JPH02298527A - Cellular sintered body composed of polyarylene sulfide - Google Patents

Cellular sintered body composed of polyarylene sulfide

Info

Publication number
JPH02298527A
JPH02298527A JP11858589A JP11858589A JPH02298527A JP H02298527 A JPH02298527 A JP H02298527A JP 11858589 A JP11858589 A JP 11858589A JP 11858589 A JP11858589 A JP 11858589A JP H02298527 A JPH02298527 A JP H02298527A
Authority
JP
Japan
Prior art keywords
temperature
sintered body
powder
heat
polyarylene sulfide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11858589A
Other languages
Japanese (ja)
Inventor
Tomoo Enoki
榎 智勇
Yasuo Sakaguchi
坂口 泰雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kureha Corp
Original Assignee
Kureha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kureha Corp filed Critical Kureha Corp
Priority to JP11858589A priority Critical patent/JPH02298527A/en
Publication of JPH02298527A publication Critical patent/JPH02298527A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a cellular sintered body, having preferred voids and excellent in dimensional stability, heat, chemical resistance, etc., with a low molding shrinkage factor by heat-treating powder of a polyarylene sulfide under specific temperature conditions, then heating and sintering the resultant heat-treated powder. CONSTITUTION:A cellular sintered body obtained by heat-treating (A) powder of a substantially linear polyarylene sulfide having 500 to 5X10<4>P, preferably 10<3> to 10<4>P melt viscosity (at 310 deg.C and 1200/sec shearing rate), preferably a block copolymer, etc., composed of 50-95mol% recurring units expressed by formula I and 5-50mol% blocks expressed by formula II at a temperature above the melting crystallization temperature and below the melting point for 0.5-600min and having 2X10<3> to 10<5>P, preferably 3X10<3> to 7X10<4>P, heating and sintering the resultant heat-treated powder (B) at a temperature above the softening temperature and below the decomposition temperature and preferably further heat-setting the sintered body at a temperature below the melting point.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ポリアリーレンスルフィド(以下、rPAS
Jと略記)からなる多孔質焼結体に関し、さらに詳しく
は、成形収縮率が小さく、好適な空隙率を持ち、寸法安
定性、耐熱性、耐薬品性、機械的特性などに優れた多孔
質焼結体に関する。
Detailed Description of the Invention [Industrial Application Field] The present invention relates to polyarylene sulfide (hereinafter referred to as rPAS).
Regarding porous sintered bodies (abbreviated as J), more specifically, porous sintered bodies with low molding shrinkage, suitable porosity, and excellent dimensional stability, heat resistance, chemical resistance, mechanical properties, etc. Regarding sintered bodies.

[従来の技術] 従来、高分子多孔質物質としてポリエチレン、ポリプロ
ピレン、ポリ塩化ビニル、ポリアミド、ポリメヂルメタ
クリレ−1・、セルロース樹脂、ポリフッ化ビニリデン
等の樹脂を原料とする多孔質焼結体が量産化され、各種
の用途として、例えば、下水、凍原、畜産、各種産業廃
水の処理、生活廃水処理等の広範な分野で利用されてい
る。
[Prior Art] Conventionally, porous sintered bodies made of resins such as polyethylene, polypropylene, polyvinyl chloride, polyamide, polymethyl methacrylate-1, cellulose resin, and polyvinylidene fluoride have been used as porous polymer materials. It has been mass-produced and is used in a wide range of fields such as sewage, frozen plains, livestock farming, various industrial wastewater treatment, and domestic wastewater treatment.

しかしながら、近年、化学産業分野でのより厳しい公害
防止の規制、医療分野でのより完全な消毒、滅菌の要求
等により、それらの分野で使用される多孔質焼結体への
要求もより高度なものと1(ってきている。すなわち、
従来以上の耐熱性、耐薬品性が要求され、例えば、10
0″C以上の乾熱、温熱による繰り返し消毒、滅菌や高
温下での酸、アルカリ、塩酸、油分、有機溶剤等の薬品
との長期にわたる接触に耐える焼結体が強く要望されて
いる。
However, in recent years, due to stricter pollution prevention regulations in the chemical industry and demands for more complete disinfection and sterilization in the medical field, the requirements for porous sintered bodies used in these fields have become more sophisticated. Things and 1 (are coming. In other words,
Heat resistance and chemical resistance higher than conventional ones are required, for example, 10
There is a strong demand for a sintered body that can withstand repeated disinfection and sterilization using dry heat or warm heat at temperatures above 0''C, as well as long-term contact with chemicals such as acids, alkalis, hydrochloric acid, oils, and organic solvents at high temperatures.

耐熱性等が要求される分野の具体例として、例えば、焼
却炉の廃ガスフィルター用の高分子多孔質焼結体がある
が、その用途に適合するには、120℃以上の耐熱性を
必要とする。ところが現在廃ガスフィルター用として市
販されているポリアミド系の多孔質焼結体は、耐熱性が
不充分であり、120″C以」二での使用には不適当で
ある。
A specific example of a field that requires heat resistance is, for example, porous sintered polymers for waste gas filters in incinerators, which require heat resistance of 120°C or higher to be suitable for that purpose. shall be. However, polyamide-based porous sintered bodies currently on the market for exhaust gas filters have insufficient heat resistance and are unsuitable for use at temperatures above 120"C.

一方、耐熱性を有する多孔質焼結体どして、芳香族ポリ
スルフォンからなる多孔質焼結体(特開昭52−1 /
i、 6468号公報)やポリアミドイミドからなる多
孔質焼結体(特開昭57−874.36号公報)などが
提案されているが、いずれもペレットを機械的に粉砕し
て焼結用の粉体を調製しており、粉体を得るための手段
が能率的ではな(、しかも原料が高価なこともあって、
工業化には困離性を有している。
On the other hand, as a porous sintered body having heat resistance, a porous sintered body made of aromatic polysulfone (JP-A-52-1/
I, No. 6468) and porous sintered bodies made of polyamideimide (Japanese Patent Application Laid-Open No. 57-874.36), but in both cases, pellets are mechanically crushed to prepare the material for sintering. However, the means to obtain the powder are not efficient (and the raw materials are expensive).
Industrialization is difficult to achieve.

