JPH02298054A - Cooling apparatus - Google Patents

Cooling apparatus

Info

Publication number
JPH02298054A
JPH02298054A JP1119904A JP11990489A JPH02298054A JP H02298054 A JPH02298054 A JP H02298054A JP 1119904 A JP1119904 A JP 1119904A JP 11990489 A JP11990489 A JP 11990489A JP H02298054 A JPH02298054 A JP H02298054A
Authority
JP
Japan
Prior art keywords
nozzle
refrigerant
semiconductor element
semiconductor elements
coolant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1119904A
Other languages
Japanese (ja)
Inventor
Mitsutaka Yamada
光隆 山田
Kishio Yokouchi
貴志男 横内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1119904A priority Critical patent/JPH02298054A/en
Publication of JPH02298054A publication Critical patent/JPH02298054A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation

Abstract

PURPOSE:To cool a semiconductor element uniformly and with good efficiency by installing the following: a first nozzle which jets a coolant to nearly the central part of the semiconductor element; a second nozzle which jets a coolant to a part near a circumference of the semiconductor element. CONSTITUTION:A coolant flowing from a first entrance is passed through a first coolant-supply tube 41 and is jetted to nearly central parts of semiconductor elements 31 to 33 from first nozzles 4. A coolant flowing from a second entrance is passed through a second coolant-supply tube 51 and is jetted to parts near circumferences of the semiconductor elements 31 to 33 from second nozzles 5. When a double nozzle 6 provided with an inside nozzle 61 and an outside nozzle 62 is used, a cooling capacity can be enhanced. That is to say, a pressure of the coolant at the outside of its flow is lowered by a flow of the coolant which is jetted from the inside nozzle 61; the coolant flowing from the upper part between the inside nozzle 61 and the outside nozzle 62 surrounding the inside nozzle 61. When the coolant is jetted radially by using a grooved nozzle 7 provided with grooved 71 extended radially toward parts around the semiconductor elements, the semiconductor elements can be cooled efficiently not only at the central parts but also at the circumferences.

Description

【発明の詳細な説明】 〔概要] 冷却装置に係り、特に半導体素子を冷却する冷却装置に
関し。
DETAILED DESCRIPTION OF THE INVENTION [Summary] The present invention relates to a cooling device, and particularly to a cooling device for cooling semiconductor elements.

半導体素子を均一に且つ冷却効率よく冷却する冷却装置
を目的とし。
The purpose is a cooling device that cools semiconductor elements uniformly and efficiently.

半導体素子を冷媒中に浸漬し冷媒を循環させることによ
り該半導体素子を冷却する冷却装置であって、〔l]該
半導体素子の上方に配置され、該半導体素子のほぼ中央
部に冷媒を噴射する第1のノズルと、該半導体素子の周
囲に近接して配置され、該半導体素子の周囲近傍に冷媒
を噴射する第2のノズルとを有する冷却装置、〔2〕該
半導体素子の上方に配置され、該半導体素子のほぼ中央
部に冷媒を噴射する内側ノズルと、該内側ノズルの外側
に配置され、内径が下方に向かって徐々に小さく且つ上
部が開放されている外側ノズルとからなる二重ノズルを
有する冷却装置、及び〔3〕該半導体素子の上方に配置
され、内部に該半導体素子の周辺へ向かって放射状に延
びる溝を持ち。
A cooling device that cools a semiconductor element by immersing the semiconductor element in a refrigerant and circulating the refrigerant, [l] Disposed above the semiconductor element, and injecting the refrigerant approximately at the center of the semiconductor element. [2] A cooling device having a first nozzle and a second nozzle arranged close to the periphery of the semiconductor element and injecting a coolant near the periphery of the semiconductor element; [2] a cooling device arranged above the semiconductor element; , a double nozzle consisting of an inner nozzle that injects a refrigerant almost to the center of the semiconductor element, and an outer nozzle that is disposed outside the inner nozzle and has an inner diameter that gradually decreases downward and is open at the top. and [3] a cooling device disposed above the semiconductor element and having grooves inside thereof extending radially toward the periphery of the semiconductor element.

該半導体素子に冷媒を噴射する溝つきノズルを有する冷
却装置により構成する。
The cooling device includes a grooved nozzle that injects coolant to the semiconductor element.

