JPH02298240A - Ti and ti alloy material having superfine structure and its production - Google Patents

Ti and ti alloy material having superfine structure and its production

Info

Publication number
JPH02298240A
JPH02298240A JP1117681A JP11768189A JPH02298240A JP H02298240 A JPH02298240 A JP H02298240A JP 1117681 A JP1117681 A JP 1117681A JP 11768189 A JP11768189 A JP 11768189A JP H02298240 A JPH02298240 A JP H02298240A
Authority
JP
Japan
Prior art keywords
phase
temperature
alloy
titanium
alpha
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1117681A
Other languages
Japanese (ja)
Inventor
Nobuhiro Murai
村井 暢宏
Kenji Aihara
相原 賢治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP1117681A priority Critical patent/JPH02298240A/en
Priority to CA002004548A priority patent/CA2004548C/en
Priority to ES89122371T priority patent/ES2073422T3/en
Priority to KR1019890017936A priority patent/KR930010321B1/en
Priority to AU45924/89A priority patent/AU615360B2/en
Priority to US07/446,457 priority patent/US5080727A/en
Priority to DE68922075T priority patent/DE68922075T2/en
Priority to EP89122371A priority patent/EP0372465B1/en
Priority to TW078109425A priority patent/TW217425B/zh
Publication of JPH02298240A publication Critical patent/JPH02298240A/en
Pending legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)

Abstract

PURPOSE:To produce Ti or Ti alloy having superfine-grained structure and excellent in characteristics, such as toughness at low temp., ductility, and yield strength, by heating and holding Ti and Ti alloy containing alpha-phase in the structure up to and at a temp. of the transformation point or above while applying specific amounts of plastic working to the above Ti and Ti alloy and then subjecting the above Ti and Ti alloy to cooling. CONSTITUTION:Ti or Ti alloy having an alpha-single structure in which the whole or at least a part of the structure is composed of alpha-phase or a mixed structure composed principally of alpha-phase is subjected to plastic working, such as rolling and swaging, at >=20% amount of strain. Simultaneously, the above Ti or Ti alloy is heated up to a temp. of the transformation point or above, that is, a temp. in the range where the alpha-phase containing working strain is inversely transformed into beta-phase, and then, the Ti or Ti alloy is held at the above temp. for <=100sec to provide sufficient time to carry out transformation. Since the alpha-phase in the structure is inversedly transformed into a fine and uniform beta-phase crystalline structure of <100mum grain size, the Ti and Ti alloy excellent in various physical properties can be produced.

Description

【発明の詳細な説明】 〈産業上の利用分野) この発明は、超微細組織を有するチタン文は1チタン合
金(Ti又はTi合金)材、並びにそれを工業的規模で
安定に製造する方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a titanium alloy (Ti or Ti alloy) material having an ultrafine structure, and a method for stably manufacturing it on an industrial scale. It is something.

〈従来技術とその課題〉 一般に、「金属材料の緒特性(例えば低温靭性。<Conventional technology and its issues> Generally speaking, it refers to the characteristics of metallic materials (e.g. low temperature toughness).

各種の延性、降伏強度、耐食性、超塑性等)はその組織
が微細になるほど向上する」との事実が良く知られてい
るが、そのため成分洲整や熱間加工の工夫等による様々
な金属材料組織の微細化技術が開発されてきた。特に、
鉄鋼材料の分野においては、近年、熱間圧延時の圧延条
件を規制したり(制御圧延)、或いは更にその後の冷却
速度をも調整(加速冷却)して組織の微細化を図る技術
が著しい発展を見せ、高品質鋼材の安定した生産・供給
に多大な効果を挙げている。そして、最近では、この制
御圧延技術や加速冷却技術の思想は非鉄材料にまで広が
りを見せており、例えばチタン又はチタン合金材につい
ても微細組織の安定実現を目指した種々の研究が行われ
ている。
It is well known that ductility, yield strength, corrosion resistance, superplasticity, etc.) improve as the structure becomes finer. Tissue miniaturization techniques have been developed. especially,
In the field of steel materials, in recent years there has been remarkable progress in technology that refines the structure by regulating the rolling conditions during hot rolling (controlled rolling) or even adjusting the subsequent cooling rate (accelerated cooling). This has had a great effect on the stable production and supply of high-quality steel materials. Recently, the concept of controlled rolling technology and accelerated cooling technology has been spreading to non-ferrous materials, and various studies are being conducted to achieve a stable microstructure for titanium or titanium alloy materials. .

ところで、以前は、チタン及びチタン合金材の製造には
変−抵抗が小さい高温のβ相域で熱間加エする方法が採
用されていた。しかし、高温で安定なβ相は上記熱間加
工によっても容易に微細化できないばかりか、逆にこの
熱間加工中にβ粒が粗大化する傾向を見せる(β粒径は
1100a以上になる)と言う問題があり、しかも熱処
理によっても改善(組織微細化)できずに延性値や絞り
値を著しく劣化させることから、現在では主として鋳塊
をスラブやビレットに素加工する場合に適用されるに留
まっている。
By the way, in the past, a method of hot working in a high temperature β phase region where the resistance to change was small was adopted for manufacturing titanium and titanium alloy materials. However, the β phase, which is stable at high temperatures, cannot be easily refined by the above-mentioned hot working, and on the contrary, the β grains tend to become coarser during this hot working (the β grain size becomes 1100a or more). Moreover, it cannot be improved by heat treatment (microstructure refinement) and the ductility and reduction of area deteriorate significantly, so it is currently mainly applied when processing ingots into slabs or billets. It's staying.

