JPH02298529A - Pressure-sensitive conductive rubber material - Google Patents

Pressure-sensitive conductive rubber material

Info

Publication number
JPH02298529A
JPH02298529A JP11855489A JP11855489A JPH02298529A JP H02298529 A JPH02298529 A JP H02298529A JP 11855489 A JP11855489 A JP 11855489A JP 11855489 A JP11855489 A JP 11855489A JP H02298529 A JPH02298529 A JP H02298529A
Authority
JP
Japan
Prior art keywords
rubber
pressure
sensitive conductive
pts
conductive rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11855489A
Other languages
Japanese (ja)
Inventor
Masamitsu Iwakiri
岩切 正充
Taichi Imanishi
今西 太一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP11855489A priority Critical patent/JPH02298529A/en
Publication of JPH02298529A publication Critical patent/JPH02298529A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE:To provide a pressure-sensitive conductive rubber material having excellent pressure-sensitive characteristics and reduced in the changes of electric characteristics caused when repeatedly used, by compounding natural rubber and/or synthetic rubber with the graphitized products of gas phase-grown carbon fibers having acidic functional groups. CONSTITUTION:(A) 100 pts.wt. of natural rubber and/or synthetic rubber (which may be crosslinked or contain an antioxidant agent) are compounded with (B) 5-75 pts.wt., preferably 10-60 pts.wt., especially 15-45 pts.wt., of graphitized products, which are prepared by heating gas phase-grown carbon fibers each having a diameter of 0.01-5mum, preferably 0.01-2mum, at 1500 deg.C, preferably 1700 deg.C, in an atmosphere of an inert gas and subsequently oxidizing the heated fibers with an oxidizing agent such as an oxidizing gas or nitric acid to give acidic functional groups to the fibers in an amount of 3-500mueq/g, preferably 8-450mueq/g, especially 15-350mueq/g.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、感圧導電性ゴム材に係り、さらに詳しくは酸
性官能基を3〜500μeq/g有する気相成長法炭素
繊維の黒鉛化物(以下、VCCF−ACと略称する)を
ゴムに配合してなるゴム制であって、非加圧時から加圧
時の電気抵抗値を大きく低下させ、且つ耐クリープ性を
有し、長期間にわたって使用できる感圧導電性ゴム材に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a pressure-sensitive conductive rubber material, and more specifically, a graphitized material of vapor grown carbon fiber having 3 to 500 μeq/g of acidic functional groups ( This is a rubber system made by blending VCCF-AC (hereinafter abbreviated as VCCF-AC) into rubber, which greatly reduces the electrical resistance value from the non-pressurized state to the pressurized state, has creep resistance, and can last for a long period of time. This invention relates to a pressure-sensitive conductive rubber material that can be used.

〔従来の技術〕[Conventional technology]

従来、ゴム弾性体に導電性の優れた金属粒子、カーボン
ブラック等を配合し加圧時の変化により抵抗値を変化さ
せる感圧導電性ゴム、また導電性磁性粒子を絶縁性高分
子弾性体に分散させた後、架橋する前か架橋中に一定方
向に磁界を加えながら成形して、金属粒子を磁界に沿っ
て一定方向に配列させる感圧導電性ゴム(例えば特開昭
58−152033号公報等)が知られている。また、
導電性の感度を向上させるためにゴムシートの表面に細
胞構造の空隙部を形成し、金属粉末等の導電材料を高充
填に配合したゴムシートが、例えば特開昭58−209
810号公報に開示されている。また、ゴムシートの厚
み方向に金属繊維を充填したものが例えば特開昭58−
220307号公報に開示され、更に無機質ウィスカー
、カーボンブランク、金属粒子等をゴムに配合する感圧
導電ゴム材が特開昭61−249304号公報に提案さ
れている。
Conventionally, we have developed pressure-sensitive conductive rubber, which is a rubber elastic material mixed with highly conductive metal particles, carbon black, etc., which changes its resistance value depending on changes in pressure, and conductive magnetic particles made into an insulating polymeric elastic material. After being dispersed, a pressure-sensitive conductive rubber is molded while applying a magnetic field in a certain direction before or during crosslinking to arrange metal particles in a certain direction along the magnetic field (e.g., JP-A-58-152033). etc.) are known. Also,
In order to improve the conductivity sensitivity, a rubber sheet in which cellular structure voids are formed on the surface of the rubber sheet and a conductive material such as metal powder is highly loaded is disclosed in, for example, Japanese Patent Laid-Open No. 58-209.
It is disclosed in Japanese Patent No. 810. In addition, a rubber sheet filled with metal fibers in the thickness direction is, for example, JP-A-58-
JP-A-61-249304 discloses a pressure-sensitive conductive rubber material in which inorganic whiskers, carbon blanks, metal particles, etc. are blended with rubber.