近年、耐熱性や耐薬品性に優れたエンジニアリングブラ
スヂックとして、ポリフェニレンスルフィドを代表とす
るPASが開発されているが、重合より得られるPAS
粒子の大きさは、重合時にコントロールできるので、粉
砕工程を経ることなく、そのまま焼結用の粉体として利
用できるという利点を有している。しかし、重合より得
られるPAS粒子は、一般に、多数の微細な孔を有して
おり、比表面積が太き(、嵩密度が小さいために、該粒
子を使用して通常の焼結法により多孔質焼結体を成形す
ると、成形収縮率が大きく、寸法安定性の悪い焼結体し
か得られない等の問題がある。また、PPSの中でも、
酸化架橋による増粘(キュアー)により分子量を増大さ
ぜたものでは、PPS粒子の結着性に欠け、焼結しても
個々の粉体がバラバラとなり易(、機械的強度に優れた
焼結体を得ることができない。
In recent years, PAS, represented by polyphenylene sulfide, has been developed as an engineering brass with excellent heat resistance and chemical resistance.
Since the particle size can be controlled during polymerization, it has the advantage that it can be used as a powder for sintering without going through a pulverization process. However, PAS particles obtained by polymerization generally have a large number of fine pores, a large specific surface area (and a small bulk density), so they can be used to create pores using a normal sintering method. When molding a high-quality sintered body, there are problems such as a large molding shrinkage rate and a sintered body with poor dimensional stability.In addition, among PPS,
If the molecular weight is increased by curing due to oxidative crosslinking, the PPS particles lack binding properties, and individual powders tend to fall apart even after sintering (sintering with excellent mechanical strength) Can't get the body.

このように、寸法安定性、耐熱性、耐薬品性、機械的特
性などの性質を合わせもち、かつ、工業化が可能な多孔
質焼結体は、未だ開発されていないのが実状である。
As described above, the reality is that a porous sintered body that has properties such as dimensional stability, heat resistance, chemical resistance, and mechanical properties and can be industrialized has not yet been developed.

〔発明が解決′しようとする課題] 本発明の目的は、従来技術のもつ前記問題点を克服し、
成形収縮率が小さく、好適な空隙率を持ち、寸法安定性
、耐熱性、耐薬品性、機械的特性などに優れた多孔質焼
結体を提供することにある。
[Problems to be Solved by the Invention] The purpose of the present invention is to overcome the above-mentioned problems of the prior art, and
The object of the present invention is to provide a porous sintered body having a small mold shrinkage rate, a suitable porosity, and excellent dimensional stability, heat resistance, chemical resistance, mechanical properties, etc.

本発明者らは、従来技術の有する問題点を克服ずべく、
鋭意検討した結果、重合により得られた実質的に線状の
PAS扮体を、そのまま焼結用として用いるのでばな(
、予め特定条件下での熱処理を行なってから焼結させる
ことにより、前記欠点を克服した優れた物性を有する多
孔質焼結体の得られることを見出し、その知見に基づい
て本発明を完成するに至った。
The present inventors, in order to overcome the problems of the prior art,
As a result of extensive research, we found that the substantially linear PAS material obtained by polymerization can be used as it is for sintering.
discovered that a porous sintered body having excellent physical properties that overcomes the above drawbacks can be obtained by performing heat treatment under specific conditions before sintering, and based on that knowledge, completed the present invention. reached.

[課題を解決するための手段〕 かくして、本発明によれば、溶融粘度η*(310°C
1剪断速度1200/秒で測定)が500〜5×104
ポイズの実質的に線状なポリアリーレンスルフィドの粉
体を、該ポリアリーレンスルフィドの溶融結晶化温度以
上融点以下の温度で0.5〜600分の範囲で熱処理し
、しかる後、該粉体なポリアリーレンスルフィドの軟化
温度以上分解温度以下の温度で加熱焼結させることによ
って得られる多孔質焼結体が提供される。
[Means for Solving the Problems] Thus, according to the present invention, the melt viscosity η* (310°C
1) measured at a shear rate of 1200/sec) is 500 to 5 x 104
Poise's substantially linear polyarylene sulfide powder is heat-treated at a temperature above the melt crystallization temperature of the polyarylene sulfide and below the melting point for 0.5 to 600 minutes, and then the powder is A porous sintered body obtained by heating and sintering polyarylene sulfide at a temperature above the softening temperature and below the decomposition temperature is provided.

以下、本発明について詳述する。The present invention will be explained in detail below.

(PAS) 本発明の多孔質焼結体の原料として用いられるPASは
、310℃、剪断速度1200/秒で測定した溶融粘度
η*が500〜5X 10’ポイズ、好ましくは103
〜104ポイズ、特に好ましくは2X103〜8X10
3ポイズの実質的に線状のポリマーである。
(PAS) PAS used as a raw material for the porous sintered body of the present invention has a melt viscosity η* of 500 to 5X 10' poise, preferably 103
~104 poise, particularly preferably 2X103 to 8X10
3 poise substantially linear polymer.

PASの溶融粘度η*が500ポイズ未満の低溶融粘度
のポリマーでは、熱処理しても、焼結できないか、ある
いは機械的に脆弱な焼結体となり、逆に、5×104ポ
イズを超える高粘度のポリマーであると、PAS粒子の
溶融粘着性が悪くなり、やはり機械的に脆弱な焼結体と
なるため、好ましくない。
Polymers with a low melt viscosity of PAS with a melt viscosity η* of less than 500 poise cannot be sintered even after heat treatment, or result in a mechanically fragile sintered body; conversely, polymers with a high viscosity exceeding 5 x 104 poise Polymers of 1 to 1 are undesirable because the melt adhesion of the PAS particles deteriorates, resulting in a mechanically fragile sintered body.

このようなPASは、特開昭61−7332号公報に記
載されているように、アルカリ金属硫化物とジハロ芳香
族化合物とを、N−メチルピロリドンなどの有機アミド
溶媒中で、水の存在下に、特定の二段階昇温重合法によ
り、粒子の形状で1、(粉体として)、好適に得ること
ができる。
Such PAS is produced by combining an alkali metal sulfide and a dihaloaromatic compound in an organic amide solvent such as N-methylpyrrolidone in the presence of water, as described in JP-A-61-7332. In addition, it can be suitably obtained in the form of particles (as a powder) by a specific two-step temperature-rise polymerization method.

本発明で使用するPASは、好ましくはポリフェニレン
スルフィド、特に好ましくは、ポリマーの繰返し単位と
してp−フェニレンスルフィしくけ70重量%以上、さ
らに好ましくは90重量%以上、を含む実質的に線状の
ポリ−p−フェニレンスルフィドの単独重合体または共
重合体が望ましい。
The PAS used in the present invention is preferably a substantially linear PAS containing polyphenylene sulfide, particularly preferably 70% by weight or more, more preferably 90% by weight or more of p-phenylene sulfide as a repeating unit of the polymer. Homopolymers or copolymers of poly-p-phenylene sulfide are preferred.

p−フェニレンスルフィド単位が50重量%以上である
ことに対応して、このPASは50重量%未滴の他の共
重合可能な繰返し単位を含んでいてもよい。このような
繰返し単位としては、例える。
Corresponding to the 50% by weight or more of p-phenylene sulfide units, the PAS may also contain less than 50% by weight of other copolymerizable repeating units. An example of such a repeating unit is:

また、本発明では、PASとして、繰返し単位らなるブ
ロック共重合体または該ブロック共重合体を含有するP
AS組成物を用いることができる。
In addition, in the present invention, as PAS, a block copolymer consisting of repeating units or a PAS containing the block copolymer is used.
AS compositions can be used.

