JPH02298078A - Manufacture of solar battery - Google Patents

Manufacture of solar battery

Info

Publication number
JPH02298078A
JPH02298078A JP1119338A JP11933889A JPH02298078A JP H02298078 A JPH02298078 A JP H02298078A JP 1119338 A JP1119338 A JP 1119338A JP 11933889 A JP11933889 A JP 11933889A JP H02298078 A JPH02298078 A JP H02298078A
Authority
JP
Japan
Prior art keywords
electrode
film
forming
dot
diffusion layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1119338A
Other languages
Japanese (ja)
Inventor
Noriaki Shibuya
渋谷 典明
Toru Nunoi
徹 布居
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP1119338A priority Critical patent/JPH02298078A/en
Publication of JPH02298078A publication Critical patent/JPH02298078A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PURPOSE:To process a fine dot by a simple method and to acquire a structure of highly efficient electrode by applying short wavelength laser light to a surface of a reflection preventing film formed on a photosensitive surface, by forming the fine dot and by forming a surface electrode by printing and firing an electrode material to a predetermined position for forming an electrode including the section. CONSTITUTION:An n<+>-diffusion layer 11 is formed to a surface of a p-type silicon substrate 10 to form a p-n junction. Then, an SiO2 oxide film 3 which becomes a passivation layer is formed, a TiO2 film 2 is formed thereon as a first reflection preventing film, and an SnO2 film 1 is further formed thereon as a second reflection preventing film. An n<+>-diffusion layer which remains on a rear is removed through etching to form a p<+>-layer 12 and a rear electrode 4 as a BSF layer. It is held to an X-Y stage, and short wavelength laser light is applied to a predetermined region for forming of a dot-like surface electrode. After such fine process is carried out, surface electrodes 6, 6... are printed and fired at a predetermined position of a surface electrode including holes 5, 5....

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は太陽電池特にその電極の製造方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a solar cell, and particularly to a method for manufacturing an electrode thereof.

(従来の技術) 太陽電池の高効率化を図る九めの手段の一方法として、
受光面表面の電極の接触面積を低減することがあげられ
る。
(Prior art) As a ninth method to improve the efficiency of solar cells,
One example of this is to reduce the contact area of the electrode on the light-receiving surface.

一般に太陽電池の受光側の拡散層の表面は、受光部分と
弁受ft、S分すなわち電極直下の部分とに大別される
。このうち、受光部分については、表面1ks i02
等の酸化膜で覆うことにより、この部分での少数キャリ
アの再結合を低下させ特性を向上させる、いわゆるバシ
ベーシlン処理が施されている。一方電極厘下部分につ
いては、電極とシリコン基板表面の拡散層との接触部分
での少数キャリアの再結合は無限大であシ、この部分の
面積を可能な限り小さくし、相対的にパシペーシ田ン面
積を増加させることが必要である。
Generally, the surface of the diffusion layer on the light-receiving side of a solar cell is roughly divided into a light-receiving portion and a portion directly below the electrode. Of these, the surface of the light receiving part is 1ks i02
A so-called basibasin treatment is performed to reduce the recombination of minority carriers in this part and improve the characteristics by covering it with an oxide film such as oxide film. On the other hand, in the area under the electrode, the recombination of minority carriers at the contact area between the electrode and the diffusion layer on the surface of the silicon substrate is infinite. It is necessary to increase the bearing area.

電極と拡散1との接触面積を低減するためには、I接的
な方法として、電極面積を減らせば良いのであるが、単
純に電極面積を減らして行くと、1列抵抗の影響が大き
くなり、曲線因子(FF)の低下に伴う特性低下を招い
てしまう。一般に使用される印刷焼成電極は、低価格が
特徴であるが、この電極を用いるときは、従来の技術で
は3〜4%の電極占有率が限界であっ交。
In order to reduce the contact area between the electrode and diffusion 1, it is possible to reduce the electrode area as an I-contact method, but if you simply reduce the electrode area, the influence of the single-row resistance will increase. , resulting in a decrease in characteristics due to a decrease in fill factor (FF). The commonly used printed and fired electrodes are characterized by their low cost, but when using these electrodes, the electrode occupancy rate of 3 to 4% is the limit with conventional technology.