そこで、低温で安定なα相或いはα+β二相の領域で加
工する技術(チタンの場合はα域、チタン合金の場合は
α+β域で加工する)が開発され、仕上加工に適用され
るようになった。この方法はβ相域での加工に比べて変
形抵抗は高いが、得られる材料には熱処理効果が認めら
れ、特にチタン合金のα+β域圧延では加工後適当な熱
処理(α再結晶処理)を施すことにより等軸α晶(α粒
径は約10趨程度)とβ変態生成物が形成されて延性値
や絞り値が改善されるものであった。
Therefore, a technology for processing in the α phase or α+β two-phase region that is stable at low temperatures (processing in the α region for titanium and the α+β region for titanium alloys) was developed and is now being applied to finishing processing. Ta. Although this method has higher deformation resistance than processing in the β phase region, the heat treatment effect is recognized in the resulting material, especially when rolling titanium alloys in the α+β region, an appropriate heat treatment (α recrystallization treatment) is performed after processing. As a result, equiaxed α crystals (α grain size is about 10 degrees) and β transformation products were formed, and the ductility and reduction of area were improved.

しかしながら、素加工のβ領域での圧延を実施する以上
、β層が粗粒化し、その後のα填圧或いはぼ+β層填圧
延と熱処理によっても組織を十分に微細化することは困
難であった。
However, as long as rolling is carried out in the β region of raw processing, the β layer becomes coarse-grained, and it is difficult to sufficiently refine the structure by subsequent α-filling rolling or semi-+β-layer filling rolling and heat treatment. .

このようなことから、本発明の目的は、従来技術では到
底実現不可能であった均一超微細組織を有するチタン及
びチタン合金材を安定・確実に製造し得る工業的手段を
提供することに置かれた。
Therefore, an object of the present invention is to provide an industrial means for stably and reliably manufacturing titanium and titanium alloy materials having a uniform ultrafine structure, which has been impossible to achieve using conventional techniques. It was written.

く課題を解決するための手段〉 本発明者等は、上記目的を達成すべく様々な観点から研
究を重ね、[従来のチタン及びチタン合金材製造工程は
前述した通り“β相域加工による鋳塊の粗加工”と“α
或いはα+β相域加工による仕上加工”とから成るが、
従来の技術で微細かつ均一な組織が実現できない原因は
、結局は前歴であるβ相域加工によって粗大化したβ相
結晶粒(旧β粒)にあり、これを微細化しない限りはそ
の後に低温和域での加工(α又はα+β相域での加工)
を施したとしても十分に微細で均一な組織を得ることは
無理である」との結論に達した。
Means for Solving the Problems> In order to achieve the above object, the present inventors have conducted research from various viewpoints and found that [the conventional manufacturing process for titanium and titanium alloy materials is as described above] Rough processing of lumps” and “α
or finishing processing by α+β phase region processing.
The reason why a fine and uniform structure cannot be achieved using conventional technology is ultimately the β phase crystal grains (former β grains) that have become coarse due to the previous β phase region processing. Processing in the sum region (processing in the α or α+β phase region)
They concluded that it is impossible to obtain a sufficiently fine and uniform structure even if

しかも、チタン及びチタン合金のβ相の結晶構造は体心
立方(b、c、c、)構造であり、積層欠陥エネルギー
が高いため回復の際に面精が形成され易く、再結晶はこ
れら面精の合体により行われるので再結晶粒は非常に大
きくなると言う基礎的な事実がある。従って、再結晶を
利用してのβ相の均−微細化は非常に難しいと考えねば
ならない。
Moreover, the crystal structure of the β phase of titanium and titanium alloys is a body-centered cubic (b, c, c,) structure, and because the stacking fault energy is high, surface roughness is likely to be formed during recovery, and recrystallization is There is a basic fact that recrystallized grains become very large because they are performed by coalescence of crystals. Therefore, it must be considered that it is extremely difficult to uniformly refine the β phase using recrystallization.

このため、本発明者等は、まずチタン及びチタン合金の
β相域でのMi織を従来技術以上に微細化し得る手段を
見出し、これによって続く変態組織を均一で超微細なも
のとすべく、更に研究を重ねた結果、次の(al〜 に
示すような知見を得ることができた。
For this reason, the present inventors first found a means to make the Mi texture in the β phase region of titanium and titanium alloys more fine than the conventional technology, and thereby made the subsequent transformed structure uniform and ultra-fine. As a result of further research, we were able to obtain the following findings (al~).

(al  所望のチタン又はチタン合金を準備した上で
、まずこれが少なくとも一部α相を呈するような温度状
態としておき、続いてこれに塑性加工を加えつつ変態温
度(加熱α相線、加熱共折線、加熱包折線、加熱β線)
以上の温度域に加熱して前記α相をβ相に逆変態させる
と、従来の熱間加工では到底得られないような100m
以下の超微細β相組織が実現できる。ここで、“加熱α
相線”、“加熱共析点”1“加熱包析点”とは加熱昇温
時にα相が初めてβ相を析出する変態温度であって、“
加熱β相線“とは加熱昇温時にα相が全でβ相に変態し
終る変態温度である。
(al) After preparing the desired titanium or titanium alloy, it is first brought to a temperature such that at least a portion of it exhibits an α phase, and then plastic working is applied to the titanium or titanium alloy at a transformation temperature (heated α phase line, heated co-optional line). , heating enfolding line, heating β-ray)
If the α phase is reversely transformed into the β phase by heating to the above temperature range, the 100 m
The following ultrafine β-phase structure can be achieved. Here, “heating α
"phase line", "heating eutectoid point" 1 "heating enclosing point" is the transformation temperature at which the α phase precipitates the β phase for the first time during heating and heating, and
The heating β phase line is the transformation temperature at which the α phase completely transforms into the β phase during heating and heating.

(b)  上述のように、α相を含む組織に塑性加工を
加えながら昇温し、変態温度を超えさせてα相をβ相に
逆変態させる場合、該逆変態を十分に完了させるために
は、塑性加工を加えながら実施する温度上昇過程が終っ
た後、上記変態温度以上の温度領域に一定時間保持する
ことが好ましい。
(b) As mentioned above, when the temperature is increased while applying plastic working to the structure containing the α phase, and the α phase is reversely transformed into the β phase by exceeding the transformation temperature, in order to fully complete the reverse transformation, It is preferable to maintain the temperature in a temperature range equal to or higher than the above-mentioned transformation temperature for a certain period of time after the temperature increase process carried out while applying plastic working is completed.