感圧導電性ゴム材としては、金属の粉末や銀メッキした
銅粉などを導電粒子として用いたものもあるが、このよ
うな感圧導電性ゴム材は金属の酸化や、ゴムの劣化が生
じ易く問題があった。そこで各種添加剤を加えることに
よって酸化防止、劣化防止が図られているが、機械的性
質、耐久性等にまだ問題があった。
Some pressure-sensitive conductive rubber materials use metal powder or silver-plated copper powder as conductive particles, but such pressure-sensitive conductive rubber materials are susceptible to oxidation of the metal and deterioration of the rubber. There was easily a problem. Therefore, attempts have been made to prevent oxidation and deterioration by adding various additives, but there are still problems with mechanical properties, durability, etc.

また、炭素系のカーボンブランク、黒鉛粉、マイクロカ
ーボンなどを導電粒子とした感圧導電性ゴム組成物にあ
っては、導電性粒子がゴム補強性に欠けもろいため耐久
性が悪いという欠点があった。このように感圧導電性ゴ
ム材は、くり返し使用による電気伝導性の安定性、およ
び耐久性に問題があるため、従来からその改良が図られ
てきた。
In addition, pressure-sensitive conductive rubber compositions containing conductive particles such as carbon-based carbon blanks, graphite powder, and microcarbons have the disadvantage of poor durability because the conductive particles lack rubber reinforcing properties and are brittle. Ta. As described above, since pressure-sensitive conductive rubber materials have problems in electrical conductivity stability and durability due to repeated use, improvements have been made in the past.

例えば特開昭54−80350号公報で開示された感圧
導電性ゴム材にあっては、人造黒鉛粒子の丸み度をコン
トロールすることにより耐久性を向上させている。また
、特開昭53−43749号公報に開示された感圧導電
性ゴム材にあっては、金属製の導電粒子にジアルキルチ
タネート化合物等を添加することによりくり返し使用に
よる電気特性の変化を押えている。しかしながら、これ
らの感圧導電性ゴム材にあっても、実用上充分な耐1 
      微性を達成できていなくこれらの欠点を有
しない感圧導電性ゴム材が求められている。
For example, in the pressure-sensitive conductive rubber material disclosed in JP-A-54-80350, durability is improved by controlling the roundness of the artificial graphite particles. In addition, in the pressure-sensitive conductive rubber material disclosed in JP-A-53-43749, changes in electrical properties due to repeated use are suppressed by adding a dialkyl titanate compound or the like to metal conductive particles. There is. However, even these pressure-sensitive conductive rubber materials have a practically sufficient resistance to 1.
There is a need for a pressure-sensitive conductive rubber material that does not have these drawbacks.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

本発明の目的は、優れた感圧導電性特性を有し、且つく
り返し使用による電気特性の変化の少ない耐久性に優れ
た感圧導電性ゴム材を提供することにある。
An object of the present invention is to provide a pressure-sensitive conductive rubber material that has excellent pressure-sensitive conductive properties and excellent durability with little change in electrical properties due to repeated use.