この限界値を超えるため、拡散層と電極との接触部公金
ドツト状とする電極構造によって、電極と拡散層との接
触面積を低減し、表面パシベーシ嘗ン効果を一1向上さ
せることが考えられる。第2図(a)及び伽)は、印刷
焼成によるこのようなドツト電極を有するものの製造王
権を示すための略断面図である。通常太陽電池セルは、
p型シリコン基板10の表面にn+拡散層11、裏面に
p+拡散層12を形成し、n+拡散層11の表面1ks
io2のようなバシベーシlン用の酸化膜3で被覆し、
さらにその表面を反射防止膜で覆う。この図では’ri
o2膜2及び5n02膜lの二重の層によって構成され
る。反射防止膜は一層でもよい。裏面のp+拡散層12
0表面には、略々全面にわ九シ、AI!その他適宜の金
属で被覆して裏面電極4が形成されている。前記の反射
防止膜の表面にドツト状に銀ペーストを印刷し表面電極
6−1゜6−1.・・・の上部が形成される。これを8
50℃以上の温度で焼成すると、第2因(b)に示され
るように、銀ペーストは反射防止膜と酸化膜3を貫通し
て、n+拡散層11とドツト状に接触する表面電極6−
1゜6−1゜・・・が形成される。その後、さらに金属
ペーストにより、ドツト状の表面電極6−1.6−1゜
・・・を接続する連結電極を形成する。連結電極も印刷
焼成によって形成される。
In order to exceed this limit value, it is possible to reduce the contact area between the electrode and the diffusion layer by creating an electrode structure in which the contact area between the diffusion layer and the electrode is shaped like a metal dot, thereby improving the surface passivation effect by 11%. . FIGS. 2(a) and 2) are schematic cross-sectional views showing the manufacturing process of a product having such a dot electrode by printing and firing. Usually solar cells are
An n+ diffusion layer 11 is formed on the front surface of a p-type silicon substrate 10, a p+ diffusion layer 12 is formed on the back surface, and the surface of the n+ diffusion layer 11 is 1ks.
Covered with an oxide film 3 for bathibasilin such as io2,
Furthermore, the surface is covered with an anti-reflection film. In this figure, 'ri
It is composed of a double layer of an o2 film 2 and a 5n02 film l. The antireflection film may be one layer. P+ diffusion layer 12 on the back side
On the 0 surface, almost the entire surface is covered with Niwa-Kushi, AI! The back electrode 4 is formed by covering with other appropriate metal. Silver paste is printed in dots on the surface of the anti-reflection film, and surface electrodes 6-1.6-1. The upper part of ... is formed. This is 8
When fired at a temperature of 50° C. or higher, as shown in the second factor (b), the silver paste penetrates through the antireflection film and the oxide film 3 and forms the surface electrode 6- which contacts the n+ diffusion layer 11 in a dot shape.
1°6-1°... is formed. Thereafter, connecting electrodes connecting the dot-shaped surface electrodes 6-1, 6-1°, . . . are formed using metal paste. The connecting electrodes are also formed by printing and firing.

なお、フォトエツチング技術を利用して、シリコン基板
表面の反射防止膜とパシベーション膜を微細なドツト状
に除去し金属を蒸着して電極を形成する方法もある。
Note that there is also a method of removing the antireflection film and passivation film on the surface of the silicon substrate into fine dots using photoetching technology, and then depositing metal to form the electrodes.

(発明が解決しようとする課題〉 前述の印刷焼成による方法では、スクリーン印刷の技術
的な制限から、ドツト電極の面積の占有率は1.5%徨
度が限界である。
(Problems to be Solved by the Invention) In the printing and baking method described above, due to technical limitations of screen printing, the area occupation rate of the dot electrodes is limited to 1.5%.

また、フォトエツチングによる方法では、低価格化を目
指した多結晶シリコン基板へ適用するときは、基板表面
のテクスチャ処理に際して生ずる表面の数十ミクロンの
段差の影響もあり、実用的であるとは言えない。
Furthermore, when applying the photoetching method to polycrystalline silicon substrates aimed at lowering costs, it is not practical due to the effects of the surface level difference of several tens of microns that occurs during the texture treatment of the substrate surface. do not have.

(11題を解決するための手段) 本発明においては、太陽電池のシリコン基板の受光面の
表面に形成された反射防止膜の表面に短波長レーザ光を
照射し、微細なドツトを形成し、このドツト部分を含む
電極を形成する予定位置に、Agペーストのような電極
材料を印刷し焼成して表面電極を形成し次。
(Means for Solving Problem 11) In the present invention, the surface of an antireflection film formed on the light-receiving surface of a silicon substrate of a solar cell is irradiated with short wavelength laser light to form fine dots, An electrode material such as Ag paste is printed and fired at the planned position where the electrode will be formed, including the dot portion, to form a surface electrode.