本発明で使用するPASは、重合により得られる粒子の
形状を持つ実質的に線状のポリマー粉体である。
The PAS used in the present invention is a substantially linear polymer powder having the shape of particles obtained by polymerization.

ここで、実質的に線状とは、酸化架橋による増粘(キュ
アー)で得られるようなポリマーではな(、実質的に二
官能性モノマーを主体とするモノマーから得られたポリ
マーをいう。ただし、トリクロルベンゼンなどのポリへ
ロベンゼンを少量成分として共重合させることにより、
若干の架橋構造および/または分枝構造を導入したPA
Sも本発明を損なわない範囲で好適に用いることができ
る。
Here, the term "substantially linear" refers to a polymer obtained from monomers mainly consisting of difunctional monomers, rather than a polymer obtained by thickening (curing) through oxidative crosslinking.However, By copolymerizing polyhelobenzene such as trichlorobenzene as a minor component,
PA with some crosslinked structure and/or branched structure introduced
S can also be suitably used as long as it does not impair the present invention.

このPASには、必要に応じて各種充填剤、添加剤等を
適宜配合することができる。
Various fillers, additives, etc. can be appropriately blended into this PAS as necessary.

(熱処理) 本発明においては、重合により得られた粒子状のPAS
粉体を焼結するにあたり、予め特定の条件下で熱処理を
行なうことを最大の特徴とする。
(Heat treatment) In the present invention, particulate PAS obtained by polymerization
The main feature is that before sintering the powder, heat treatment is performed under specific conditions.

熱処理は、重合により得られた粒子状のPAS粉体を、
PASの溶融結晶化温度以上融点以下の温度で0.5〜
600分、好ましくは1〜300分程度加熱することに
より行なう。
In the heat treatment, the particulate PAS powder obtained by polymerization is
0.5 to 0.5 at a temperature above the melting crystallization temperature of PAS and below the melting point
This is carried out by heating for about 600 minutes, preferably about 1 to 300 minutes.

熱処理温度がPASの溶融結晶化温度未満であると、熱
処理効果が小さく、粒子の密度が上がらず、多孔質焼結
体の成形時に収縮が起き、寸法精度のよい多孔質焼結体
が得難い。また、熱処理温度がPASの融点より高いと
、熱処理時に焼結が生じ、もとの粉体状態に戻すのが困
難となる。
If the heat treatment temperature is lower than the melt crystallization temperature of PAS, the heat treatment effect will be small, the density of the particles will not increase, shrinkage will occur during molding of the porous sintered body, and it will be difficult to obtain a porous sintered body with good dimensional accuracy. Furthermore, if the heat treatment temperature is higher than the melting point of PAS, sintering will occur during the heat treatment, making it difficult to return to the original powder state.

熱処理時間は、PASの溶融結晶化温度以上融点以下の
熱処理温度になった時点から0.5〜600分、好まし
くは1〜300分程度である。
The heat treatment time is about 0.5 to 600 minutes, preferably about 1 to 300 minutes, from the time when the heat treatment temperature reaches a temperature higher than the melt crystallization temperature and lower than the melting point of PAS.

処理時間が短かぎると成形収縮率が大きく、寸法安定性
に欠け、一方、長すぎると熱架橋あるいは酸化架橋反応
等が進行しすぎて粒子の焼結性が低下する。
If the treatment time is too short, the molding shrinkage rate will be large and dimensional stability will be lacking, while if the treatment time is too long, thermal crosslinking or oxidative crosslinking reactions will proceed too much and the sinterability of the particles will deteriorate.

熱処理は、空気中でもよ(、あるいは空気の−部を窒素
ガス等の不活性ガスで置換し行なってもよ(、特に限定
されるものではない。
The heat treatment may be carried out in air (or by replacing a portion of the air with an inert gas such as nitrogen gas), but is not particularly limited.

熱処理後のPASの溶融粘度η* (310℃、剪断速
度1200/秒で測定)は、2×103〜105ポイズ
、好ましくは3 X 1. O”〜7×104ポイズ、
特に好ましくは5X10”〜5×10’ボイスであるこ
とが望ましい。熱処理後の溶融粘度η*が2X10”ポ
イズ未満と低過ぎると、焼結できないか、あるいは成形
収縮率が大きく、焼結体にひびが入るなどの問題があり
、105ポイズを超えるとRAS粒子の溶融粘着性が悪
くなり、機械的に脆弱な焼結体となる。特に、熱処理後
の溶融粘度η*を5×103〜5×10’ボイスとする
ことにより、焼結温度を高(することができ、孔形状が
良く、機械的物性に優れた焼結体が得られる。
The melt viscosity η* (measured at 310° C. and shear rate of 1200/sec) of PAS after heat treatment is 2×10 3 to 10 5 poise, preferably 3×1. O”~7×104 poise,
Particularly preferably, it is 5 x 10" to 5 x 10' voice. If the melt viscosity η* after heat treatment is too low, less than 2 There are problems such as cracking, and if it exceeds 105 poise, the melt adhesion of the RAS particles deteriorates, resulting in a mechanically fragile sintered body. In particular, by setting the melt viscosity η* after heat treatment to 5 x 103 to 5 x 10'voice, the sintering temperature can be increased, resulting in a sintered body with good pore shape and excellent mechanical properties. can get.

熱処理したPAS粉体は、粒子が互いに軽(焼結してい
るが、ミキサー等で粉砕することにより、簡単にもとの
粉体状態に戻すことができる。
Although the heat-treated PAS powder has particles that are sintered together, it can be easily returned to its original powder state by pulverizing it with a mixer or the like.

熱処理したPAS粒子を焼結すると、未処理のPAS粒
子を用いた場合と比較して、熱収縮率が小さく、寸法安
定性のよい多孔質焼結体が得られる。その理由は、重合
より得られるRAS粒子を熱処理すると、該粒子の非晶
部分が溶融して微細な孔がつまることにより、粒子の嵩
密度が太き(なり、さらに熱架橋等により溶融粘度が高
くなるためと推定される。熱処理したPAS粒子は、架
橋により増粘されているため、粒子の溶融温度より相当
高い温度で焼結しても、粒子が大きな溶融流れを起こさ
ず、曲げたわみ性の大きい多孔質焼結体が得られる。ま
た、粒子の形状が崩れないために、孔形状が一定な焼結
体が得られる。
When heat-treated PAS particles are sintered, a porous sintered body with a smaller thermal shrinkage rate and better dimensional stability can be obtained than when untreated PAS particles are used. The reason for this is that when RAS particles obtained by polymerization are heat-treated, the amorphous portion of the particles melts and the fine pores become clogged, resulting in an increase in the bulk density of the particles (and a decrease in melt viscosity due to thermal crosslinking, etc. Heat-treated PAS particles are thickened by crosslinking, so even when sintered at a temperature considerably higher than the particle's melting temperature, the particles do not cause large melt flow and have low bending flexibility. A porous sintered body with a large pore size can be obtained.Furthermore, since the shape of the particles does not collapse, a sintered body with a constant pore shape can be obtained.