〔産業上の利用分野〕 本発明は冷却装置に係り、特に半導体素子を冷却する冷
却装置に関する。
[Industrial Application Field] The present invention relates to a cooling device, and particularly to a cooling device for cooling semiconductor elements.

高速コンピュータ等の高速半導体素子を使用する電子機
器において、半導体素子から発生する熱を効率よく外部
へ逃がす方策がいろいろ講しられてきている。高速コン
ピュータでは、半導体素子の高集積化及び高密度化によ
り、中位体積当たりの発熱量は飛躍的に増大し、その半
導体素子を冷却するための冷却装置の占める体積の割合
が増加しており、より高効率でコンパクトな冷却装置が
必要とされている。
BACKGROUND ART In electronic devices such as high-speed computers that use high-speed semiconductor elements, various measures have been taken to efficiently release heat generated from the semiconductor elements to the outside. In high-speed computers, the amount of heat generated per medium volume has increased dramatically due to the high integration and density of semiconductor devices, and the proportion of the volume occupied by cooling devices for cooling the semiconductor devices has increased. , more efficient and compact cooling equipment is needed.

(従来の技術〕 従来、半導体素子の冷却方法として、半導体素子を冷媒
に浸漬し、冷媒を強制的に噴射して冷却する液体冷却の
方法がある。
(Prior Art) Conventionally, as a method for cooling a semiconductor device, there is a liquid cooling method in which the semiconductor device is immersed in a coolant and cooled by forcibly injecting the coolant.

第4図はその冷却装置の従来例を説明するための図であ
り、1は冷媒容器、11は冷媒、2ば基台。
FIG. 4 is a diagram for explaining a conventional example of the cooling device, in which 1 is a refrigerant container, 11 is a refrigerant, and 2 is a base.

31乃至33は半導体素子、4はノズル、41は冷媒供
給管を表す。
31 to 33 are semiconductor elements, 4 is a nozzle, and 41 is a refrigerant supply pipe.

半導体素子31乃至33は、はんだバンブにより基台2
に固定される。冷媒容器1の入口から冷媒供給管41に
入った冷媒11は、半導体素子31乃至33の上方のノ
ズル4から半導体素子31乃至33の中央部に噴射され
、その冷媒11は中央部から周辺部へ流れる。冷媒容器
1の中は冷媒11で満たされていて。
The semiconductor elements 31 to 33 are attached to the base 2 by solder bumps.
Fixed. The refrigerant 11 that has entered the refrigerant supply pipe 41 from the inlet of the refrigerant container 1 is injected from the nozzle 4 above the semiconductor elements 31 to 33 into the center of the semiconductor elements 31 to 33, and the refrigerant 11 flows from the center to the periphery. flows. The inside of the refrigerant container 1 is filled with refrigerant 11.

冷媒11は入口から入って冷媒容器l内を循環し。The refrigerant 11 enters from the inlet and circulates within the refrigerant container l.

出口へ還流する。Reflux to the outlet.

ところで、この構造では冷媒の循環量が少ないと冷却の
効果が小さく、半導体素子31乃至33の温度は、ノズ
ル4から噴射する冷媒の温度に比べて上昇し2時には3
5°C乃至40゛Cも上昇する。さらに、ノズル4から
噴射する冷媒が直接あたる中央部に比べて周辺部では冷
却能力が低下して、半導体素子31乃至33の温度は中
央部より周辺部が高くなるといった不均一が生じる。冷
却能力を上げ。
By the way, in this structure, if the circulation amount of the refrigerant is small, the cooling effect will be small, and the temperature of the semiconductor elements 31 to 33 will rise compared to the temperature of the refrigerant injected from the nozzle 4.
It will rise by 5°C to 40°C. Furthermore, the cooling ability is lower in the peripheral area than in the central area, which is directly hit by the refrigerant injected from the nozzle 4, and the temperature of the semiconductor elements 31 to 33 is non-uniform, such that the peripheral area is higher than the central area. Increase cooling capacity.

温度の不均一性を小さくするためには、噴射する冷媒の
温度を下げ、冷媒の噴射量を大きくすればよいが、その
ためにはポンプ(図示せず)及び熱交換器(図示せず)
を大きくする必要があり、冷却装置が大型になって好ま
しくない。
In order to reduce temperature non-uniformity, the temperature of the refrigerant to be injected can be lowered and the amount of refrigerant to be injected can be increased.
It is necessary to increase the size of the cooling device, which is not desirable.