(C1このようにして得られた超微細β相組織の熱間材
料は、その後の冷却(放冷、加速冷却、加工を加えなが
らの藷却等)によって従来技術では得られない均一で超
微細な変態組織を有するチタン又はチタン合金材となる
(C1) The hot material with the ultra-fine β-phase structure obtained in this way is then cooled (such as by standing to cool, accelerated cooling, and sloughing while adding processing) to produce a uniform and ultra-fine material that cannot be obtained using conventional techniques. It becomes a titanium or titanium alloy material with a transformed structure.

この発明は、上記知見等に基づいてなされたもので、 「従来、工業材料として存在することがなかったところ
の、β粒径又は冷却前の旧β粒径が100μm以下であ
る徹III組織を有することを特徴とする加工チタン及
びチタン合金材を提供した点」に特徴を有し、更には [少なくとも一部がα相から成る組織のチタン又はチタ
ン合金を、歪量:20%以上の塑性加工を加えつつ変M
A度以上の温度領域にまで昇温し、該温度領域に100
秒を超えない時間だけ保持してα相の一部又は全部を一
旦β相に逆変態させ、その後冷却することにより、超微
細でしかも均一な組織を有するチタン又はチタン合金材
を工業規模で安定に製造し得るようにした点」 をも特徴とするものである。
This invention was made based on the above-mentioned knowledge, etc., and it is based on the following. The present invention provides processed titanium and titanium alloy materials characterized in that they have a plasticity of at least 20% strain. Change M while adding processing
The temperature is raised to a temperature range of A degree or higher, and 100%
Titanium or titanium alloy materials with ultra-fine and uniform structures can be stabilized on an industrial scale by holding for a time not exceeding 2 seconds to reversely transform part or all of the α phase into the β phase, and then cooling. It is also characterized by the fact that it can be manufactured easily.

なお、チタン合金としては「少なくとも一部がα相から
なる組織を呈し得るもの」であればその他の構成成分を
問うものではない。
It should be noted that the titanium alloy may be any other constituents as long as it can exhibit a structure at least partially composed of α phase.

また、「少なくとも一部がα相からなる組織」とは“全
てがα相である組織“は勿論、“α相と希土類元素、希
土類酸化物の析出相の1種以上とから成る混合!JIV
li”、“α相とβ相とから成る混合組織″、“α相と
β相と希土類元素、希土類酸化物の析出相の1種以上と
から成る混合組織”等をも意味するものである。
Furthermore, "a structure at least partially composed of an α phase" refers to a "structure entirely composed of an α phase" as well as a "mixture consisting of an α phase and one or more precipitated phases of rare earth elements and rare earth oxides! JIV
"li", "mixed structure consisting of α phase and β phase", "mixed structure consisting of α phase, β phase, and one or more precipitated phases of rare earth elements and rare earth oxides", etc. .

前述したように、本発明は、熱間加工で所望のβ結晶粒
を生成させることのできるようにチタン又はチタン合金
にα相を準備しておいて、例えば加工の最終段階でこの
α組織に塑性加工を加えながら温度を上げて変態点を超
えさせることによりβ組織に逆変態させて超微粒β結晶
粒組織を達成させ、その後冷却して低温相に変態させる
ことで従来に無い新規な均一超微細組織材を実現するこ
とを骨子とするものであるが、以下、本発明に係る均一
超微細組織材の結晶粒径、並びにそれを製造するための
諸条件を前記の如くに限定した理由をその作用と共に説
明する。
As mentioned above, in the present invention, an α phase is prepared in titanium or a titanium alloy so that desired β crystal grains can be generated by hot working, and the α phase is changed to this α structure at the final stage of processing, for example. By increasing the temperature while applying plastic working to exceed the transformation point, it reversely transforms into a β structure to achieve an ultra-fine β crystal grain structure, and then cools to transform to a low temperature phase, creating a new uniformity that has never existed before. Although the main point is to realize an ultra-fine-structured material, the reason why the crystal grain size of the uniform ultra-fine-structured material according to the present invention and the various conditions for manufacturing it are limited as described above will be explained below. will be explained along with its function.

く作用〉 まず、チタン又はチタン合金材のβ粒径又は冷却前の旧
β粒径を100μm以下と限定したのは、該粒径が10
0mを超えた場合には各種の延性。
First, the reason why the β grain size or the old β grain size before cooling of titanium or titanium alloy material is limited to 100 μm or less is because the grain size is 10 μm or less.
If it exceeds 0m, there are various ductility values.

降伏強度、低温靭性、耐食性、超塑性等の緒特性の優位
性が従来材と十分に区別できる程に明白と成らない恐れ
がある上、新規な超微細組織チタン又はチタン合金材そ
のものと従来材との相違点が不明瞭になる恐れがあるた
めである。
The superiority of properties such as yield strength, low-temperature toughness, corrosion resistance, and superplasticity may not be sufficiently obvious to distinguish them from conventional materials, and the new ultrafine-structured titanium or titanium alloy materials themselves may differ from conventional materials. This is because there is a risk that the differences between the two may become unclear.

なお、チタン又はチタン合金材における“冷却前の旧β
粒径″はα粒の配列状態、硝弗酸等によるエツチング状
況などによって的確に判定できることは良く知られてい
ることである。
In addition, in titanium or titanium alloy materials, “old β before cooling”
It is well known that the grain size can be accurately determined based on the arrangement of the α grains, the state of etching with nitric hydrofluoric acid, etc.