(作用) 短波長レーザ光は、光学系によシスポットサイズを1μ
属程度から任意の大きさまで設定することができるので
、フォトエツチングによる精度を十分達成できるから、
反射防止膜の表面に直接多数のドツトによるパターンを
描くことができる。
(Function) The short wavelength laser beam has a spot size of 1μ by the optical system.
Since it is possible to set the size from 100% to any size, it is possible to achieve sufficient accuracy with photoetching.
A pattern of many dots can be drawn directly on the surface of the antireflection film.

ま九、波長350μ購以下の紫外光を選択すれば、通常
使用されている反射防止膜材料に対しては殆んど透過せ
ず、照射エネルギの吸収による発熱で蒸発してしまう。
(9) If ultraviolet light with a wavelength of 350 μm or less is selected, it will hardly pass through commonly used antireflection coating materials and will evaporate due to heat generation due to absorption of irradiation energy.

また、加工の程度についても、照射エネルギ強度あるい
は照射回数によシ制御することができる。従って非常に
簡単な方法で微細なドツトを加工し、高効率の電極構造
を実現できる。
Further, the degree of processing can also be controlled by the irradiation energy intensity or the number of irradiations. Therefore, it is possible to process fine dots using a very simple method and realize a highly efficient electrode structure.

(9!施例) 第1図(a)(b)及(C)は本発明による電極形成の
各工程を示す略断面図である。
(9! Example) FIGS. 1(a), 1(b) and 1(C) are schematic cross-sectional views showing each step of electrode formation according to the present invention.

3111図(a)において、洗浄の完了したp型シリコ
ン基板10の表面に、POCff3ガスにより拡散を行
ないn+拡散層11を形成し、pn接合を形成する。こ
のとき裏面にもn+拡散層が形成されるが、後の工程で
除去される。続いて、酸素雰囲気中でn+拡散層11の
表面にバシベーシ1ン層となる厚さ150Aの5io2
酸化膜3を形成する。
In FIG. 3111(a), the surface of the p-type silicon substrate 10 that has been cleaned is diffused with POCff3 gas to form an n+ diffusion layer 11, thereby forming a pn junction. At this time, an n+ diffusion layer is also formed on the back surface, but it will be removed in a later step. Subsequently, 5io2 with a thickness of 150A is deposited on the surface of the n+ diffusion layer 11 in an oxygen atmosphere to form a base layer.
An oxide film 3 is formed.

次にこの酸化膜3の上へ第1の反射防止膜となるTi0
sli12を350A(D厚さに形成L、サラニソの上
にs2の反射防止膜となる5n02膜1t−150Aの
淳さに形成する。次に、裏面に残っているn+拡散11
を、エツチングによシ除去し、AI!ペーストを印刷焼
成することにより、BSF膚となるp+112及び裏面
電極4を形成する。このように加工され九p型シリコン
基板10をX−Yステージに保持し、短波長レーザ光(
例えば、XeC/、波長aosnm)を、ドツト状の表
面電極を形成しようとする予定領域に照射する。本実施
例においては、レーザ光寸法’150X50μ鴎とし、
ドツトピッチ!−50〜500μ篤として、エネルギ強
度を1〜5レーまで変化させ加工全行っ次。加工後の表
面状態については、エネルギ強度2輸位までで、はぼ第
2の反射防止膜であるSnug膜1が除去され、エネル
ギ強度aJ/i位1でで第1の反射防止膜であるTiO
2膜2が除去される。レーザ光照射による穴5.5・・
・は、TiO2膜20一部分に達する深さであっても良
いし、5io2酸化膜3を含む深さであっても良い。な
お、5 J/、4以上のエネルギ強度で照射すると、n
+拡散層11の表面の溶融、蒸発が起る。
Next, on this oxide film 3, a TiO layer is applied to form the first anti-reflection film.
sli12 is formed to a thickness of 350A (D thickness L, and a 5n02 film 1t-150A is formed on top of the s2 film to a thickness of 1t-150A. Next, the n+ diffusion 11 remaining on the back side is
is removed by etching, and AI! By printing and firing the paste, the p+112 and back electrode 4, which will become the BSF skin, are formed. The nine p-type silicon substrate 10 processed in this way is held on an X-Y stage and exposed to short wavelength laser light (
For example, a region where a dot-shaped surface electrode is to be formed is irradiated with XeC (wavelength: aosnm). In this example, the laser beam dimensions are 150 x 50μ,
Dot pitch! The energy intensity was varied from 1 to 5 rays and the machining process was carried out as -50 to 500μ. Regarding the surface state after processing, the Snug film 1, which is the second antireflection film, is removed at an energy intensity of up to 2 intensities, and the first antireflection film is removed at an energy intensity of aJ/i of 1. TiO
2 membrane 2 is removed. Hole made by laser beam irradiation 5.5...
* may be a depth that reaches a part of the TiO2 film 20, or may be a depth that includes the 5io2 oxide film 3. In addition, when irradiated with an energy intensity of 5 J/, 4 or more, n
+ Melting and evaporation of the surface of the diffusion layer 11 occur.