(焼結方法) 焼結方法としては、特に限定されず、例えば、熱処理後
のPAS粉体を軽く振動を与えながら金型に充填した後
、該PASの軟化温度以上分解温度以下の温度で、空気
中または不活性ガス雰囲気中で一定時間加熱する方法等
、通常使用される方法が採用できる。尚、ここで軟化温
度は荷重たわみ温度試験法により、また分解温度は、熱
重量測定法により求めることができる。
(Sintering method) The sintering method is not particularly limited, and for example, after filling the heat-treated PAS powder into a mold while slightly vibrating, at a temperature higher than the softening temperature and lower than the decomposition temperature of the PAS, Commonly used methods such as heating for a certain period of time in air or an inert gas atmosphere can be employed. Here, the softening temperature can be determined by a load deflection temperature test method, and the decomposition temperature can be determined by a thermogravimetry method.

PAS粉体の焼結温度は、通常、270〜450℃程度
であって、焼結時間は、05〜600分程度である。焼
結温度が270″Cより低いと焼結性が弱く、長時間加
熱しても酸化架橋および熱架橋反応が進行するため焼結
性はよくならない。
The sintering temperature of PAS powder is usually about 270 to 450°C, and the sintering time is about 05 to 600 minutes. If the sintering temperature is lower than 270''C, the sinterability will be weak, and even if heated for a long time, oxidative crosslinking and thermal crosslinking reactions will proceed, so the sinterability will not improve.

また450°Cを超えて高くするとPASの分解が進み
好ましくない。
Moreover, if the temperature is raised to more than 450°C, PAS decomposes, which is undesirable.

また、焼結後、PASの融点以下の温度、好ましくは1
50〜250 ’Cで、5〜600分程度熱固定すると
焼結体の結晶化度が高(なり、耐熱性が向上するので好
ましい。
Also, after sintering, the temperature below the melting point of PAS, preferably 1
Heat setting at 50 to 250'C for about 5 to 600 minutes is preferable because the crystallinity of the sintered body becomes high and the heat resistance improves.

使用されるPAS粒子の平均粒径は、特に制限されない
が、通常、5μm〜3mmの範囲で使用され、特に20
μm〜1,000μmの範囲で球形に近い形状のものが
好ましい。
The average particle size of the PAS particles used is not particularly limited, but is usually used in the range of 5 μm to 3 mm, particularly 20 μm to 3 mm.
A shape close to a sphere in the range of μm to 1,000 μm is preferable.

得られた焼結体の見掛けの空隙率としては10%〜80
%が望ましく、10%以下では透気性、透水性が充分で
なく、80%以上では強度が低くなる。
The apparent porosity of the obtained sintered body is 10% to 80%.
% is desirable; if it is less than 10%, air permeability and water permeability will not be sufficient, and if it is more than 80%, the strength will be low.

(用途) 本発明の多孔質焼結体は、RASの有する耐熱性や耐薬
品性等の性質を有するとともに、焼結体として、成形収
縮率が小さく、好適な空隙率を持ち、寸法安定性、耐熱
性、機械的特性などに優れているため、焼却炉の廃ガス
フィルターや酸性溶液のフィルター、溶剤類の高温用フ
ィルター等の広範な分野で使用できる。
(Applications) The porous sintered body of the present invention has properties such as heat resistance and chemical resistance that RAS has, and as a sintered body, it has low molding shrinkage, suitable porosity, and dimensional stability. Because of its excellent heat resistance and mechanical properties, it can be used in a wide range of fields, including incinerator waste gas filters, acid solution filters, and high-temperature solvent filters.

[実施例] 以下、本発明について実施例および実験例を挙げて説明
するが、本発明はこれらの実施例のみに限定されるもの
ではない。
[Examples] The present invention will be described below with reference to Examples and Experimental Examples, but the present invention is not limited to these Examples.

[合成実験例1] (ポリ−p−フェニレンスルフィドの合成)チタン張り
重合缶中にN−メチルピロリドン(以下、rNMPJと
略記)90kgと含水硫化ソーダ(水分54重量%)3
3.0kgとを仕込み、窒素ガス雰囲気下で徐々に20
3°Cまで昇温しながら、水とNMPの混合液13.7
kg (その内NMP8.3kg)および6.2モルの
H2Sを溜出させた。
[Synthesis Experiment Example 1] (Synthesis of poly-p-phenylene sulfide) In a titanium-lined polymerization can, 90 kg of N-methylpyrrolidone (hereinafter abbreviated as rNMPJ) and hydrous sodium sulfide (water content 54% by weight) were placed in a titanium-lined polymerization can.
3.0 kg and gradually 20 kg under nitrogen gas atmosphere.
While increasing the temperature to 3°C, a mixture of water and NMP 13.7
kg (including 8.3 kg of NMP) and 6.2 mol of H2S were distilled off.

次に、p−ジクロルベンゼン(以下、rPDCB」と略
記)28.8kgとNMP15kgとを−加えて、21
0°Cで10時間重合を行なった。この系に水9.32
kgを圧入添加後、さらに260℃で10時間重合を行
なった。冷却後、反応液を目開きO,’1mmのスクリ
ーンでふるい分けしてポリ−p−フェニレンスルフィド
粒状ポリマーを分離し、アセトン洗および水洗を行なっ
て洗浄ポリマー(ポリマーp、)を得た。
Next, 28.8 kg of p-dichlorobenzene (hereinafter abbreviated as rPDCB) and 15 kg of NMP were added, and 21
Polymerization was carried out at 0°C for 10 hours. Water 9.32 in this system
After adding 1.0 kg by pressure, polymerization was further carried out at 260° C. for 10 hours. After cooling, the reaction solution was sieved through a screen with an opening of 1 mm to separate the poly-p-phenylene sulfide granular polymer, which was then washed with acetone and water to obtain a washed polymer (polymer p).