〔発明が解決しようとする課題) 従って5できるだけ冷媒の循環量を低く抑えて冷却効率
を上げ、しかも半導体素子を均一に冷却するための構造
が必要となる。
[Problems to be Solved by the Invention] Therefore, there is a need for a structure that can suppress the amount of refrigerant circulation as low as possible to increase cooling efficiency and uniformly cool semiconductor elements.

本発明はかかる構造を有する冷却装置を提供することを
目的とする。
An object of the present invention is to provide a cooling device having such a structure.

〔課題を解決するための手段] 第1図乃至第3図は本発明の実施例I乃至■であり、そ
れらの図及び図中の符号を参照して上記課題を解決する
ための手段について説明すると。
[Means for Solving the Problems] Figures 1 to 3 show Examples I to ① of the present invention, and the means for solving the problems described above will be explained with reference to these figures and the reference numerals in the figures. Then.

〔1〕半導体素子31乃至33を冷媒中に浸漬し冷媒を
循環させることにより該半導体素子31乃至33を冷却
する冷却装置であって、該半導体素子31乃至33の上
方に配置され、該半導体素子31乃至33のほぼ中央部
に冷媒を噴射する第1のノズル4と、該半導体素子31
乃至33の周囲に近接して配置され。
[1] A cooling device that cools the semiconductor elements 31 to 33 by immersing the semiconductor elements 31 to 33 in a refrigerant and circulating the refrigerant, which is disposed above the semiconductor elements 31 to 33 and cools the semiconductor elements 31 to 33. a first nozzle 4 that injects a refrigerant into approximately the center of the semiconductor element 31 to 33;
to 33 are arranged close to each other.

該半導体素子31乃至33の周囲近傍に冷媒を噴射する
第2のノズル5とを有する冷却袋L  (2:]半導体
素子31乃至33を冷媒中に浸漬し冷媒を循環させるこ
とにより該半導体素子31乃至33を冷却する冷却装置
であって、該半導体素子31乃至33の上方に配置され
、該半導体素子31乃至33のほぼ中央部に冷媒を噴射
する内側ノズル61と、該内側ノズルの外側に配置され
、内径が下方に向かって徐々に小さく且つ上部が開放さ
れている外側ノズル62とからなる二重ノズル6を有す
る冷却装置、及び〔3〕半導体素子31乃至33を冷媒
中に浸漬し冷媒を循環させることにより該半導体素子3
1乃至33を冷却する冷却装置であって、該半導体素子
31乃至33の上方に配置され、内部に該半導体素子3
1乃至33の周辺へ向かって放射状に延びる溝71を持
ち。
A cooling bag L having a second nozzle 5 that injects a refrigerant near the periphery of the semiconductor elements 31 to 33 (2:) The semiconductor elements 31 are immersed in the refrigerant and the refrigerant is circulated. A cooling device for cooling the semiconductor elements 31 to 33, which includes an inner nozzle 61 disposed above the semiconductor elements 31 to 33 and injecting a refrigerant to approximately the center of the semiconductor elements 31 to 33, and an inner nozzle 61 disposed outside the inner nozzle. [3] A cooling device having a double nozzle 6 consisting of an outer nozzle 62 whose inner diameter gradually decreases toward the bottom and whose upper part is open; By circulating the semiconductor element 3
1 to 33, which is disposed above the semiconductor elements 31 to 33, and which cools the semiconductor elements 3 to 33.
It has a groove 71 that extends radially toward the periphery of numbers 1 to 33.

該半導体素子31乃至33に冷媒を噴射する溝つきノズ
ル7を有する冷却装置によって上記課題は解決される。
The above problem is solved by a cooling device having a grooved nozzle 7 that injects coolant onto the semiconductor elements 31 to 33.

[作用] [1〕半導体素子の中央部に冷媒を噴射する第1のノズ
ル4と、半導体素子の周囲近傍に冷媒を噴射する第2の
ノズル5とを同時に設けることにより、善導導体素子3
1乃至33を中央部1周辺部とも一様に冷却することが
できるようになる。しかも冷却能力が向上する。
[Function] [1] By simultaneously providing the first nozzle 4 that injects a refrigerant to the center of the semiconductor element and the second nozzle 5 that injects the refrigerant near the periphery of the semiconductor element, the good conductor element 3
1 to 33 can be uniformly cooled around the central portion 1. Moreover, the cooling capacity is improved.