第1図(b)はこの=りな微細加工を施した後に、穴5
.5・・・を含む表面電極の予定位置にAgペーストに
よる表面電極6.6・・・を印刷した状at−示す。
Figure 1(b) shows the hole 5 after this = Rina micromachining.
.. The figure shows a state in which surface electrodes 6, 6, .

第1図(c)は前記の工程の後に焼成した状態を示す。FIG. 1(c) shows the fired state after the above steps.

一般にAgペーストは、その中に含まれているガラスフ
リットの種類によシ固有の温度特性を有している。ここ
で用いられるAgペーストはTiO2膜に対しては、5
80℃以上の温度で買通し、5n02膜に対しては、8
50℃以上の温度で貫通する特性を有している。従って
、前記加工条件のうち、2〜4J、Qのエネルギ強度の
範囲で照射加工すれば、高々600℃程度の温度で、A
gペーストはT)02膜2f:貫通してn+拡散層11
に到達し、表面電極6.6・・・が完成される。ドツト
部以外の微細加工されていない5n02膜1上のAgペ
ーストは、600℃付近の温度では5n02膜1t−貫
通することはない。5n02膜1はAgペーストに対し
バリヤーとして作用する。このようにして良好なドツト
状の表面電極6,6゜・・・が央現される。
Generally, Ag paste has unique temperature characteristics depending on the type of glass frit contained therein. The Ag paste used here is 5% for the TiO2 film.
Buy at a temperature of 80℃ or higher, and for 5n02 membrane, 8
It has the property of penetrating at a temperature of 50°C or higher. Therefore, if irradiation processing is performed within the energy intensity range of 2 to 4 J, Q among the above processing conditions, A
g paste is T)02 film 2f: penetrates n+ diffusion layer 11
The surface electrode 6.6... is completed. The Ag paste on the 5n02 film 1, which is not microfabricated except for the dot portions, does not penetrate through the 5n02 film 1t at a temperature around 600°C. The 5n02 film 1 acts as a barrier to the Ag paste. In this way, good dot-shaped surface electrodes 6, 6°, . . . are formed in the center.

なお、本発明においてドツトピッチが50μmのとき、
表面電極6.6.・・・とn+拡散/111との接触面
積の占有率は1.27%、ドツトピッチが500μ禦の
ときは0.13%と、従来の方法、1)はるかに低い占
有率が寮現できる。
In addition, in the present invention, when the dot pitch is 50 μm,
Surface electrode 6.6. The occupation rate of the contact area between ... and n+ diffusion/111 is 1.27%, and when the dot pitch is 500 μm, it is 0.13%, which is much lower than the conventional method (1).

(発明の効果) 本発明によると、電流。電圧とも向上傾向を示したが、
特に開放電圧については、従来の方法による素子の値に
比し、5〜10@vもの著しい1加を示し友。また、F
Fについても、電極接触面積が少ないにも拘らず、従来
の素子と同等の値が得られた。
(Effects of the Invention) According to the present invention, electric current. Although both voltage showed an improving trend,
In particular, the open-circuit voltage showed a significant increase of 5 to 10 v compared to the value of the device using the conventional method. Also, F
Regarding F, a value equivalent to that of the conventional element was obtained despite the small electrode contact area.

短波長レーザ光で、シリコン基板表面の反射防止膜に、
微細なパターンでドツトを設けてAgペーストを印刷し
焼成するから、従来のように反射防止膜貫通用と非貫通
用というような二FJ類の電極材料は必要でなく、かつ
二段階の印刷焼成工穐も不要となる。
The anti-reflection coating on the surface of the silicon substrate is coated with short wavelength laser light.
Since the Ag paste is printed with dots in a fine pattern and then fired, there is no need for two types of electrode materials, one for penetrating the anti-reflection film and one for not penetrating the anti-reflection film, as in the past. There is also no need for a tumbler.