〔課題を解決するための手段〕[Means to solve the problem]

本発明者らは、上記した従来技術の欠点を解決するため
鋭意研究の結果、天然ゴムおよび/または合成ゴムとV
CCF−AGからなる組成物が感圧導電性ゴム材として
優れていることを見出し、本発明に到達した。
As a result of intensive research to solve the above-mentioned drawbacks of the prior art, the present inventors have discovered that natural rubber and/or synthetic rubber and V.
It was discovered that a composition made of CCF-AG is excellent as a pressure-sensitive conductive rubber material, and the present invention was achieved.

すなわち本発明は、電気絶縁性を有する天然ゴムおよび
/または合成ゴム100重量部に対して、VGCF−A
Cを5〜75重量部配合してなる感圧導電性ゴム材であ
る。
That is, in the present invention, VGCF-A is added to 100 parts by weight of natural rubber and/or synthetic rubber having electrical insulation properties.
This is a pressure-sensitive conductive rubber material containing 5 to 75 parts by weight of C.

本発明において用いられるマトリックスは、天然ゴムお
よび/または合成ゴムである。合成ゴムとしては、例え
ばスチレン−ブタジェンゴム、ブタジェンゴム、イソプ
レンゴム、ニトリルゴム、クロロプレンゴム、ブチルゴ
ム、エチレン−プロピレンゴム、アクリルゴム、塩素化
ポリエチレンゴム、フッ素ゴム、シリコーンゴム、ウレ
タンゴム、多硫化ゴム等があげられる。さらに熱可塑性
エラストマーも使用可能であり7、またこれらのゴムを
混合して使用することも可能である。
The matrix used in the present invention is natural rubber and/or synthetic rubber. Examples of synthetic rubber include styrene-butadiene rubber, butadiene rubber, isoprene rubber, nitrile rubber, chloroprene rubber, butyl rubber, ethylene-propylene rubber, acrylic rubber, chlorinated polyethylene rubber, fluororubber, silicone rubber, urethane rubber, polysulfide rubber, etc. can give. Furthermore, thermoplastic elastomers can also be used7, and it is also possible to use a mixture of these rubbers.

上、記ゴムは機械的強度及び耐熱性を向上させるために
公知の硫黄、硫黄化合物又は過酸化物等で架橋されても
よく、また老化防止剤等が添加されていてもよい。
The above-mentioned rubber may be crosslinked with known sulfur, sulfur compounds, peroxides, etc. in order to improve mechanical strength and heat resistance, and anti-aging agents and the like may be added.

本発明において、気相成長法炭素繊維の黒鉛化物とは、
炭化水素などあ炭素源を触媒存在下に加熱し気相成長さ
せて作られる繊維状の炭素質物質すなわち気相成長法炭
素繊維に、黒鉛化熱処理をびこれを粉砕したり切断した
りした種々の形態め黒鉛質物質であり、本発明の気相成
長法炭素繊維の黒鉛化物は、その繊維を電子顕微鏡で観
察すると、芯の部分と、これを取巻く、−見して、年輪
状の炭素層からなる特異な形状を有しており、本発明の
気相成長法炭素繊維の黒鉛化物は、この様な繊維状物及
びこれが粉砕、破砕、切断などの加工を受けたものであ
る。
In the present invention, the graphitized material of vapor grown carbon fiber is
Fibrous carbonaceous materials made by heating a carbon source such as a hydrocarbon in the presence of a catalyst and growing it in a vapor phase, that is, vapor-phase grown carbon fiber, are subjected to graphitization heat treatment and then crushed or cut into various types. When the graphitized material of the vapor-grown carbon fiber of the present invention is observed under an electron microscope, it shows a core part and surrounding carbon fibers in the form of growth rings. It has a unique shape consisting of layers, and the graphitized material of vapor-grown carbon fiber of the present invention is such a fibrous material and its processed material such as crushing, crushing, and cutting.