次に、2%のアンモニウムクロライド水溶液中に浸漬し
て40℃で30分処理した後、水洗し、続いて乾燥した
。粒子の平均粒径は400μmであった。得られたポリ
マーの溶融粘度は257゜ポイズ(310℃、剪断速度
1200/秒)、マた融点は305°C1溶融結晶化温
度は188℃であった。尚、融点は上記、重合で得られ
た粒子状のポリマー粉体な約1omg重量し、差動走査
熱量計(DSC)を用い不活性ガス雰囲気中で室温から
10℃/分の速度で昇温し、測定した。一方溶融結晶化
温度はポリマー粉体的10mgを秤量後、DSCを用い
、不活性ガス雰囲気中でまず室温から10307分の速
度で340℃まで昇温し、340℃で3分間保持した後
、10℃/分の速度で降温し、結晶化のピーク時の温度
を測定した。
Next, it was immersed in a 2% ammonium chloride aqueous solution and treated at 40°C for 30 minutes, washed with water, and then dried. The average particle size of the particles was 400 μm. The resulting polymer had a melt viscosity of 257° poise (310°C, shear rate 1200/sec), a melting point of 305°C, and a melt crystallization temperature of 188°C. The melting point is determined by weighing about 1 omg of the particulate polymer powder obtained by polymerization and heating it at a rate of 10°C/min from room temperature in an inert gas atmosphere using a differential scanning calorimeter (DSC). and measured. On the other hand, the melt crystallization temperature was determined by weighing 10 mg of polymer powder, then heating it from room temperature to 340°C at a rate of 10,307 minutes in an inert gas atmosphere using DSC, holding it at 340°C for 3 minutes, and then The temperature was lowered at a rate of °C/min, and the temperature at the peak of crystallization was measured.

[合成実験例2] (ポリ−p−フェニレンスルフィドの合成)チタン張り
重合缶にNMPI 1.0kgとNa2S”5Ht O
20,0モルとを仕込み、窒素ガス雰囲気下で徐々に2
00℃まで昇温しながら水1.27kg、NMP1.5
7kgおよび0.46モルのH2Sを溜出させた。13
0℃まで冷却した後、PDCB19.73モルとNMP
3.2kgとを加えて210 ’Cで9時間重合を行な
った。次いで、重合系の共存水がH20/Na2Sのモ
ル比で4.0となるように重合系に水を添加し、窒素ガ
ス雰囲気下で265℃に昇温してさらに6時間重合を行
なった。冷却後反応液を濾過し、水洗後乾燥して粒状ポ
リマー(ポリマーP2)を得た。得られたポリマーの平
均粒径は450μmであった。また、溶融粘度は690
0ポイズ(310°C1剪断速度1200/秒)、融点
は307°C1溶融結晶化温度は186°Cであった。
[Synthesis Experiment Example 2] (Synthesis of poly-p-phenylene sulfide) 1.0 kg of NMPI and Na2S"5HtO were placed in a titanium-lined polymerization can.
20.0 mol and gradually added 2 in a nitrogen gas atmosphere.
1.27 kg of water, NMP 1.5 while increasing the temperature to 00℃
7 kg and 0.46 mol of H2S were distilled off. 13
After cooling to 0°C, 19.73 mol of PDCB and NMP
3.2 kg was added and polymerization was carried out at 210'C for 9 hours. Next, water was added to the polymerization system so that the coexisting water in the polymerization system had a molar ratio of H20/Na2S of 4.0, and the temperature was raised to 265° C. under a nitrogen gas atmosphere, and polymerization was further carried out for 6 hours. After cooling, the reaction solution was filtered, washed with water, and dried to obtain a granular polymer (polymer P2). The average particle size of the obtained polymer was 450 μm. Also, the melt viscosity is 690
0 poise (310°C, shear rate 1200/sec), melting point was 307°C, melt crystallization temperature was 186°C.

[合成実験例3] (フェニレンスルフィドブロック共重合体の合成) チタン張り重合缶にNMPIl、OkgとN a2S 
・5 H−016,0モルとを仕込み、窒素ガス雰囲気
下で徐々に2oo℃まで昇温して水分を溜出させた。H
,Sとして溜出したS分は、1.5モル%であった。冷
却後PDCB1G、1モ、11.とNMP3.0kgと
を仕込み、210’Cで10時間重合を行なった。次い
で、この系に水53モルを加え、250 ℃で0.25
時間反応させて反応混合液(P)を調整し、冷却後重合
缶から取出した。
[Synthesis Experiment Example 3] (Synthesis of phenylene sulfide block copolymer) NMPIl, Okg and Na2S in a titanium-lined polymerization can
・0 mol of 5H-016 was charged, and the temperature was gradually raised to 200° C. under a nitrogen gas atmosphere to distill out moisture. H
, S was 1.5 mol%. After cooling PDCB1G, 1Mo, 11. and 3.0 kg of NMP were charged, and polymerization was carried out at 210'C for 10 hours. Then, 53 mol of water was added to this system and the temperature was reduced to 0.25 mol at 250 °C.
A reaction mixture (P) was prepared by reacting for a period of time, and after cooling, it was taken out from the polymerization vessel.

(P)液の少量をサンプリングして生成p−フェニレン
スルフィドプレポリマーの重合度を測定(蛍光X線法)
した。重合度は300であった。
(P) Sampling a small amount of liquid and measuring the degree of polymerization of the produced p-phenylene sulfide prepolymer (fluorescent X-ray method)
did. The degree of polymerization was 300.

別途、チタン張り重合缶に、NMPIl、Okgおよび
Na2S ・5H* 0 16.0モルを仕込み、約2
00℃まで昇温して水分を溜出させた(S分損失量=1
.5モル%)。それからm −ジクロルベンゼン15.
5モル、NMP3.Okgおよび水53モルを加え未反
応混合液(M)を調整し、冷却後重合缶から取出した。
Separately, NMPIl, Okg and 16.0 mol of Na2S ・5H* 0 were charged into a titanium-lined polymerization can, and about 2
The temperature was raised to 00°C to distill water (S loss amount = 1
.. 5 mol%). Then m-dichlorobenzene15.
5 mol, NMP3. Okg and 53 moles of water were added to prepare an unreacted mixed liquid (M), and after cooling, it was taken out from the polymerization vessel.

次に(P)液13.6kgと(M)液3.4kgとをチ
タン張り重合缶に仕込み、262℃で5時間反応させた
。反応終了後、反応混合液を濾別し、熱水洗および減圧
乾燥してフェニレンスルフィドブロック共重合体(ポリ
マーP3)を得た。
Next, 13.6 kg of liquid (P) and 3.4 kg of liquid (M) were charged into a titanium-lined polymerization can, and reacted at 262°C for 5 hours. After the reaction was completed, the reaction mixture was filtered, washed with hot water, and dried under reduced pressure to obtain a phenylene sulfide block copolymer (polymer P3).

赤外線分析によってブロックに属する繰返し単LLmで
、溶融粘度は3250ポイズ(310°C1剪断速度1
200/秒)であった。
According to infrared analysis, the repeating single LLm belonging to the block has a melt viscosity of 3250 poise (310°C1 shear rate 1
200/sec).

また融点は288℃、溶融結晶化温度は186℃であっ
た。
Further, the melting point was 288°C, and the melt crystallization temperature was 186°C.