〔2〕内側ノズル61と外側ノズル62を持つ二重ノズ
ル6を使用することにより冷却能力が向上できる。即ち
、内側ノズル61から噴射する冷媒の流れによってその
流れの外側の冷媒の圧力が低くなり。
[2] The cooling capacity can be improved by using the double nozzle 6 having the inner nozzle 61 and the outer nozzle 62. That is, the flow of refrigerant injected from the inner nozzle 61 lowers the pressure of the refrigerant outside the flow.

内側ノズル61を取り巻く外側ノズル62との間に上方
から冷媒が流れ込んでくる。しかも外側ノズル62の内
径は下方に向けて徐々に狭くなっているので、冷媒の流
速は徐々に大きくなり、外側ノズル62の上方から流れ
込む冷媒の量は増大する。
Refrigerant flows from above between the inner nozzle 61 and the outer nozzle 62 surrounding it. Moreover, since the inner diameter of the outer nozzle 62 gradually narrows downward, the flow velocity of the refrigerant gradually increases, and the amount of refrigerant flowing from above the outer nozzle 62 increases.

従って、冷媒の循環量を従来例と同じくしても。Therefore, even if the amount of refrigerant circulation is the same as in the conventional example.

半導体素子の中央部に噴射する冷媒の里を増加させるこ
とができて、冷却能力を向上することが可能となる。
It is possible to increase the volume of refrigerant injected into the center of the semiconductor element, and it becomes possible to improve the cooling capacity.

〔3〕半導体素子の周辺に向かって放射状に延びる溝7
1を持つ溝つきノズル7を用いて、半導体素子に冷媒を
放射状に噴射することにより、半導体素子は中央部だけ
でなく周辺部も効率良く冷却される。半導体素子の中央
部では従来例より冷却能力が低下するが1周辺部の冷却
能力が増加するので、冷却の均一性が向上する。しかも
、全体としての冷却能力は向上する。
[3] Grooves 7 extending radially toward the periphery of the semiconductor element
By injecting the refrigerant radially onto the semiconductor element using the grooved nozzle 7 having the number 1, not only the central part but also the peripheral part of the semiconductor element can be efficiently cooled. Although the cooling capacity in the central part of the semiconductor element is lower than in the conventional example, the cooling capacity in one peripheral part is increased, so that the uniformity of cooling is improved. Moreover, the overall cooling capacity is improved.

〔実施例] 第1図は実施例!で、第1図(a)は冷却装置全体を説
明するための断面図、第1図(b)はノズルの作用を説
明するための斜視図、第1図(c)は冷却能力を示す図
であり、1は冷媒容器、11は冷媒、2は基台、 31
乃至33は半導体素子、4は第1のノズル、 41は第
1の冷媒供給管、5は第2のノズル、 51は第2の冷
媒供給管、矢印は冷媒の流れる方向を表す。
[Example] Figure 1 is an example! FIG. 1(a) is a sectional view to explain the entire cooling device, FIG. 1(b) is a perspective view to explain the action of the nozzle, and FIG. 1(c) is a diagram showing the cooling capacity. 1 is a refrigerant container, 11 is a refrigerant, 2 is a base, 31
33 is a semiconductor element, 4 is a first nozzle, 41 is a first refrigerant supply pipe, 5 is a second nozzle, 51 is a second refrigerant supply pipe, and the arrow represents the direction in which the refrigerant flows.

以下、第1図(a)乃至(C)を参照しながら説明する
This will be explained below with reference to FIGS. 1(a) to 1(C).

第1図(a)参照 半導体素子31乃至33は、はんだバンブにより基台2
に固定され、全体が冷媒llに浸漬されている。
Referring to FIG. 1(a), the semiconductor elements 31 to 33 are connected to the base 2 by solder bumps.
The entire structure is immersed in refrigerant.

第1の人口から流入した冷媒は、第1の冷媒供給管41
を経て第1のノズル4から半導体素子31乃至33のほ
ぼ中央部に噴射する。
The refrigerant flowing from the first population is transferred to the first refrigerant supply pipe 41
After that, the liquid is sprayed from the first nozzle 4 to approximately the center of the semiconductor elements 31 to 33.