次に、本発明に係る処理を施すチタン又はチタン合金の
前組織を「α相単独組織又はα相を中心とした混合組織
」としたのは、前述したように本発明がチタン又はチタ
ン合金に塑性加工を加えなからα相からβ相へ逆変態を
起こさせることを主要な要件としているからであり、こ
れによって例を見ない微細β相組織が一旦生成し、その
後の冷却により該微細β相組織から均一で超微細な変態
&11織が発生するようになるからである。ところで、
「α相単独組織又はα相を中心とした混合組織」は冷材
であれば必然的に実現されるが、通常の熱間加工におけ
る如き熱履歴或いは加工履歴を経させている途中で、一
旦、組織の少なくとも一部がα相を呈するように温度管
理等を行って実現させるのが実用的である。そして、後
者の場合は、引き続く加工の最終段階として塑性加工を
加えながら再度温度を上げて変態温度を超えさせ、前記
α相をβ相に逆変態させれば良い。
Next, as mentioned above, the reason why the pre-structure of titanium or titanium alloy to be subjected to the treatment according to the present invention is "α-phase single structure or mixed structure mainly composed of α-phase" is because the present invention applies to titanium or titanium alloy. This is because the main requirement is to cause the reverse transformation from α phase to β phase without adding plastic working, and as a result, an unprecedented fine β phase structure is generated, and then by cooling, this fine β phase structure is formed. This is because a uniform and ultra-fine transformed &11 weave is generated from the phase structure. by the way,
"A single α-phase structure or a mixed structure centered on the α-phase" is naturally achieved in cold materials, but once the material undergoes a thermal or processing history such as in normal hot working, , it is practical to realize this by controlling the temperature so that at least a part of the structure exhibits the α phase. In the latter case, as the final step of the subsequent working, the temperature may be raised again to exceed the transformation temperature while plastic working is applied, and the α phase may be reversely transformed into the β phase.

チタン又はチタン合金に所定の歪を加えるための塑性加
工方法としては、各種圧延のほか、ハンマー、スェージ
ャ−、ストレッチ・レデュサー。
Plastic working methods for applying a predetermined strain to titanium or titanium alloys include various rolling methods, as well as hammers, swaggers, and stretch reducers.

ストレッチャー、ねじり加工機等を使用した加工やショ
ツトブラスト等の如き所要の温度域にて所要加工度の加
工が行える方法であれば何れをも採用することができ、
格別に制限されるものではない。
Any method can be used as long as it can be processed to the required degree of processing in the required temperature range, such as processing using a stretcher, twisting machine, etc., or shot blasting.
There are no particular restrictions.

塑性加工での歪量は、次の3つの作用を生起させる点で
重要である。即ち、1つはα相を加工することにより加
工硬化したα相から非常に微細なβ相の結晶粒が加工誘
起されて生成する作用であり、2つ目は、α相がβ相に
変態する変態温度にまで被加工材の温度を上昇させるた
めの加工発熱を起こさせる作用であり、3つ目は、生成
した微細なβ相の結晶を加工硬化させ、その後のα相生
成に際して更に微細なα粒を加工誘起変態生成させる作
用である。
The amount of strain in plastic working is important in that it causes the following three effects. In other words, the first is the process-induced formation of very fine β-phase crystal grains from the work-hardened α-phase by processing the α-phase, and the second is the transformation of the α-phase into the β-phase. The third effect is to work-harden the fine β-phase crystals that have been generated, and to further fine them during subsequent α-phase generation. This is the effect of forming alpha grains through deformation-induced transformation.

しかるに、加工の歪量が20%未満の場合には、α相か
らβ相に変態させても微細なβ相の加工による誘起生成
が不十分であって、生成するβ相結晶粒を所望の均一細
粒にすることが難しくなる。
However, when the amount of strain during processing is less than 20%, even if the α phase is transformed into the β phase, the processing-induced generation of fine β phases is insufficient, and the resulting β phase crystal grains cannot be adjusted to the desired level. It becomes difficult to make uniform fine particles.

つまり、上記歪量を20%以上とすることによって始め
て所望の均一微細なβ相組織が比較的容易に実現するよ
うになるので、塑性加工による歪量を20%以上と定め
た。ただ、この範囲を満たしていたとしても、歪量が比
較的低い値の場合には加工による発熱が小さいので、加
工中に被加工材の温度を上昇させるための何らかの補助
熱手段が必要となる。これに対して、該歪量が50%以
上の場合には、加工形状と加工速度次第では補助加熱手
段を使わなくても加工するだけで所定の昇温が達成され
るようになるので、塑性加工によって与える歪量は出来
れば50%以上とするのが望ましい。
In other words, the desired uniform and fine β-phase structure can be relatively easily achieved only when the strain amount is 20% or more, so the strain amount due to plastic working is set to be 20% or more. However, even if this range is met, if the amount of strain is relatively low, the heat generated by machining will be small, so some kind of auxiliary heat means will be required to raise the temperature of the workpiece during machining. . On the other hand, if the amount of strain is 50% or more, depending on the machining shape and machining speed, the predetermined temperature increase can be achieved just by machining without using auxiliary heating means. It is desirable that the amount of strain imparted by processing is 50% or more if possible.

α相からβ相に変態させる際に塑性加工を加えながら昇
温するのは、先にも説明したように“α領域での加工に
よるα粒徽細イシ、“加工硬化α粒からの微細β粒の加
工誘起生成”並びに“β粒の加よるよる微細化″、更に
は“冷却の際に加工硬化β粒からの微細α粒の歪誘起変
態促進”を図るためであり、本発明に係る方法において
は、これらの詩作用とそれによる効果が「塑性加工を加
えつつ昇温する」という技術の中に連続的に凝縮されて
現れるわけである。
Raising the temperature while applying plastic working when transforming from α phase to β phase is because, as explained earlier, “α grains become fine due to processing in the α region,” “fine β grains from work hardened α grains This is for the purpose of "work-induced generation of grains" and "refining by addition of β grains", as well as "promotion of strain-induced transformation of fine α grains from work-hardened β grains during cooling", and the present invention In terms of methods, these poetic actions and their effects are continuously condensed and manifested in the technique of ``raising the temperature while adding plastic working.''

被加工材の昇温温度は、変態温度以上、即ちα相がβ相
に逆変態する温度領域(加熱α相線以上の温度、加熱α
相線以上の温度、加熱α相線以上の温度、或いは加熱β
線以上の温度)にまで上昇することが必須である。
The heating temperature of the workpiece should be higher than the transformation temperature, that is, the temperature range where α phase reversely transforms into β phase (temperature higher than heating α phase line, heating α
Temperature above phase line, heating α temperature above phase line, or heating β
It is essential that the temperature rises to a temperature above the line.