[実施例1] 60メツシユのスクリーンでバスした合成実験例1のポ
リマー21粒子(平均粒径150μmの粉体)500g
を熱風循環乾燥器内に入れ、加熱を開始した。
[Example 1] 500 g of 21 particles of the polymer of Synthesis Experimental Example 1 (powder with an average particle size of 150 μm) bathed in a 60-mesh screen
was placed in a hot air circulation dryer and heating was started.

粉体の温度が298°Cになった時から、30分間この
温度に保持後、ヒーターを切り循環ファンはそのまま継
続して運転することにより冷却し、粉体の温度が100
℃以下になったときに乾燥器から取り出した。各粒子は
軽く焼結した状態となっているので、ミキサーに入れて
粉砕しもとのバラバラな粉体に戻した。
When the temperature of the powder reached 298°C, it was maintained at this temperature for 30 minutes, then the heater was turned off and the circulation fan continued to operate to cool the powder until the temperature of the powder reached 100°C.
It was removed from the dryer when the temperature was below ℃. Since each particle was in a lightly sintered state, it was placed in a mixer and pulverized to return it to its original powder form.

熱処理後の粉体の特性としてポリマーの融点、溶融結晶
化温度および溶融粘度を第1表に示した(なお、熱処理
前の粉体の特性は、第1表中、後述する比較例1の項目
のところに示す)。
Table 1 shows the melting point, melt crystallization temperature, and melt viscosity of the polymer as the properties of the powder after heat treatment. (shown below).

幅15 c m、高さ15cm、厚さ0.3cmの内枠
寸法をもつステンレス製金型内に、上記の熱処理をした
粉体を、パイブレーク−をかりながらできるだけ密にな
るように充填した。金型を熱風循環乾燥器内にセットシ
、乾燥器内の設定温度を335°Cにコンi・ロールし
、加熱して、焼結を行なった。粉体の温度が330℃に
なった時点でヒーターを切り循環ファンはそのまま継続
して運転することにより自然冷却し、焼結体の温度が1
00 ’C以下になったときに取り出した。
The heat-treated powder described above was filled into a stainless steel mold with inner frame dimensions of 15 cm wide, 15 cm high, and 0.3 cm thick so as to be as dense as possible while pie-breaking. . The mold was set in a hot air circulation dryer, the temperature in the dryer was set at 335°C, and the mold was heated to perform sintering. When the temperature of the powder reaches 330℃, the heater is turned off and the circulation fan continues to operate to allow natural cooling, and the temperature of the sintered body reaches 1.
I took it out when the temperature dropped below 00'C.

この焼結体を204°Cで4時間アニール(熱固定)し
た。焼結前後の嵩密度(焼結前の充填密度および焼結後
の焼結体密度)とその変化率を第1表に示した。尚、充
填密度は充填容器に熱処理後の粉体を密に充填した時の
見掛けの体積と重量から、また、焼結体密度は試料の見
掛けの体積と重量から求めた。一方、密度の変化率は下
式より求めた。
This sintered body was annealed (heat-set) at 204°C for 4 hours. Table 1 shows the bulk densities before and after sintering (filling density before sintering and sintered body density after sintering) and the rate of change thereof. The packing density was determined from the apparent volume and weight when the heat-treated powder was densely packed into the filling container, and the sintered body density was determined from the apparent volume and weight of the sample. On the other hand, the rate of change in density was determined using the following formula.

[(焼結体密度−充填密度)/充填密度)X100まだ
焼結体密度(g/cc)とポリーp−フェニレンスルフ
ィドの真比重(1,36、結晶化度40%)から、次式
を用いて見掛は空隙率を求めた結果、42.0%であっ
た。
[(Sintered compact density - Packing density) / Packing density) x 100 From the sintered compact density (g/cc) and the true specific gravity of poly p-phenylene sulfide (1.36, crystallinity 40%), the following formula is calculated. The apparent porosity was determined to be 42.0%.

〔1−(焼結体密度/真比重)IX100焼結体の曲げ
試験は長さ127mm、幅12゜7mmに切断した焼結
体試片なASTM  D−790−63に準拠してスパ
ン距離80mm、曲げ荷重速度2.0mm/分の条件で
測定した。尚、たわみは最大たわみ量を測定した。その
結果を第1表に示した。
[1-(Sintered compact density/true specific gravity) The bending test of the IX100 sintered compact was performed using a sintered compact specimen cut to a length of 127 mm and a width of 12°7 mm, with a span distance of 80 mm in accordance with ASTM D-790-63. , and the bending load rate was 2.0 mm/min. Note that the maximum amount of deflection was measured. The results are shown in Table 1.

[実施例2] 60メツシユのスクリーンでバスした合成実験例2のポ
リマー22粒子(平均粒径150μmの粉体)500g
を実施例1と同様に、粉体温度295℃で30分間保持
して、熱処理を行った。
[Example 2] 500 g of 22 particles of the polymer of Synthesis Experimental Example 2 (powder with an average particle size of 150 μm) bathed in a 60-mesh screen
As in Example 1, heat treatment was performed by holding the powder temperature at 295° C. for 30 minutes.

この熱処理後の粉体を使用して、焼結体を成形した。そ
のときの温度条件は、乾燥器内制御温度335°Cで、
粉体温度が330℃になった時点でヒーターを切り、自
然冷却して焼結体を取り出した。熱処理後の粉体の特性
、嵩密度および変化率、焼結体の物性を第1表に示した
(なお、熱処理前の粉体の特性(±、第1表中、後述す
る比較例2の項に示す)。
A sintered body was formed using the powder after this heat treatment. The temperature conditions at that time were a controlled temperature of 335°C in the dryer.
When the powder temperature reached 330°C, the heater was turned off, the powder was allowed to cool naturally, and the sintered body was taken out. The properties of the powder after heat treatment, the bulk density and rate of change, and the physical properties of the sintered body are shown in Table 1. ).

[実施例3] 60メツシユのスクリーンでバスした合成実験例3のポ
リマーP、(平均粒径150μmの粉体)500gを、
粉体温度280℃で30分間保持して熱処理を行った。
[Example 3] 500 g of the polymer P of Synthesis Experiment Example 3 (powder with an average particle size of 150 μm) bathed in a 60-mesh screen,
Heat treatment was performed by maintaining the powder temperature at 280° C. for 30 minutes.

この粉体を使用して、焼結体を成形した。温度条件は、
乾燥器内制御温度310°Cで、粉体温度が305℃に
なった時点で、ヒーターを切り自然冷却して焼結体を取
り出した。熱処理後の粉体の特性、嵩密度および変化率
、焼結体の物性を第1表に示した。
A sintered body was formed using this powder. The temperature conditions are
The temperature inside the dryer was controlled at 310°C, and when the powder temperature reached 305°C, the heater was turned off, the powder was allowed to cool naturally, and the sintered body was taken out. Table 1 shows the properties of the powder after heat treatment, the bulk density and rate of change, and the physical properties of the sintered body.