第2の入口から流入した冷媒は、第2の冷媒供給管51
を経て第2のノズル5から半導体素子31乃至33の周
囲近傍に噴射する。
The refrigerant flowing in from the second inlet is transferred to the second refrigerant supply pipe 51
After that, the liquid is sprayed from the second nozzle 5 to the vicinity of the semiconductor elements 31 to 33.

冷媒容器1中を循環した冷媒は、出口から流出する。The refrigerant that has circulated in the refrigerant container 1 flows out from the outlet.

第1図(b)参照 第1のノズル4から噴射した冷媒は半導体素子31のほ
ぼ中央部に面に垂直にあたり、そこで方向を変えて半導
体素子31の周囲に向かってほぼ面に平行に流れる。
Referring to FIG. 1(b), the refrigerant injected from the first nozzle 4 hits the semiconductor element 31 substantially in the center perpendicular to the plane, changes direction there, and flows toward the periphery of the semiconductor element 31 substantially parallel to the plane.

一方、第2のノズル5から噴射した冷媒は半導体素子3
1の周囲近傍から3半導体素子31の中央部に向けて面
に平行に流れる。
On the other hand, the refrigerant injected from the second nozzle 5 is applied to the semiconductor element 3.
It flows parallel to the plane from near the periphery of semiconductor element 1 toward the center of semiconductor element 31.

第1図(c)参照 半導体素子31乃至33の上面が13…I角、第1のノ
ズル4の内径が3 am、噴射口と半導体素子面との間
隔が4mmで噴射速度が1.0 m/s、半導体素子同
志の間隔がl am、第2のノズル5の内幅が0.5n
m。
Refer to FIG. 1(c). The upper surface of the semiconductor elements 31 to 33 is 13...I angle, the inner diameter of the first nozzle 4 is 3 am, the distance between the injection port and the semiconductor element surface is 4 mm, and the injection speed is 1.0 m. /s, the distance between semiconductor elements is lam, and the inner width of the second nozzle 5 is 0.5n.
m.

噴射口と半導体素子面との間晒が]、mmで噴射速度が
0.05m/sとした時の冷媒温度と冷却能力の関係を
第1図(c)に示す。
FIG. 1(c) shows the relationship between the refrigerant temperature and the cooling capacity when the distance between the injection port and the semiconductor element surface is 0.05 m/s and the injection speed is 0.05 m/s.

比較のため、冷媒を噴射するノズルとして第1のノズル
4だけがあり、冷媒噴射量を実施例Iの第1のノズル4
からの噴射量と第2のノズル5からの噴射量の合計量と
する従来例の冷媒温度と冷却能力の関係も第1図(C’
)に示す。
For comparison, there is only the first nozzle 4 as a nozzle that injects refrigerant, and the refrigerant injection amount is the same as that of the first nozzle 4 of Example I.
The relationship between the refrigerant temperature and the cooling capacity in the conventional example, where the total amount of the injection amount from the second nozzle 5 and the injection amount from the second nozzle 5, is also shown in FIG.
).

第1図(C)に見るように、実施例Iでは従来例に比べ
て冷却能力が30乃至35%向上する。
As seen in FIG. 1(C), in Example I, the cooling capacity is improved by 30 to 35% compared to the conventional example.

第2のノズル5からの冷媒の噴射速度は、第1のノズル
4からの冷媒の噴射速度に比べて低速の方がよい。
The injection speed of the refrigerant from the second nozzle 5 is preferably lower than the injection speed of the refrigerant from the first nozzle 4.

なお、第2のノズル5を半導体素子を囲むような形状に
して、半導体素子の四方の周囲から中央部に向けて冷媒
が流れるようにしてもよい。
Note that the second nozzle 5 may be shaped to surround the semiconductor element so that the coolant flows from the four sides of the semiconductor element toward the center.

第2図は実施例■で、第2図(a)は冷却装置全体を説
明するための断面図、第2図(b)はノズルの形状を説
明するための斜視図、第2図(c)は冷却能力を示す図
であり51は冷媒容器。
Figure 2 shows Example 2, Figure 2 (a) is a sectional view for explaining the entire cooling device, Figure 2 (b) is a perspective view for explaining the shape of the nozzle, and Figure 2 (c) is a cross-sectional view for explaining the entire cooling device. ) is a diagram showing the cooling capacity, and 51 is a refrigerant container.