ただ、加熱α相線、加熱共折線或いは加熱包折線を超え
ただけの温度領域ではα相とβ相の2相混合組織になる
が、本発明に係る方法では昇温しながら加工を加えてい
るので、この温度領域であっても結晶粒は加工と再結晶
により十分に微細化している。しかしながら、「α相を
加工することにより加工硬化したα相から非常に微細な
β相結晶粒が加工により誘発されて生成する」と言う作
用効果を完全に確保するためには、昇温は加熱β相線以
上の温度領域にまで行うことが望ましい。
However, in a temperature range that simply exceeds the heating α phase line, heating co-fraction line, or heating envelopment line, a two-phase mixed structure of α phase and β phase will result, but in the method according to the present invention, processing is performed while increasing the temperature. Therefore, even in this temperature range, the crystal grains are sufficiently refined by processing and recrystallization. However, in order to fully ensure the effect that "very fine β-phase crystal grains are induced and generated from the work-hardened α-phase by processing the α-phase", it is necessary to increase the temperature. It is desirable to carry out the process to a temperature range equal to or higher than the β phase line.

さて、被処理材に塑性加工を加えながら変態温度以上の
温度域に昇温した後、該温度域に100秒を超えない時
間保持することは、均一微細なβ相組織を得るために掻
めて重要な要素となる。
Now, in order to obtain a uniform and fine β phase structure, it is important to raise the temperature to a temperature range above the transformation temperature while applying plastic working to the material to be treated, and then hold it in that temperature range for a period not exceeding 100 seconds. This is an important element.

つまり、本発明の方法に従い被処理材に塑性加工を加え
つつ昇温してβ相に逆変態させる場合、実作業では速い
加工速度で急速昇温になることが多く、β相への逆変態
が進行する時間的余裕がない。
In other words, when the material to be treated is subjected to plastic working according to the method of the present invention while being heated and reversely transformed into the β phase, in actual work, the temperature often increases rapidly at a high processing speed, and the reverse transformation to the β phase occurs. There is no time to proceed.

従って、塑性加工終了後に直ちに被処理材を冷却すると
加工を受けたα粒がβ相に未だ変態しないうちに冷却さ
れることになり、逆変態を経ることなしにα相がそのま
ま残留することになる。これでは、本発明が狙いとする
前述の作用・効果が十分に得られず、本発明の目的を十
分に果たし得ないことにもつながる。そこで、このよう
な問題を無くするには、所要の条件で昇温工程を終了し
た後、加工歪を内蔵したα相がβ相に逆変態するための
時間的余裕を持たせるべく、変態温度以上の温度領域で
保持することが極めて有効となる。
Therefore, if the material to be treated is immediately cooled after plastic working, the processed α grains will be cooled before they are transformed into the β phase, and the α phase will remain as it is without undergoing reverse transformation. Become. In this case, the above-mentioned functions and effects aimed at by the present invention cannot be sufficiently obtained, and the purpose of the present invention cannot be fully achieved. Therefore, in order to eliminate such problems, after completing the temperature raising process under the required conditions, the transformation temperature should be adjusted to allow enough time for the α phase, which has built-in processing strain, to reverse transform into the β phase. It is extremely effective to maintain the temperature in the above temperature range.

なお、保持温度が変態温度を下回るとα相は熱力学的に
もはやβ相への変態を起こし得ないため、保持温度の下
限値は必然的に変態温度となることは言うまでもない。
Note that when the holding temperature is lower than the transformation temperature, the α phase can no longer thermodynamically transform into the β phase, so it goes without saying that the lower limit of the holding temperature is necessarily the transformation temperature.

また、変態温度以上の温度領域での所要保持時間は、加
工条件や被加工材種別によって著しく相違しており、長
いもので数十分を要する合金もある。そこで、保持時間
はこれらを十分にカバーでき、かつβ相の粗大化を招く
ことのない100秒を上限とした。なお、数秒程度の保
持によっても十分に変態を終了する合金もあるので、上
記保持時間の下限値は特に設定しなかった。
Further, the required holding time in the temperature range above the transformation temperature varies significantly depending on the processing conditions and the type of workpiece material, and some alloys require a long time of several tens of minutes. Therefore, the upper limit of the holding time was set to 100 seconds, which could sufficiently cover these times and would not cause coarsening of the β phase. Note that there are some alloys that complete transformation sufficiently even after holding for several seconds, so a lower limit value for the holding time was not set in particular.

逆変態工程後の冷却方法については、既に述べたように
特に指定されるものではないが、β相単一温度領域に逆
変態させた場合、その後の冷却速度が極端に遅いとβ相
が再び粗大化する恐れがあることから、望ましくは自然
放冷以上の冷却速度で冷却するのが良い。
As mentioned above, the cooling method after the reverse transformation process is not particularly specified, but when reverse transformation is performed to a single β phase temperature range, if the subsequent cooling rate is extremely slow, the β phase will regenerate. Since there is a risk of coarsening, it is preferable to cool at a cooling rate higher than natural cooling.

ここで、本発明を実施するに際しての好ましい態様を幾
つか例示する。
Here, some preferred embodiments for carrying out the present invention will be illustrated.

肌様−土 チタン又はチタン合金材を製造するに際して、チタン又
はチタン合金のα相から成る組織に20%以上の歪を与
える塑性変形を加えながら加熱α相線、加熱具折線、加
熱包析綿、好ましくは加熱β相線以上の温度領域にまで
加熱しながら昇温し、該温度領域にて100秒を超えな
い時間だけ保持してα相の全部又は一部をβ相に逆変態
させた後、これを冷却する。
When manufacturing soil-like titanium or titanium alloy materials, heating α-phase lines, heating tool fold lines, and heating encapsulated cotton are applied while applying plastic deformation that causes a strain of 20% or more to the α-phase structure of titanium or titanium alloy. , Preferably, the temperature is raised to a temperature range above the heating β phase line, and held in the temperature range for a time not exceeding 100 seconds to reversely transform all or part of the α phase into the β phase. After that, cool it down.