本発明において、気相成長法炭素繊維の黒鉛化物は、直
径が0.01〜5μm1好ましくは0.01〜2μm、
更に好ましくは、0.01〜1μm、最も□好ましくは
0.01〜0.5μmであり、繊維の長さは特に制限は
ない。一般には5000μm以下であるが、更に短くて
も良く1000μmや100μm、あるいは1.0μm
でも良く、又、これを更に短く破砕や切断あるいは粉砕
した繊維状物、あるいは、粒状や不定形状の物も使用で
きる。
In the present invention, the graphitized material of vapor grown carbon fiber has a diameter of 0.01 to 5 μm, preferably 0.01 to 2 μm,
More preferably, it is 0.01 to 1 μm, most preferably 0.01 to 0.5 μm, and the length of the fiber is not particularly limited. Generally it is 5000μm or less, but it may be shorter than 1000μm, 100μm, or 1.0μm.
Alternatively, fibrous materials obtained by crushing, cutting, or pulverizing these into shorter lengths, or granular or irregularly shaped materials can also be used.

本発明において気相成長法炭素msの黒鉛化物は、炭素
の純度が高く、一般に98.5%以上、特に99%以上
、最も好ましくは99.・5%以上である。
In the present invention, the graphitized product of vapor-grown carbon ms has high carbon purity, generally 98.5% or more, particularly 99% or more, most preferably 99.5% or more.・It is 5% or more.

また、本発明において気相成長法炭素繊維の黒鉛化物は
黒鉛性の高い物質であり、更に、その中でもx1回折に
よる構造解析において、その黒鉛の結晶構造における格
子定数COが6.88以下の範=6− 囲のものであり、好ましくは6.86以下、特に好まし
くは6.80〜6.70の範囲、最も好ましくは6.7
8〜6.72の範囲のものである。
Furthermore, in the present invention, the graphitized material of the vapor grown carbon fiber is a highly graphitic material, and furthermore, in the structural analysis by x1 diffraction, the lattice constant CO in the crystal structure of graphite is in the range of 6.88 or less. =6-, preferably 6.86 or less, particularly preferably in the range of 6.80 to 6.70, most preferably 6.7
It is in the range of 8 to 6.72.

本発明において、気相成長法炭素繊維の黒鉛化物は気相
成長法炭素繊維を不活性ガス雰囲気下で高温度において
熱処理する事により得られるが、熱処理温度としては1
500°C以上、好ましくは1700°C以上、特に2
000°C以上であり、最も好ましい範囲は2100〜
3000℃の範囲である。
In the present invention, the graphitized material of vapor-grown carbon fiber is obtained by heat-treating the vapor-grown carbon fiber at high temperature in an inert gas atmosphere.
500°C or higher, preferably 1700°C or higher, especially 2
000°C or higher, and the most preferable range is 2100~
The temperature range is 3000°C.

本発明においてVCCI−AGとは、気相成長法炭素繊
維の黒鉛化物に酸性官能基を3〜500μeq/g付加
したものである。更に好ましくは、酸性官能基の付加量
は8〜450μeq/g、特に15〜350μeq/g
の範囲である。
In the present invention, VCCI-AG is a graphitized product of vapor grown carbon fiber to which 3 to 500 μeq/g of acidic functional groups are added. More preferably, the amount of acidic functional group added is 8 to 450 μeq/g, particularly 15 to 350 μeq/g.
is within the range of

本発明のVCCF−ACの製造方法としては、気相成長
法炭素繊維黒鉛化物を酸素などの酸化性ガスや硝酸など
の酸化剤などで酸化する方法が最も一般的であり、酸化
する方法の代わりにその他プラズマ法、グラフト法等も
用いられ得る。
The most common method for producing the VCCF-AC of the present invention is to oxidize vapor-grown carbon fiber graphitized material with an oxidizing gas such as oxygen or an oxidizing agent such as nitric acid, which is an alternative to the oxidizing method. In addition, plasma methods, graft methods, etc. may also be used.