11は冷媒、2は基台、 31乃至33は半導体素子、
41は冷媒供給管、61は内側ノズル、62は外側ノズ
ル。
11 is a refrigerant, 2 is a base, 31 to 33 are semiconductor elements,
41 is a refrigerant supply pipe, 61 is an inner nozzle, and 62 is an outer nozzle.

6は二重ノズル、矢印は冷媒の流れる方向を表す。6 is a double nozzle, and the arrow represents the direction in which the refrigerant flows.

以下、第2図<a>乃至(c)を参照しながら説明する
This will be explained below with reference to FIGS. 2<a> to (c).

第2図(a)参照 半導体素子31乃至33は、はんだバンプにより基台2
に固定され、全体が冷媒11に浸漬されている。
Referring to FIG. 2(a), the semiconductor elements 31 to 33 are connected to the base 2 by solder bumps.
, and the whole is immersed in refrigerant 11.

入口から流入した冷媒は、冷媒供給管41を経て内側ノ
ズル61から半導体素子31乃至33のほぼ中央部に噴
射する。
The refrigerant flowing from the inlet passes through the refrigerant supply pipe 41 and is injected from the inner nozzle 61 to approximately the center of the semiconductor elements 31 to 33.

冷媒は半導体素子のほぼ中央部にあたり、そこから周囲
に向けて面に平行に流れるが、外側ノズル62の上部か
ら冷媒が還流してきて、半導体素子のほぼ中央部にあた
る冷媒の単位時間当たりの■が増加する。
The coolant hits approximately the center of the semiconductor element and flows parallel to the surface from there toward the periphery. However, the coolant returns from the upper part of the outer nozzle 62, and the coolant flows approximately at the center of the semiconductor element per unit time. To increase.

冷媒容器l中を循環した冷媒は、出口から流出する。The refrigerant that has circulated in the refrigerant container l flows out from the outlet.

第2図(b)は内側ノズル61と外側ノズル62からな
る二重ノズル6を示す斜視図である。
FIG. 2(b) is a perspective view showing a double nozzle 6 consisting of an inner nozzle 61 and an outer nozzle 62.

外側ノズル62は内側ノズル61の下方の外側に配置さ
れ、下方に向かって内径が徐々に小さくなるホーン形で
、上部は冷媒中に開放されている。内側ノズル61と外
側ノズル62は5例えば両者に跨がる支持部をもって固
定する。
The outer nozzle 62 is disposed on the outer side below the inner nozzle 61, has a horn shape whose inner diameter gradually decreases toward the bottom, and has an upper part open to the refrigerant. The inner nozzle 61 and the outer nozzle 62 are fixed by, for example, a support portion that spans both.

第2図(C)参照 半導体素子31乃至33の上面が13+++m角で、そ
の中央部の上に2内径が3 mm、噴射口と半導体素子
面との間隔が10w+mの内側ノズル61と、下端の内
径が311101で半導体素子面との間隔が3 +u+
、上端の内径が6mmの外側ノズル62とからなる二重
ノズル6を用い、内側ノズル61からの冷媒噴射速度を
1.0 m/sとした時の冷媒温度と冷却能力の関係を
第2図(C)に示す。
Refer to FIG. 2(C) The upper surface of the semiconductor elements 31 to 33 is 13+++m square, and above the center part there is an inner nozzle 61 with an inner diameter of 3 mm and a distance of 10w+m between the injection port and the semiconductor element surface, and an inner nozzle 61 at the lower end. The inner diameter is 311101 and the distance from the semiconductor element surface is 3 +u+
Figure 2 shows the relationship between refrigerant temperature and cooling capacity when the refrigerant injection speed from the inner nozzle 61 is 1.0 m/s using a double nozzle 6 consisting of an outer nozzle 62 with an inner diameter of 6 mm at the upper end. Shown in (C).

比較のため、冷媒を噴射するノズルとして外側ノズル6
2の無い内側ノズル61だけのものを従来例とし、その
冷媒温度と冷却能力の関係も合わせて第2図(c)に示
す。
For comparison, outer nozzle 6 is used as a nozzle that injects refrigerant.
2(c) also shows the relationship between the refrigerant temperature and the cooling capacity.

第2図(C)に見るように、実施例■では従来例に比べ
て冷却能力が20乃至2°5%向上する。
As shown in FIG. 2(C), in Example 2, the cooling capacity is improved by 20 to 2.degree. 5% compared to the conventional example.

