount control device that detects the rotational speed of a four-cylinder diesel engine and corrects the injection amount of each cylinder has been described in detail. If the present invention is a control device that corrects the injection amount for each cylinder in a multi-cylinder internal combustion engine, it can also be applied to other control devices, such as a device that detects vibration acceleration before and after combustion in each cylinder and corrects the injection amount. Of course, it can also be applied in the same way.

本発明は、従来の全気筒同一に制御を行つてい
た制御装置を利用し、他に何ら悪影響を及ぼす事
なく気筒毎の噴射量制御を行えると共に、全気筒
の噴射量総量は従来と変わらないため多くの実験
から得られた従来のエンジンと制御系の適合値
(例えば、前述ステツプ(219)で検索される
とαから求められるIoの2次元マツプ)をそのま
ま利用して、最適な制御が行える利点がある。さ
らに、各気筒の補正量のダイナミツクレンジが一
定にできるという優れた利点もある。
The present invention uses a conventional control device that controls all cylinders in the same way, and can control the injection amount for each cylinder without any adverse effects on others, and the total injection amount for all cylinders is unchanged from the conventional one. Therefore, optimal control can be achieved by directly using the conventional adaptive values of the engine and control system obtained from many experiments (for example, the two-dimensional map of Io obtained from α when searched in step (219) above). It has the advantage of being able to do Another advantage is that the dynamic range of the correction amount for each cylinder can be made constant.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、気筒毎の生
成トルクを揃えるべく各気筒の噴射量を補正し、
さらにその補正値の総和が零附近とするようにし
ているので、不快なエンジン回転の周期的な変動
がなく、かつ長時間にわたつて安定で一定な回転
を維持し、滑らかに制御することができるという
優れた効果を奏する。
As described above, according to the present invention, the injection amount of each cylinder is corrected to equalize the generated torque for each cylinder,
Furthermore, since the sum of the correction values is set close to zero, there are no unpleasant periodic fluctuations in engine rotation, and stable and constant rotation can be maintained over a long period of time for smooth control. It has excellent effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例を示す全体構成図、
第2図は第1図中の燃料噴射ポンプの部分断面構
成図、第3図は第1図中の回転数センサの取付状
態を示す断面図、第4図は気筒別噴射量補正の作
動説明に供するタイミング説明図、第5図は第1
図中の制御コンピユータの詳細構成図、第6図及
び第8図は本実施例の制御コンピユータにおける
処理手順を示すフローチヤート、第7図はばらつ
き補正積分量を示す図表、第9図は本発明の他の
実施例における処理手順を示すフローチヤートで
ある。 1……デイーゼルエンジン、2……燃料噴射ポ
ンプ、5……回転数センサ、6……円盤、9……
制御コンピユータ、10……負荷センサ、11…
…噴射量制御アクチユエータ、31,32,3
3,34……噴射ノズル、100……マイクロプ
ロセツサ、107……一時記憶メモリ、108…
…読み出し専用メモリ。
FIG. 1 is an overall configuration diagram showing an embodiment of the present invention;
Fig. 2 is a partial sectional view of the fuel injection pump in Fig. 1, Fig. 3 is a sectional view showing the installation state of the rotation speed sensor in Fig. 1, and Fig. 4 is an explanation of the operation of cylinder-specific injection amount correction. Fig. 5 is a timing explanatory diagram for the
The detailed configuration diagram of the control computer in the figure, FIGS. 6 and 8 are flowcharts showing the processing procedure in the control computer of this embodiment, FIG. 7 is a chart showing the variation correction integral amount, and FIG. 9 is the invention of the present invention. 3 is a flowchart showing a processing procedure in another embodiment. 1... Diesel engine, 2... Fuel injection pump, 5... Rotation speed sensor, 6... Disc, 9...
Control computer, 10...Load sensor, 11...
...Injection amount control actuator, 31, 32, 3
3, 34...Injection nozzle, 100...Microprocessor, 107...Temporary memory, 108...
...Read-only memory.