本発明における感圧導電性ゴム材は、上記のVCCF−
ACを含有するゴム材であり、該組成物中のVGCF−
ACの含有量は、マトリックス100重量部に対して5
〜75重量部であり、好ましくは10〜60重量部、よ
り好ましくは10〜50重量部であり、特に好ましくは
15〜45重量部である。
The pressure-sensitive conductive rubber material in the present invention is the above-mentioned VCCF-
It is a rubber material containing AC, and VGCF-
The content of AC is 5 parts by weight per 100 parts by weight of the matrix.
-75 parts by weight, preferably 10-60 parts by weight, more preferably 10-50 parts by weight, particularly preferably 15-45 parts by weight.

本発明の感圧導電性ゴム材は、VGCF−AGの特徴に
より充分なゴム補強効果と感圧導電性が達成される。す
なわち、上記ゴムマトリックスにVCCF−AGを配合
した場合、VGCI−ACが針状繊維体であるため非常
に剛直な性質と導電性を有しており、その一部がゴムマ
トリックスの表面の種々の方向、角度をもって露出して
いるので、非加圧時から加圧時へ移るときVCCF−A
Gが点接触から面接触へ徐々に移行して抵抗値を低下さ
せる。また、VCCF−ACの配合量を変えることQこ
より目的に応じた抵抗値を有する感圧導電性ゴム材を得
ることが可能である。
The pressure-sensitive conductive rubber material of the present invention achieves sufficient rubber reinforcing effect and pressure-sensitive conductivity due to the characteristics of VGCF-AG. In other words, when VCCF-AG is blended into the rubber matrix, since VGCI-AC is a needle-like fiber body, it has very rigid properties and conductivity, and a part of it has various properties on the surface of the rubber matrix. VCCF-A is exposed in certain directions and angles, so when moving from non-pressurized to pressurized
G gradually shifts from point contact to surface contact, lowering the resistance value. Further, by changing the blending amount of VCCF-AC, it is possible to obtain a pressure-sensitive conductive rubber material having a resistance value depending on the purpose.

つぎに、天然ゴムおよび/または合成ゴムとVCCF−
ACとを配合する方法としては特に制限はなく、例えば
ヘンシエルミギサー、ニーダ−、バンバリーミキサ−、
レゾイエミキサー、ロール等の公知の手段、方法によっ
て配合され加圧することができる。これらの方法で得ら
れた感圧導電性ゴム材は、加圧をくり返し行なっても抵
抗値の変動の少ない特性を有し、更に、この組成物はV
GCF−AGの添加量によって抵抗値を変化させられる
特性も有している。
Next, natural rubber and/or synthetic rubber and VCCF-
There are no particular restrictions on the method of blending with AC, such as Henschel Migisser, kneader, Banbury mixer,
It can be blended and pressurized by known means and methods such as a Rezoyer mixer and a roll. The pressure-sensitive conductive rubber material obtained by these methods has the property that its resistance value does not change much even when pressurized repeatedly, and furthermore, this composition has
It also has the characteristic that the resistance value can be changed depending on the amount of GCF-AG added.

これらの特性について以下実施例および比較例により詳
細に説明する。
These characteristics will be explained in detail below using Examples and Comparative Examples.

〔実施例〕〔Example〕

実施例1〜3および比較例1〜3 直径が0.05〜0.1μmの気相成長法炭素繊維(ト
リスアセチルアセ1−ナート鉄とヘンゼンを1400℃
の加熱空間に導入し浮遊状態で合成した)を、2400
°Cアルゴン気流下で熱処理を行ない、炭素含有量99
%、格子定数6.75の黒鉛化物を得た。この黒鉛化物
を酸素0.7%含有N2ガスで酸化し、酸性官能基の量
が136μeq/gの気相成長法炭素繊維の黒鉛化物を
得た。これを若干破砕し、分散操作がしやすい、且つ電
子顕微鏡で観察したときの繊維長が実質的に5.0μm
以上の酸性官能基をもつVGCF−ACを得た。
Examples 1 to 3 and Comparative Examples 1 to 3 Vapor grown carbon fibers with a diameter of 0.05 to 0.1 μm (trisacetylacetylacetate iron and Hensen at 1400°C
) was synthesized in a floating state by introducing it into the heating space of
Heat treated under argon flow at °C, carbon content 99
% and a lattice constant of 6.75 was obtained. This graphitized product was oxidized with N2 gas containing 0.7% oxygen to obtain a graphitized vapor grown carbon fiber having an amount of acidic functional groups of 136 μeq/g. By slightly crushing this, it is easy to disperse, and the fiber length when observed with an electron microscope is essentially 5.0 μm.
VGCF-AC having the above acidic functional group was obtained.