[比較例1] 実施例1で使用したポリマーP、(60メツシユスクリ
一ンパス品)を、熱処理することなしに、熱風循環乾燥
器内にセットした。設定温度を310’Cに制御し、粉
体の温度が305°Cになった時点でヒーターの電源を
切り、自然冷却により焼結体を得た。粉体の特性、嵩密
度および変化率、焼結体の物性を第1表に示した。
[Comparative Example 1] Polymer P used in Example 1 (a 60-mesh screen product) was set in a hot air circulation dryer without being heat-treated. The set temperature was controlled at 310'C, and when the temperature of the powder reached 305°C, the heater was turned off and a sintered body was obtained by natural cooling. Table 1 shows the properties of the powder, bulk density and change rate, and physical properties of the sintered body.

[比較例2] 実施例2で用いたポリマーP2 (60メツシユスクリ
一ンバス品)を、熱処理することなく比較例1と同じ方
法で焼結した。ただし、熱風循環乾燥器の設定温度は3
12℃とし、粉体の温度が307℃のときにヒーター加
熱をストップし、自然冷却した。得られた焼結体の物性
の測定結果を第1表に示す。
[Comparative Example 2] Polymer P2 (60 mesh scrim bath product) used in Example 2 was sintered in the same manner as Comparative Example 1 without heat treatment. However, the temperature setting of the hot air circulation dryer is 3.
The temperature was set at 12°C, and when the powder temperature reached 307°C, heater heating was stopped and the powder was allowed to cool naturally. Table 1 shows the measurement results of the physical properties of the obtained sintered body.

[比較例3] フィリップス・ベトロリューム社製のポリフェニレンス
ルフィド(商品名ライドンP−4)の粉末を熱処理する
ことなく比較例1と同じ方法で焼結した。ただし、熱風
循環乾燥器の設定温度は290℃とし、焼結体の温度が
285℃のときにヒーター加熱をストップし、自然冷却
した。焼結体全体に収縮による小さなひび割れができて
良好、1    な焼結体は得られなかった。物性の測
定結果を第1表に示す。
[Comparative Example 3] Powder of polyphenylene sulfide (trade name: Rydon P-4) manufactured by Phillips Vetroleum was sintered in the same manner as in Comparative Example 1 without heat treatment. However, the set temperature of the hot air circulation dryer was 290°C, and when the temperature of the sintered body reached 285°C, the heater heating was stopped and the sintered body was allowed to cool naturally. Small cracks were formed throughout the sintered body due to shrinkage, and a good sintered body could not be obtained. The measurement results of physical properties are shown in Table 1.

第1表から明らかなように、本発明(実施例1〜3)は
焼結前後での密度変化率が少ないことから、成形収縮率
が小さく、寸法安定性にすぐれ、しかも曲げ強度やたわ
み等の機械的特性あるいは空隙率等にもすぐれているこ
とがわかる。これに対して熱処理を行なわないもの(比
較例1および2)やキュアーを行なったポリフェニレン
スルフィドを用いたもの(比較例3)は目的とする性能
が得られない。
As is clear from Table 1, the present invention (Examples 1 to 3) has a small density change rate before and after sintering, has a small molding shrinkage rate, has excellent dimensional stability, and has excellent bending strength, deflection, etc. It can be seen that the mechanical properties and porosity are also excellent. On the other hand, those without heat treatment (Comparative Examples 1 and 2) and those using cured polyphenylene sulfide (Comparative Example 3) cannot achieve the desired performance.

[実施例4] 焼結体の多孔性を評価するため、焼結体に送風し濾過面
流速と圧力損失を測定した。
[Example 4] In order to evaluate the porosity of the sintered body, air was blown onto the sintered body and the flow velocity and pressure loss on the filtration surface were measured.

すなわち、円筒状金型に実施例1の条件で熱処理した粉
体なパイブレーク−で振動しながら充填した。
That is, a cylindrical mold was filled with a pie-break powder heat-treated under the conditions of Example 1 while being vibrated.

金型な熱風循環乾燥器内にセットし、乾燥器内設定温度
340℃で粉体の温度が330℃になっ1     だ
時点でヒーターを切り、自然冷却し、焼結体の温度が1
00℃以下になったときに取り出した。
Set it in a molded hot air circulation dryer, set the temperature inside the dryer at 340°C, and when the temperature of the powder reaches 330°C, turn off the heater, allow it to cool naturally, and reduce the temperature of the sintered body to 1°C.
It was taken out when the temperature dropped to below 00°C.

この焼結体を204℃で4時間アニール(熱固定)した
This sintered body was annealed (heat-set) at 204° C. for 4 hours.

このようにして得られた内径88mm、外径109mm
、肉厚10.5mm、高さ149 m mの円筒状焼結
体を圧力損失測定装置にセットし、送風機で送風し、濾
過面流速と圧力損失を測定した。結果は次の通りであっ
た。
The inner diameter thus obtained was 88 mm, and the outer diameter was 109 mm.
A cylindrical sintered body with a wall thickness of 10.5 mm and a height of 149 mm was set in a pressure loss measuring device, and air was blown with an air blower to measure the flow velocity and pressure loss on the filtration surface. The results were as follows.

第2表 この結果から焼結体は多孔性で、通気性にすぐれている
ことがわかる。
Table 2 The results show that the sintered body is porous and has excellent air permeability.

[実施例5] 実施例1で得られた焼結体を150℃で連続7日間エイ
ジングした後の見掛けの空隙率と機械的特性を測定した
。結果は次の通り。
[Example 5] The apparent porosity and mechanical properties of the sintered body obtained in Example 1 were measured after aging at 150°C for 7 consecutive days. The results are as follows.

第3表 この結果から本発明の焼結体はエイジング前後での物性
変化が小さく、耐熱性にすぐれていることわかる。
Table 3 The results show that the sintered body of the present invention shows little change in physical properties before and after aging and has excellent heat resistance.

〔発明の効果〕〔Effect of the invention〕

本発明により、ポリアリーレンスルフィドからなる多孔
質焼結体であって、成形収縮率が小さく、好適な空隙率
を持ち、寸法安定性、耐熱性、耐薬品性、機械的特性な
どに優れた多孔質焼結体を提供することができる。本発
明においては、重合により得られたRAS粒子を焼結用
の粉体として使用できるために、粉砕工程を必要とせず
、効率よく多孔質焼結体を得ることができる。
The present invention provides a porous sintered body made of polyarylene sulfide, which has a small molding shrinkage rate, a suitable porosity, and has excellent dimensional stability, heat resistance, chemical resistance, mechanical properties, etc. A high quality sintered body can be provided. In the present invention, since RAS particles obtained by polymerization can be used as powder for sintering, a porous sintered body can be efficiently obtained without the need for a pulverization step.