Claims (1)

【特許請求の範囲】[Claims] 1 多気筒内燃機関へ燃料噴射装置により燃料を
噴射供給する内燃機関用燃料噴射量制御方法であ
つて、各気筒毎の生成トルクを均一にすべく、各
気筒の燃料噴射量を増減補正する燃料噴射量制御
方法において、各気筒毎に補正される燃料噴射量
の補正量の総和が、零もしくは零に近い値となる
ように前記燃料噴射量の各補正量を増減補正する
ことを特徴とする燃料噴射量制御方法。
1. A fuel injection amount control method for an internal combustion engine in which fuel is injected and supplied to a multi-cylinder internal combustion engine by a fuel injection device, in which the fuel injection amount of each cylinder is corrected to increase or decrease in order to equalize the generated torque for each cylinder. The injection amount control method is characterized in that each correction amount of the fuel injection amount is increased or decreased so that the sum of the correction amounts of the fuel injection amount corrected for each cylinder becomes zero or a value close to zero. Fuel injection amount control method.
JP14177484A 1984-07-09 1984-07-09 Fuel injection quantity controlling method Granted JPS6123848A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14177484A JPS6123848A (en) 1984-07-09 1984-07-09 Fuel injection quantity controlling method
US06/752,732 US4705000A (en) 1984-07-09 1985-07-08 Apparatus and method for controlling amount of fuel injected into engine cylinders

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14177484A JPS6123848A (en) 1984-07-09 1984-07-09 Fuel injection quantity controlling method

Publications (2)

Publication Number Publication Date
JPS6123848A JPS6123848A (en) 1986-02-01
JPH0229858B2 true JPH0229858B2 (en) 1990-07-03

Family

ID=15299862

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14177484A Granted JPS6123848A (en) 1984-07-09 1984-07-09 Fuel injection quantity controlling method

Country Status (2)

Country Link
US (1) US4705000A (en)
JP (1) JPS6123848A (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6226339A (en) * 1985-07-25 1987-02-04 Toyota Motor Corp Correction for fuel injection quantity of diesel engine
JPS62118038A (en) * 1985-11-15 1987-05-29 Komatsu Ltd Method for setting engine torque for vehicle
JP2644752B2 (en) * 1987-05-22 1997-08-25 株式会社日立製作所 Internal combustion engine torque control device
JP2591082B2 (en) * 1988-07-07 1997-03-19 株式会社デンソー Vehicle slip control device
IT1238363B (en) * 1989-06-14 1993-07-16 Fiat Auto Spa PROCEDURE AND SYSTEM FOR DETECTING THE OPERATING CHARACTERISTICS OF A MULTI-CYLINDER INTERNAL COMBUSTION ENGINE, PARTICULARLY INTERNAL COMBUSTION ENGINE PROVIDED WITH ELECTRONIC INJECTION
EP0501531B1 (en) * 1989-06-14 1993-11-10 FIAT AUTO S.p.A. A method and system for monitoring the operating characteristics of an internal combustion engine, particularly an internal combustion engine with electronic injection
EP0437057B1 (en) * 1990-01-08 1993-11-03 Hitachi, Ltd. Method and apparatus for detecting combustion conditions in a multicylinder internal combustion engine
DE4021886A1 (en) * 1990-07-10 1992-01-16 Bosch Gmbh Robert FUEL INJECTION SYSTEM FOR AN INTERNAL COMBUSTION ENGINE
JP2916271B2 (en) * 1990-12-10 1999-07-05 ヤマハ発動機株式会社 Engine fuel injection control method
DE4041538A1 (en) * 1990-12-22 1992-06-25 Bosch Gmbh Robert Circuit controlling injection valves of IC engine - with amount determination circuit for fuel injected which specifies control pulse length of injection valves depending on RPM of engine and other parameters
DE4121242A1 (en) * 1991-06-27 1993-01-14 Kloeckner Humboldt Deutz Ag METHOD FOR CALCULATING SYNCHRONOUS OPERATING PARAMETERS
DE4122139C2 (en) * 1991-07-04 2000-07-06 Bosch Gmbh Robert Method for cylinder equalization with regard to the fuel injection quantities in an internal combustion engine
US5634448A (en) * 1994-05-31 1997-06-03 Caterpillar Inc. Method and structure for controlling an apparatus, such as a fuel injector, using electronic trimming
DE19633066C2 (en) * 1996-08-16 1998-09-03 Telefunken Microelectron Method for the cylinder-selective control of a self-igniting internal combustion engine
DE19814155A1 (en) 1998-03-30 1999-10-14 Siemens Ag Method for cylinder equalization in an internal combustion engine working with direct injection
US6170463B1 (en) 1999-03-05 2001-01-09 Outboard Marine Corporation Method and apparatus for optimizing engine operation
EP1327764B1 (en) * 2002-01-15 2006-03-22 Denso Corporation Fuel injection system
US6879903B2 (en) * 2002-12-27 2005-04-12 Caterpillar Inc Method for estimating fuel injector performance
US6801847B2 (en) 2002-12-27 2004-10-05 Caterpillar Inc Method for estimating fuel injector performance
FR2886680B1 (en) * 2005-06-07 2007-09-28 Peugeot Citroen Automobiles Sa SYSTEM FOR MONITORING THE OPERATION OF A DIESEL ENGINE OF A MOTOR VEHICLE
DE102006044073B4 (en) * 2006-09-20 2017-02-23 Bayerische Motoren Werke Aktiengesellschaft Use of an electronic control device for controlling the internal combustion engine in a motor vehicle
DE102007057311B3 (en) * 2007-11-28 2009-06-10 Continental Automotive Gmbh Method and device for fault detection in emission-relevant control devices in a vehicle