また、加工能力もフォトエツチングと同等のレベルにあ
るので、電極接触面積を著しく低減することができ、太
陽電池の高効車化に大きく寄与する。さらに、加工の制
御も簡単で処理速度も速いので生産性が高い。
Furthermore, since the processing ability is on the same level as photoetching, the electrode contact area can be significantly reduced, greatly contributing to making solar cells more efficient. Furthermore, processing is easy to control and processing speed is fast, resulting in high productivity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a) 、 (b) 、 (c)は本発明の一実
施例による各工程の略断面図、第2図(a)(b)は従
来の一例の各工程の略断面図である。
FIGS. 1(a), (b), and (c) are schematic sectional views of each process according to an embodiment of the present invention, and FIGS. 2(a) and (b) are schematic sectional views of each process of a conventional example. be.

Claims (1)

【特許請求の範囲】[Claims] 1、受光面の表面に形成された反射防止膜の表面に、短
波長レーザ光を照射し微細なドットを形成し、このドッ
トの部分を含む電極を形成する予定位置に、電極材料を
印刷し焼成して表面電極を形成することを特徴とする太
陽電池の製造方法
1. The surface of the antireflection film formed on the surface of the light-receiving surface is irradiated with short wavelength laser light to form fine dots, and electrode material is printed at the planned positions where electrodes will be formed, including the dots. A method for manufacturing a solar cell characterized by firing to form a surface electrode
JP1119338A 1989-05-12 1989-05-12 Manufacture of solar battery Pending JPH02298078A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1119338A JPH02298078A (en) 1989-05-12 1989-05-12 Manufacture of solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1119338A JPH02298078A (en) 1989-05-12 1989-05-12 Manufacture of solar battery

Publications (1)

Publication Number Publication Date
JPH02298078A true JPH02298078A (en) 1990-12-10

Family

ID=14759013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1119338A Pending JPH02298078A (en) 1989-05-12 1989-05-12 Manufacture of solar battery

Country Status (1)

Country Link
JP (1) JPH02298078A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8975109B2 (en) 2009-07-22 2015-03-10 Mitsubishi Electric Corporation Solar battery cell and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8975109B2 (en) 2009-07-22 2015-03-10 Mitsubishi Electric Corporation Solar battery cell and production method thereof
US9647147B2 (en) 2009-07-22 2017-05-09 Mitsubishi Electric Corporation Solar battery cell and production method thereof

Similar Documents

Publication Publication Date Title
JP2744847B2 (en) Improved solar cell and method for manufacturing the same
DE4324647C2 (en) Thin film solar cell and manufacturing process therefor
AU631976B2 (en) Dotted contact solar cell and method of making same
EP1319254B1 (en) Method for producing a semiconductor-metal contact through a dielectric layer
US6384317B1 (en) Solar cell and process of manufacturing the same
US4359487A (en) Method for applying an anti-reflection coating to a solar cell
JP2008512858A (en) Manufacturing process and manufacturing method of emitter wrap through back contact solar cell
JP2015513784A (en) Method of forming solar cell with selective emitter
KR101370126B1 (en) Method for forming selective emitter of solar cell using annealing by laser of top hat type and Method for manufacturing solar cell using the same
JPH0415962A (en) Solar cell and manufacture thereof
JP2003209271A (en) Solar battery and its manufacturing method
DE102007041392A1 (en) Process for manufacturing a solar cell with a double-layered dielectric layer
JPWO2003075363A1 (en) Photoelectric conversion element and manufacturing method thereof
JPH03250671A (en) Semiconductor photoelectric converting device and its manufacture
JP3676954B2 (en) Photoelectric conversion element and manufacturing method thereof
JPH02298078A (en) Manufacture of solar battery
JP2928433B2 (en) Method for manufacturing photoelectric conversion element
JP2585403B2 (en) Solar cell manufacturing method
JPH04356972A (en) Manufacture of photoelectric converter
CA1164734A (en) Method for applying an anti-reflection coating to a solar cell
JPH03101170A (en) Manufacture of solar cell
KR100192257B1 (en) Manufacturing method of solar cell
JP4212292B2 (en) Solar cell and manufacturing method thereof
JPH05326989A (en) Manufacture of solar cell
JPH05275722A (en) Manufacture of solar cell