皿様−蛮 チタン又はチタン合金材を製造するに際して、チタン又
はチタン合金のα相と希土類元素、希土類酸化物の1種
以上とから成る混合組織に20%以上の歪を与える塑性
変形を加えながら加熱α相線、加熱具折線、加熱包折線
、好ましくは加熱β相線以上の温度領域にまで加熱しな
から昇温し、該温度領域にて100秒を超えない時間だ
け保持してα相の全部又は一部をβ相に逆変態させた後
、これを冷却する。
When manufacturing plate-like titanium or titanium alloy materials, while applying plastic deformation that causes a strain of 20% or more to the mixed structure consisting of the alpha phase of titanium or titanium alloy and one or more rare earth elements and rare earth oxides. The heating α phase line, the heating tool fold line, the heating enveloping line, preferably the temperature is raised to a temperature range above the heating β phase line, and held in the temperature range for a time not exceeding 100 seconds to form the α phase. After all or part of the β-phase is reversely transformed into the β phase, it is cooled.

聾槙−ユ チタン合金材を製造するに際して、チタン合金のα+β
相から成る組織に20%以上の歪を与える塑性変形を加
えながら加熱α相線、加熱具折線。
When manufacturing the Shimaki-Yu titanium alloy material, α + β of the titanium alloy
The α phase line and the heating tool fold line are heated while applying plastic deformation that causes a strain of 20% or more to the structure consisting of the phases.

好ましくは加熱β相線以上の温度領域にまで加熱しなが
ら昇温し、該温度領域にて100秒を超えない時間だけ
保持してα相の全部をβ相に逆変態させた後、これを冷
却する。
Preferably, the temperature is raised to a temperature range above the heating β phase line, and held in the temperature range for a time not exceeding 100 seconds to reversely transform all of the α phase into the β phase. Cooling.

旭盪−↓ チタン合金材を製造するに際して、チタン合金のα+β
相と金属間化合物、希土類元素、希土類酸化物の1種以
上とから成る混合組織に20%以上の歪を与える塑性変
形を加えながら加熱α相線。
Asahi - ↓ When manufacturing titanium alloy materials, α + β of titanium alloy
Heating the α phase line while applying plastic deformation that causes a strain of 20% or more to a mixed structure consisting of a phase and one or more of an intermetallic compound, a rare earth element, and a rare earth oxide.

加熱弁折線、好ましくは加熱β相線以上の温度領域にま
で加熱しながら昇温し、該温度領域において100秒を
趨えない時間だけ保持してα相の全部をβ相に逆変態さ
せた後、これを冷却する。
The temperature was increased while heating to a temperature range above the heating valve fold line, preferably the heating β phase line, and held in the temperature range for a time not exceeding 100 seconds to reversely transform all of the α phase into the β phase. After that, cool it down.

続いて、本発明を実施例により更に具体的に説明する。Next, the present invention will be explained in more detail with reference to Examples.

〈実施例〉 まず、真空゛?−り溶解にて第1表に示した純チタン及
びチタン合金鋳塊を得た後、これらを熱間鍛造(150
0℃加熱、 1300℃仕上げ)して断面60龍X 4
0 amの棒材となし、更に焼なましを施してから、断
面50+amX30mmの圧延実験用材を切り出した。
<Example> First, vacuum ゛? After obtaining the pure titanium and titanium alloy ingots shown in Table 1 by melting, they were hot forged (150
Heated at 0°C, finished at 1300°C) to a cross section of 60 dragons x 4
A bar with a diameter of 0 am was prepared, and after annealing, a rolled experimental material with a cross section of 50 am x 30 mm was cut out.

第   1   表 第1表に示した純チタン及びチタン合金A−Eの圧延実
験用材を用い、これらを誘導加熱炉で第2表に示した各
温度に加熱した後、プラネタリ−ミル又は通常の板圧延
用ミルで7.5fl厚にまで圧延した。なお、通常ミル
での圧延は3パス圧延とした。
Table 1 Using the rolling experimental materials of pure titanium and titanium alloys A-E shown in Table 1, they were heated in an induction heating furnace to the temperatures shown in Table 2, and then heated in a planetary mill or a regular plate. It was rolled to a thickness of 7.5 fl using a rolling mill. Note that the rolling in the normal mill was 3-pass rolling.

この場合、プラネタリ−ミルで圧延したものでは、ミル
出口での被圧延材の温度はプラネタリ−ミルでの大圧下
圧延による加工発熱で上昇し、該到達温度は圧延速度を
変えることにより変化・制御することができるが、本試
験例の場合には何れも材料の変態温度以上の温度にまで
昇温させた。
In this case, in the case of a material rolled by a planetary mill, the temperature of the material to be rolled at the mill exit increases due to the heat generated by the process due to the large reduction rolling in the planetary mill, and the temperature reached can be changed and controlled by changing the rolling speed. However, in the case of this test example, the temperature was raised to a temperature higher than the transformation temperature of the material.

続いて、圧延終了後の被圧延材は、そのまま、或いは1
時間までの種々の時間圧延終了温度に保持した後水冷し
、ミクロ組織観察を行った。
Subsequently, after rolling, the rolled material is left as it is or
After being maintained at the rolling end temperature for various times up to 30 minutes, the specimens were cooled with water and the microstructure was observed.

これらの結果を、具体的な各製造条件と共に第2表に示
した。
These results are shown in Table 2 together with specific manufacturing conditions.

なお、冷却前におけるβ粒の粒径は、圧延実験用材のミ
クロ組織観察により行った。
Note that the grain size of the β grains before cooling was determined by observing the microstructure of the material for rolling experiments.