Claims (5)

【特許請求の範囲】[Claims] (1)溶融粘度η*(310℃、剪断速度1200/秒
で測定)が500〜5×10^4ポイズの実質的に線状
なポリアリーレンスルフィドの粉体を、該ポリアリーレ
ンスルフィドの溶融結晶化温度以上融点以下の温度で0
.5〜600分の範囲で熱処理し、しかる後、該粉体を
ポリアリーレンスルフィドの軟化温度以上分解温度以下
の温度で加熱焼結させることによって得られる多孔質焼
結体。
(1) Substantially linear polyarylene sulfide powder having a melt viscosity η* (measured at 310°C and a shear rate of 1200/sec) of 500 to 5 x 10^4 poise is converted into molten crystals of the polyarylene sulfide. 0 at temperatures above the melting point and below the melting point
.. A porous sintered body obtained by heat-treating for 5 to 600 minutes and then heating and sintering the powder at a temperature above the softening temperature and below the decomposition temperature of polyarylene sulfide.
(2)熱処理後のポリアリーレンスルフィド粉体の溶融
粘度η*(310℃、剪断速度1200/秒で測定)が
2×10^3〜10^5ポイズである請求項1記載の多
孔質焼結体。
(2) The porous sinter according to claim 1, wherein the polyarylene sulfide powder after heat treatment has a melt viscosity η* (measured at 310° C. and a shear rate of 1200/sec) of 2×10^3 to 10^5 poise. body.
(3)加熱焼結後、ポリアリーレンスルフィドの融点以
下の温度で熱固定された請求項1ないし2のいずれか1
項記載の多孔質焼結体。
(3) After heating and sintering, the polyarylene sulfide is heat-set at a temperature below the melting point of the polyarylene sulfide.
The porous sintered body described in .
(4)ポリアリーレンスルフィドが実質的に線状なポリ
フェニレンスルフィドである請求項1ないし3のいずれ
か1項記載の多孔質焼結体。
(4) The porous sintered body according to any one of claims 1 to 3, wherein the polyarylene sulfide is a substantially linear polyphenylene sulfide.
(5)ポリアリーレンスルフィドが、繰返し単位▲数式
、化学式、表等があります▼のブロック50〜95モル
%と繰返 し単位▲数式、化学式、表等があります▼のブロック5
〜50モル%か らなるブロック共重合体を含有するものである請求項1
ないし3のいずれか1項記載の多孔質焼結体。
(5) Polyarylene sulfide has 50 to 95 mol% block of repeating unit ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼ and block 5 of repeating unit ▲ There are mathematical formulas, chemical formulas, tables, etc. ▼
Claim 1 containing a block copolymer consisting of ~50 mol%
Porous sintered body according to any one of items 3 to 3.
JP11858589A 1989-05-15 1989-05-15 Cellular sintered body composed of polyarylene sulfide Pending JPH02298527A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11858589A JPH02298527A (en) 1989-05-15 1989-05-15 Cellular sintered body composed of polyarylene sulfide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11858589A JPH02298527A (en) 1989-05-15 1989-05-15 Cellular sintered body composed of polyarylene sulfide

Publications (1)

Publication Number Publication Date
JPH02298527A true JPH02298527A (en) 1990-12-10

Family

ID=14740229

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11858589A Pending JPH02298527A (en) 1989-05-15 1989-05-15 Cellular sintered body composed of polyarylene sulfide

Country Status (1)

Country Link
JP (1) JPH02298527A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017126484A1 (en) * 2016-01-20 2017-07-27 東レ株式会社 Polyarylene sulfide resin granular article and method for producing same
JP2020007387A (en) * 2018-07-03 2020-01-16 ポリプラスチックス株式会社 Porous molded article and method for producing the same
US11192997B2 (en) 2014-03-07 2021-12-07 Ticona Llc Sintered polymeric particles for porous structures

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11192997B2 (en) 2014-03-07 2021-12-07 Ticona Llc Sintered polymeric particles for porous structures
US11879047B2 (en) 2014-03-07 2024-01-23 Ticona Llc Sintered polymeric particles for porous structures
WO2017126484A1 (en) * 2016-01-20 2017-07-27 東レ株式会社 Polyarylene sulfide resin granular article and method for producing same
JP6256818B2 (en) * 2016-01-20 2018-01-10 東レ株式会社 Polyarylene sulfide resin powder and method for producing the same
JPWO2017126484A1 (en) * 2016-01-20 2018-01-25 東レ株式会社 Polyarylene sulfide resin powder and method for producing the same
CN108368275A (en) * 2016-01-20 2018-08-03 东丽株式会社 Polyarylene sulfide resin bulk material and its manufacturing method
US11008426B2 (en) 2016-01-20 2021-05-18 Toray Industries, Inc. Polyarylene sulfide resin particulate and method of producing same
JP2020007387A (en) * 2018-07-03 2020-01-16 ポリプラスチックス株式会社 Porous molded article and method for producing the same

Similar Documents

Publication Publication Date Title
US5183607A (en) Polymer membranes for separation process
US4077922A (en) Novel compositions
JP2019511359A (en) Filter element
EP0288308B1 (en) Preparation of a thermoformed polyarylene sulfide container
JPH02296834A (en) Sintered polybenzimidazole/polyarylene ketone product and its manufacture
JP2020007387A (en) Porous molded article and method for producing the same
JPH02298527A (en) Cellular sintered body composed of polyarylene sulfide
US20060125131A1 (en) Carbonaceous porous material and method of manufacturing same
KR20220069100A (en) Semi-crystalline polymer-ceramic core-shell particle powder, and manufacturing processes and articles comprising the powder
KR910004765B1 (en) Polyarylene thiether composition
KR20220069099A (en) Polymer-ceramic core-shell particle powder, and manufacturing processes and articles comprising the powder
US3925323A (en) Poly(meta-phenylene isophthalamide)powder
KR920000197B1 (en) Fine spherulitic polyarylene thioether and a process for producing the same
EP0309916B1 (en) Solid state curing of poly(arylene sulfide) resins in reduced oxygen atmospheres
AU611532B2 (en) Internal lubricant for glass reinforced polyarylene sulfide
Jog et al. Structure development in powder processing of polyphenylene sulfide
WO2021048286A1 (en) Porous articles, processes for their preparation and uses thereof
JPS60104319A (en) Polytetrafluoroethylene porous material and manufacture thereof
JPH07502546A (en) Blend of copoly(arylene sulfide) and ethylene-propylene rubber
KR910007338B1 (en) Polyarylene thiother compositions
US5187257A (en) Thermoformed polyarylene sulfide container
JPS5828291B2 (en) Sintered body made of aromatic polysulfone
RU2022984C1 (en) Polymeric composition
JPH04202430A (en) Three-dimensional network structure of aromatic polyamide and its production
JPH04296354A (en) Molded resin article