第−表に示す配合に基づき、ゴム配合物をバンバリーミ
キサ−で混練後、ロールを用いて厚み2mmのシートを
作成し、常法により成形硬化したシートを2cmX2c
mの寸法にサンプルを切り取り、両面に電極を取りつけ
、非加圧時及び加圧時の体積固有抵抗値(Ω・cm)を
測定した。その結果は第二表に示されるとおり良好な感
圧導電特性を有し、VCCF−AGの添加量をえらぶこ
とで目的に応じて使用出来る。
Based on the formulation shown in Table 1, the rubber compound was kneaded in a Banbury mixer, then a sheet with a thickness of 2 mm was created using a roll, and the sheet was molded and cured by a conventional method to a size of 2 cm x 2 cm.
A sample was cut to a size of m, electrodes were attached to both sides, and the volume resistivity (Ω·cm) was measured when no pressure was applied and when pressure was applied. As shown in Table 2, the results show that it has good pressure-sensitive conductive properties, and can be used depending on the purpose by selecting the amount of VCCF-AG added.

次にこのシートを以下の方法で試験してその耐久性の評
価を行った。
Next, this sheet was tested in the following manner to evaluate its durability.

まずシートを上下から電極ではさみ500 g/cm2
の力でくり返し加圧し一定回数ごとに加圧力と抵抗の関
係を調べこれをグラフに描いた。しばらくは同じ形を描
くが回数を増加していくとグラフは形が変化していき、
そしである回数以上になると急に形が変化する。そのと
きの回数をシートの耐久性と判定した。
First, the sheet is sandwiched between electrodes from above and below at 500 g/cm2.
Pressure was applied repeatedly with a force of , and the relationship between the applied force and resistance was examined at regular intervals and drawn in a graph. The same shape is drawn for a while, but as the number of times is increased, the shape of the graph changes,
When the number of times exceeds a certain number, the shape suddenly changes. The number of times at that time was determined as the durability of the sheet.

その結果は第三表に示すとおり、VGCF−AGによる
補強効果が見られ、本発明の感圧導電性ゴム材は感圧導
電特性及び耐久性において優れている。
As shown in Table 3, the results show that VGCF-AG has a reinforcing effect, and the pressure-sensitive conductive rubber material of the present invention is excellent in pressure-sensitive conductive properties and durability.

(以下余白) 、1 1l− −t3−            −−−第三表  (
耐久性) 〔発明の効果〕 以上詳述したように、本発明の感圧導電性ゴム材は、優
れた感圧導電特性を有し、しかもくり返し使用における
耐久性にも優れたものである。さらにVGCF−AGの
特徴でもあるゴム補強効果も有する。
(Margins below), 1 1l- -t3- ---Table 3 (
Durability) [Effects of the Invention] As detailed above, the pressure-sensitive conductive rubber material of the present invention has excellent pressure-sensitive conductive properties and is also excellent in durability in repeated use. Furthermore, it also has a rubber reinforcing effect, which is a characteristic of VGCF-AG.

また本発明の感圧導電性ゴム材は、優れた導電性能を有
するので、金属粒子、金属繊維等との併用の必要もなく
、簡便に製造できる利点も有する。
In addition, since the pressure-sensitive conductive rubber material of the present invention has excellent conductive performance, it does not need to be used in combination with metal particles, metal fibers, etc., and has the advantage that it can be easily manufactured.