第2表に示される結果からも明らかなように、本発明で
規定する製造条件を満たすチタン又はチタン合金材料は
何れの素材を出発材料としたものでも極めて微細な組織
が実現されているのに対して、製造条件が本発明の規定
から外れたものでは均一微細組織が得られないことが分
かる。
As is clear from the results shown in Table 2, titanium or titanium alloy materials that meet the manufacturing conditions specified in the present invention have an extremely fine structure no matter which material is used as the starting material. On the other hand, it can be seen that a uniform microstructure cannot be obtained if the manufacturing conditions deviate from the specifications of the present invention.

成り例↓ 第1表に示したチタン合金Cの圧延実験用材を用い、プ
ラネタリ−ミルにて圧下量(歪量)を種々に変えて逆変
態圧延を行った後、圧延終了温度に10秒間保持し、そ
の後直ちに水冷することによって得られたチタン合金材
についてミクロ組織観察を行った。
Example ↓ Using the experimental rolling material of titanium alloy C shown in Table 1, reverse transformation rolling was performed with various reduction amounts (strain amounts) in a planetary mill, and then held at the rolling end temperature for 10 seconds. The microstructure of the titanium alloy material obtained by immediately cooling it with water was then observed.

なお、プラネタリ−ミル圧延での圧下量(歪量)は、0
%、10%、20%、30%、40%及び50%の6種
類としたが、これらの圧下率の下では被圧延材が加工熱
だけで変態温度以上にまで十分に昇温しないので、ミル
の出口に誘導コイルを配設し、これによる誘導加熱で変
態温度以上の温度: ’1050℃にまで急速加熱した
Note that the reduction amount (strain amount) in planetary mill rolling is 0.
%, 10%, 20%, 30%, 40%, and 50%, but under these rolling reductions, the temperature of the rolled material does not rise sufficiently above the transformation temperature due to processing heat alone. An induction coil was installed at the exit of the mill, and the induction heating was rapidly heated to a temperature above the transformation temperature: 1050°C.

得られた各チタン合金材のミクロ組織観察結果を第3表
に示す。
Table 3 shows the microstructure observation results of each titanium alloy material obtained.

第3表に示される結果からも、圧下量(歪量)を20%
以上とした場合に初めて冷却前のβ粒径が100μm以
下となり、その後の冷却によって所望の均一な超微細組
織が得られることを確認できる。
From the results shown in Table 3, the reduction amount (strain amount) is 20%.
In the above case, it can be confirmed that the β grain size before cooling becomes 100 μm or less, and that the desired uniform ultrafine structure can be obtained by subsequent cooling.

威狂桝亘 第1表に示したチタン合金C及びEの圧延実験用材を用
い、まず本発明例ではこれらを誘導加熱炉で第4表に示
した所定温度にまで加熱した後プラネタリ−ミルによっ
て7.5■■厚にまで圧延(逆変態圧延)し引き続いて
圧延終了温度にj秒皿保持することにより十分逆変態さ
せてから水冷した。
Using experimental rolling materials of titanium alloys C and E shown in Table 1, in the present invention, they were first heated in an induction heating furnace to the predetermined temperature shown in Table 4, and then heated in a planetary mill. The material was rolled to a thickness of 7.5mm (reverse transformation rolling) and then held at the rolling end temperature for j seconds to cause sufficient reverse transformation, and then water-cooled.

一方、比較例(従来例)では、上記チタン合金C及びE
の圧延実験用材を誘導加熱炉で第4表に示した所定温度
にまで加熱した後、通常の板圧延ミルによって7.5鰭
厚にまで圧延(β相圧延)してからそのまま空冷した。
On the other hand, in the comparative example (conventional example), the titanium alloys C and E
The material for rolling experiments was heated in an induction heating furnace to the predetermined temperature shown in Table 4, then rolled to a fin thickness of 7.5 (β phase rolling) in an ordinary plate rolling mill, and then cooled in air.

次に、上記本発明例に係る逆変態圧延材と比較例に係る
通常圧延材を、チタン合金Cを素材としたものについて
は900℃に、またチタン合金Eを素材としたものにつ
いては600℃にそれぞれ加熱し、両者とも通常の板圧
延ミルで各々5.(hn厚にまで圧延(チタン合金Cは
α相圧延、チタン合金Eはα+β相圧延)し空冷した後
、再びチタン合金Cを素材としたものについては900
℃に、一方、チタン合金巳を素材としたものについては
600℃にそれぞれ加熱し、この温度に1時間保持(α
再結晶)してから空冷した。
Next, the reverse transformation rolled material according to the above-mentioned inventive example and the conventionally rolled material according to the comparative example were heated to 900°C for those made from titanium alloy C, and to 600°C for those made from titanium alloy E. Both were heated to 5.5% each using a normal plate rolling mill. (After rolling to a thickness of hn (Titanium Alloy C is α phase rolling, Titanium Alloy E is α+β phase rolling) and air-cooled, the material made from Titanium Alloy C is 900
℃, while those made from titanium alloy sulfur are heated to 600℃ and kept at this temperature for 1 hour (α
(recrystallization) and then air-cooled.

このようにして得られた各チタン合金材についてミクロ
組織観察を行ったが、その結果を第4表に併せて示す。
The microstructure of each titanium alloy material thus obtained was observed, and the results are also shown in Table 4.

第4表に示される結果からも明らかなように、本発明で
規定した通りに逆変態を行ってβ粒細粒化を行ったもの
については、その後に圧延・熱処理を施したとしても得
られる組織は従来のものに比して格段に細粒化されてい
ることが分かる。
As is clear from the results shown in Table 4, β-grain refinement by reverse transformation as specified in the present invention can be obtained even if rolling and heat treatment are performed afterwards. It can be seen that the structure is much finer grained than the conventional one.

く効果の総括〉 以上に説明した如く、この発明によれば、均一で超微細
な組織を有し、優れた緒特性を発揮するチタン及びチタ
ン合金材を安定して量産することが可能となるなど、産
業上極′めて有用な効果がもたらされる。
Summary of Effects> As explained above, according to the present invention, it is possible to stably mass-produce titanium and titanium alloy materials that have a uniform and ultra-fine structure and exhibit excellent mechanical properties. Industrially, extremely useful effects are brought about.