第3図は実施例■で、第3図(a)は冷却装置全体を説
明するための断面図5第3図(b)は溝つきノズルの斜
視図、第3図(C)は溝つきノズルの下面図、第3図(
d)は溝つきノズルの断面図、第3図(e)は冷却能力
を示す図であり、1は冷媒容器、11は冷媒、2は基台
、31乃至33は半導体素子、41は冷媒供給管・、7
は溝つきノズル。
Figure 3 shows Example 2, Figure 3 (a) is a cross-sectional view for explaining the entire cooling device, Figure 3 (b) is a perspective view of a grooved nozzle, and Figure 3 (C) is a grooved nozzle. Bottom view of the nozzle, Figure 3 (
d) is a sectional view of the grooved nozzle, and FIG. 3(e) is a diagram showing the cooling capacity, where 1 is a refrigerant container, 11 is a refrigerant, 2 is a base, 31 to 33 are semiconductor elements, and 41 is a refrigerant supply. Tube, 7
is a grooved nozzle.

71は溝、81乃至83は冷却補助ブロック、矢印は冷
媒の流れる方向を表す。
71 is a groove, 81 to 83 are cooling auxiliary blocks, and arrows indicate the direction in which the coolant flows.

以下、第3図(a)乃至(e)を参照しながら説明する
This will be explained below with reference to FIGS. 3(a) to 3(e).

第31図(a)参照 半導体素子31乃至33は2 はんだハンプにより基台
2に固定され、全体が冷媒11に浸漬されている。
Referring to FIG. 31(a), the semiconductor elements 31 to 33 are fixed to the base 2 with two solder humps, and are entirely immersed in the coolant 11.

入口から流入した冷媒は、冷媒供給管41を経て溝つき
ノズル7から半導体素子31乃至33の上に噴射する。
The refrigerant flowing from the inlet passes through the refrigerant supply pipe 41 and is injected from the grooved nozzle 7 onto the semiconductor elements 31 to 33.

冷媒は溝つきノズル7の溝71の作用により、半導体素
子の中央部と周辺部に同時に供給される。
The refrigerant is simultaneously supplied to the center and the periphery of the semiconductor element by the action of the grooves 71 of the grooved nozzle 7.

冷媒容器1中を循環した冷媒は、出口から流出する。The refrigerant that has circulated in the refrigerant container 1 flows out from the outlet.

第3図(b)乃至(d)参照 溝つきノズル7は半導体素子の周辺に向かってラッパ状
に開いた形状に形成し、さらに冷媒を半導体素子の周辺
へ放射状に供給する満71を形成する。第3図(d)は
A−A断面に沿う側面断面図で、溝71の両側の壁も点
線で示している。
Refer to FIGS. 3(b) to 3(d). The grooved nozzle 7 is formed in a trumpet-like shape that opens toward the periphery of the semiconductor element, and further forms a hole 71 that supplies the coolant radially to the periphery of the semiconductor element. . FIG. 3(d) is a side sectional view taken along the AA cross section, and the walls on both sides of the groove 71 are also shown with dotted lines.

さらに、半導体素子31と冷却補助ブロック81も点線
で示している。
Furthermore, the semiconductor element 31 and the cooling auxiliary block 81 are also shown by dotted lines.

冷却補助ブロック81は冷媒が溝71を通って周辺部へ
流れるのを滑らかにし、中央部の冷却能力を下げて中央
部と周辺部の冷却を均一化するためのもので、熱伝導性
の良い材料2例えば銅製の円錐または角錐のブロックで
ある。半導体素子は、はんだバンブ側が素子形成面であ
り、その反対側の面の中央部に冷却補助ブロック81を
接合することができる。また、適当な支持棒でもって溝
つきノズル7に固定し、冷却補助ブロック81の表面と
半導体素子31の表面とを接触させてもよい。
The cooling auxiliary block 81 is for smoothing the flow of the refrigerant to the peripheral area through the grooves 71, lowering the cooling capacity of the central area, and equalizing the cooling of the central area and the peripheral area, and is made of a block with good thermal conductivity. Material 2 is, for example, a conical or pyramidal block made of copper. The solder bump side of the semiconductor element is the element forming surface, and the cooling auxiliary block 81 can be bonded to the center of the opposite surface. Alternatively, the surface of the cooling auxiliary block 81 and the surface of the semiconductor element 31 may be brought into contact with each other by being fixed to the grooved nozzle 7 with a suitable support rod.