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4357662A (en) * 1978-05-08 1982-11-02 The Bendix Corporation Closed loop timing and fuel distribution controls
DE2941977A1 (en) * 1979-10-17 1981-04-30 Robert Bosch Gmbh, 7000 Stuttgart DEVICE FOR OPTIMIZING THE OPERATING CHARACTERISTICS OF AN INTERNAL COMBUSTION ENGINE
JPS5746045A (en) * 1980-09-05 1982-03-16 Nippon Denso Co Ltd Air fuel ratio control method of internal combustion engine
JPS5768544A (en) * 1980-10-17 1982-04-26 Nippon Denso Co Ltd Controlling method for internal combustion engine
US4513721A (en) * 1981-08-11 1985-04-30 Nippon Soken, Inc. Air-fuel ratio control device for internal combustion engines
JPS58214627A (en) * 1982-06-07 1983-12-13 Nippon Denso Co Ltd Fuel regulator for fuel injection pump
US4418669A (en) * 1982-07-19 1983-12-06 The Bendix Corporation Fuel distribution control system for an internal combustion engine
JPS5982534A (en) * 1982-10-29 1984-05-12 Nippon Denso Co Ltd Control of fuel injection amount for internal-combustion engine
JPS5993945A (en) * 1982-11-19 1984-05-30 Nippon Denso Co Ltd Control of idle operation of internal-combustion engine
JPS59141729A (en) * 1983-01-31 1984-08-14 Nippon Denso Co Ltd Method of controlling fuel injection quantity of internal-combustion engine
JPS59155538A (en) * 1983-02-24 1984-09-04 Mazda Motor Corp Fuel injection apparatus for engine

Also Published As

Publication number Publication date
US4705000A (en) 1987-11-10
JPS6123848A (en) 1986-02-01

Similar Documents

Publication Publication Date Title
JPH0229858B2 (en)
JPS6146444A (en) Fuel injection quantity control method for internal-conbustion engine
US4442812A (en) Method and apparatus for controlling internal combustion engines
KR100317157B1 (en) Control system for internal combustion engine
EP1439300B1 (en) Engine control device
JPH09126038A (en) Fuel property detecting device and control device of diesel engine
JPH0154538B2 (en)
JPS5982534A (en) Control of fuel injection amount for internal-combustion engine
US4987770A (en) Combustioning condition monitoring system for internal combustion engine
JPS6256342B2 (en)
JPH023023B2 (en)
JPH024774B2 (en)
JPS6125947A (en) Correction control for fuel injection amount
JP2687768B2 (en) Engine control device
JPS59183041A (en) Method of controlling injection quantity of fuel in internal-combustion engine
JP3709595B2 (en) In-cylinder direct injection spark ignition engine controller
JPS6223552A (en) Control method for injection quantity of fuel for internal-combustion engine
JP2579770B2 (en) Electronically controlled fuel injector
KR890004301B1 (en) Apparatus for controlling idling operation for an internal combustion engine
JPS6217342A (en) Fuel injection control system
JPS60256537A (en) Fuel injection quantity control of internal-combustion engine
JP3195479B2 (en) Fuel injection control system for diesel engine
JPS6254972B2 (en)
KR890004295B1 (en) Apparatus for controlling idling operation of an internal combustion engine
JP4238674B2 (en) Inter-cylinder variation correction apparatus for internal combustion engine

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term