Claims (1)

【特許請求の範囲】[Claims] 天然ゴムおよび/または合成ゴム100重量部に対して
、酸性官能基を3〜500μeq/g有する気相成長法
炭素繊維の黒鉛化物を5〜75重量部配合してなる感圧
導電性ゴム材。
A pressure-sensitive conductive rubber material comprising 5 to 75 parts by weight of graphitized vapor grown carbon fiber having 3 to 500 μeq/g of acidic functional groups to 100 parts by weight of natural rubber and/or synthetic rubber.
JP11855489A 1989-05-15 1989-05-15 Pressure-sensitive conductive rubber material Pending JPH02298529A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11855489A JPH02298529A (en) 1989-05-15 1989-05-15 Pressure-sensitive conductive rubber material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11855489A JPH02298529A (en) 1989-05-15 1989-05-15 Pressure-sensitive conductive rubber material

Publications (1)

Publication Number Publication Date
JPH02298529A true JPH02298529A (en) 1990-12-10

Family

ID=14739463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11855489A Pending JPH02298529A (en) 1989-05-15 1989-05-15 Pressure-sensitive conductive rubber material

Country Status (1)

Country Link
JP (1) JPH02298529A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0644233A1 (en) * 1993-08-12 1995-03-22 The Goodyear Tire & Rubber Company Graphite fiber reinforced tires & method of incorporating graphite fibers into an elastomer
JP2008143963A (en) * 2006-12-07 2008-06-26 Nissin Kogyo Co Ltd Carbon fiber composite material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0644233A1 (en) * 1993-08-12 1995-03-22 The Goodyear Tire & Rubber Company Graphite fiber reinforced tires & method of incorporating graphite fibers into an elastomer
JP2008143963A (en) * 2006-12-07 2008-06-26 Nissin Kogyo Co Ltd Carbon fiber composite material

Similar Documents

Publication Publication Date Title
Chen et al. Preparation of polystyrene–graphite conducting nanocomposites via intercalation polymerization
US9142331B2 (en) Elastomer composite with improved dielectric properties and production method thereof
JP2002506416A (en) Soft graphite sheet with reduced anisotropy
JPH02298530A (en) Pressure-sensitive conductive rubber composition
CN115322472A (en) Semiconductive shielding material based on compound resin and preparation method and application thereof
JPH02298531A (en) Pressure-sensitive conductive rubber material
US3049584A (en) High voltage shielding composition
JPH02228340A (en) Pressure-sensitive conductive rubber composition
JPH02298529A (en) Pressure-sensitive conductive rubber material
TW200936665A (en) Reduction of dielectric losses through use of organoclay in semiconductor or insulator compositions
US5254409A (en) Conductive resin composite
Lovell et al. Thermodynamic approach to enhanced dispersion and physical properties in a carbon nanotube/polypeptide nanocomposite
Heintz Influence of coke structure on the properties of the carbon-graphite artefact
JPS63280788A (en) Composition for gasket
JPH0791422B2 (en) Heat aging resistant rubber composition
JP4270138B2 (en) Carbon materials used for the production of carbon nanotubes and carbon nanohorns, the production of arc soot containing carbon nanotubes or carbon nanohorns, and the production of carbon nanoballoon raw materials
JPH01101372A (en) Electrically conductive composite resin composition
JPH03250503A (en) Conductive resin composition
CN110894360A (en) Composite silicon rubber for composite insulator and preparation method thereof
KR101736203B1 (en) Polymer thermoelectric material compositions having high electrical conductivity and thermoelectric material film comprising the same
JPS62119269A (en) Electrically conductive resin composition
JPH0216135A (en) Rubber composition
Princy et al. Studies on conductivity of nitrile rubber and its blends with NR, EPDM, and PVC
KR101412639B1 (en) Semiconductive compouind for extra high voltage power cable including ethylene α-olefin copolymer and carbon nanotube and method of manufacturing thereof
JP2004043786A (en) Rubber composition