Claims (2)

【特許請求の範囲】[Claims] (1)β粒径又は冷却前の旧β粒径が100μm以下で
ある微細組織を有することを特徴とする加工チタン及び
チタン合金材。
(1) Processed titanium and titanium alloy materials characterized by having a microstructure in which the β grain size or the prior β grain size before cooling is 100 μm or less.
(2)少なくとも一部がα相から成る組織のチタン又は
チタン合金を、歪量:20%以上の塑性加工を加えつつ
変態温度以上の温度領域にまで昇温し、該温度領域に1
00秒を超えない時間だけ保持してα相の一部又は全部
を一旦β相に逆変態させ、その後冷却することを特徴と
する、超微細組織チタン又はチタン合金材の製造方法。
(2) Titanium or a titanium alloy having a structure at least partially composed of the α phase is heated to a temperature range equal to or higher than the transformation temperature while applying plastic working to a strain amount of 20% or more, and then
1. A method for producing an ultrafine-structured titanium or titanium alloy material, which comprises holding for a time not exceeding 0.00 seconds to reversely transform part or all of the α phase into the β phase, and then cooling.
JP1117681A 1988-12-05 1989-05-11 Ti and ti alloy material having superfine structure and its production Pending JPH02298240A (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP1117681A JPH02298240A (en) 1989-05-11 1989-05-11 Ti and ti alloy material having superfine structure and its production
CA002004548A CA2004548C (en) 1988-12-05 1989-12-04 Metallic material having ultra-fine grain structure and method for its manufacture
ES89122371T ES2073422T3 (en) 1988-12-05 1989-12-05 METHOD TO MANUFACTURE A METALLIC MATERIAL.
KR1019890017936A KR930010321B1 (en) 1988-12-05 1989-12-05 Metallic material having ultra-fine grain structure and method for its manufacture
AU45924/89A AU615360B2 (en) 1988-12-05 1989-12-05 Metallic material having ultra-fine grain structure and method for its manufacture
US07/446,457 US5080727A (en) 1988-12-05 1989-12-05 Metallic material having ultra-fine grain structure and method for its manufacture
DE68922075T DE68922075T2 (en) 1988-12-05 1989-12-05 Process for the production of a metallic material with an ultrafine grain structure.
EP89122371A EP0372465B1 (en) 1988-12-05 1989-12-05 Method for manufacture of a metallic material having ultrafine grain structure
TW078109425A TW217425B (en) 1988-12-05 1989-12-06

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1117681A JPH02298240A (en) 1989-05-11 1989-05-11 Ti and ti alloy material having superfine structure and its production

Publications (1)

Publication Number Publication Date
JPH02298240A true JPH02298240A (en) 1990-12-10

Family

ID=14717655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1117681A Pending JPH02298240A (en) 1988-12-05 1989-05-11 Ti and ti alloy material having superfine structure and its production

Country Status (1)

Country Link
JP (1) JPH02298240A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114346141A (en) * 2022-01-17 2022-04-15 太原理工大学 Multi-section hot working method for preparing weak alpha texture titanium alloy forging
CN114346141B (en) * 2022-01-17 2024-06-07 太原理工大学 Multistage hot processing method for preparing weak alpha texture titanium alloy forging

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114346141A (en) * 2022-01-17 2022-04-15 太原理工大学 Multi-section hot working method for preparing weak alpha texture titanium alloy forging
CN114346141B (en) * 2022-01-17 2024-06-07 太原理工大学 Multistage hot processing method for preparing weak alpha texture titanium alloy forging

Similar Documents

Publication Publication Date Title
US11891679B2 (en) High-strength and low-modulus β-type Si-containing titanium alloy, preparation method therefor and use thereof
US4581077A (en) Method of manufacturing rolled titanium alloy sheets
EP2971200B1 (en) Thermomechanical processing of alpha-beta titanium alloys
WO2019100809A1 (en) High strength and toughness filamentous grain pure titanium and preparation method therefor
JP2014009393A (en) α+β TYPE Ti ALLOY AND METHOD FOR PRODUCING THE SAME
CN113444946B (en) High-strength and high-toughness rare earth magnesium alloy and treatment method thereof
Jing et al. Effect of the annealing temperature on the microstructural evolution and mechanical properties of TiZrAlV alloy
Li et al. Achieving single-pass high-reduction rolling and enhanced mechanical properties of AZ91 alloy by RD-ECAP pre-processing
JPS6160871A (en) Manufacture of titanium alloy
KR101414505B1 (en) The manufacturing method of titanium alloy with high-strength and high-formability and its titanium alloy
Zel'Dovich et al. Martensitic transformations in TiNi alloys with Ti3Ni4 precipitates
JP3749589B2 (en) Hot-rolled strip, hot-rolled sheet or hot-rolled strip made of Ti-Fe-O-N-based titanium alloy and method for producing them
JPH02298240A (en) Ti and ti alloy material having superfine structure and its production
JPS63230858A (en) Manufacture of titanium-alloy sheet for superplastic working
JP2024518681A (en) Materials for manufacturing high strength fasteners and methods for manufacturing same
JPH06212378A (en) Treatment of beta type titanium alloy hot formed product
JPH01127653A (en) Manufacture of alpha+beta type titanium alloy cold rolled plate
JPH0663076B2 (en) Method for producing titanium alloy material having equiaxed fine grain (α + β) two-phase structure
CN114247758B (en) Method for reinforcing plasticization of industrial pure iron
Park et al. Formation of ultrafine grain and mechanical properties in commercial pure titanium subjected to heavy-reduction thermomechanical processing around β transus temperature
JPH02310348A (en) Manufacture of alpha+beta titanium alloy rolled bar and wire having good structure
JPH0266142A (en) Manufacture of plate stock, bar stock, and wire rod of alpha plus beta titanium alloy
CN117265441A (en) Preparation method of metallic material ultrafine crystal structure based on twin mechanism deformation
JPH03130351A (en) Production of titanium and titanium alloy having fine and equiaxial structure
Sun et al. Isothermal α Precipitation and Evolution in a Hot-Rolled near β Titanium Alloy