第3図(e)参照 半導体素子31乃至33の上面が13mm角で、その中
央部の上方に、内径が31IIImで半導体素子面の上
方6n+mの所から半導体素子面の周囲の上方2mmの
所まで放射状に広がる溝71が16箇形成された溝つき
ノズル7を用い、溝の形成されていない部分の冷媒噴射
速度を1.0 m/sとした時の冷媒温度と冷却能力の
関係を第3図(e)に示す。
Refer to FIG. 3(e) The top surfaces of the semiconductor elements 31 to 33 are 13 mm square, and the inner diameter is 31III m above the center of the semiconductor elements 31 to 33. From a point 6n+m above the semiconductor element surface to a point 2 mm above the periphery of the semiconductor element surface. Using the grooved nozzle 7 in which 16 grooves 71 that spread radially are formed, the relationship between the refrigerant temperature and the cooling capacity when the refrigerant injection speed in the part where the grooves are not formed is 1.0 m/s is shown in the third example. Shown in Figure (e).

比較のため、冷媒を噴射するノズルとして溝71の形成
されているフードの部分がない従来例の冷媒温度と冷却
能力の関係も第3図(e)に示す。
For comparison, FIG. 3(e) also shows the relationship between the refrigerant temperature and the cooling capacity of a conventional example in which the hood portion in which the groove 71 is formed as a nozzle for injecting refrigerant is not provided.

第3図(e)に見るように、実施例■では従来例に比べ
て冷却能力が25乃至30%向上する。
As shown in FIG. 3(e), in Example 2, the cooling capacity is improved by 25 to 30% compared to the conventional example.

〔発明の効果〕〔Effect of the invention〕

以上説明した様に1本発明によれば、半導体素子を冷却
する冷却能力を従来よりも高め、しかも半導体素子を均
一に冷却する冷却装置を提供することができる。
As explained above, according to one aspect of the present invention, it is possible to provide a cooling device that has a cooling capacity for cooling a semiconductor element higher than that of the conventional apparatus and that uniformly cools the semiconductor element.

本発明によれば、冷却装置を小型にして且つ半導体素子
の集積度を上げることができる。
According to the present invention, the cooling device can be made smaller and the degree of integration of semiconductor elements can be increased.

本発明はコンピュータの高速化に寄与するところが大き
い。
The present invention greatly contributes to speeding up computers.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は実施例■で、第1図(a)は装置の全体を説明
するための断面図、第1図(b)はノズルの作用を説明
するための斜視図、第1図(C)は冷却能力を示す図。 第2図は実施例■で、第2図(a)は装置の全体を説明
するための断面図、第2図(b)は二重ノズルの斜視図
5第2図(c)は冷却能力を示す図。 第3図は実施例■で、第3図(a)は装置の全体を説明
するための断面図、第3図(bL(C)。 (d)は、それぞれ、溝つきノズルの斜視図5下面図、
断面図、第3図(e)は冷却能力を示す図。 第4図は従来例を説明するための図 である。図において。 1は冷媒容器。 11は冷媒。 2は基台。 31乃至33は半導体素子。 4はノズルであって第1のノズル5 41は冷媒供給管であって第1の冷媒供給管。 5はノズルであって第2のノズル。 51は冷媒供給管であって第2の冷媒供給管。 6は二重ノズル。 61は内側ノズル。 62は外側ノズル。 7は溝つきノズル。 71は溝。 81乃至83は冷却補助ブロック (b) * 廼 ダ1工 ′!51図(【の2) 沖裸盗度(’c ) (C) 寅 梵 例 1 %10(での3) べ   犯 6.二重ノズjし くシ) タニ  表色、  汐り   ][ 322図での2) 々俣温演(1) (CI 吏 )巴 守り X 第20(での3) べ  刊 第3口(2の23 ′/ガ影:jJ−(’CI (e) 寅 廻 flJ  M 第3’23(之の3)
Figure 1 shows Example 2, Figure 1 (a) is a sectional view for explaining the entire device, Figure 1 (b) is a perspective view for explaining the action of the nozzle, and Figure 1 (C ) is a diagram showing cooling capacity. Figure 2 shows Example 2, Figure 2 (a) is a sectional view for explaining the entire device, Figure 2 (b) is a perspective view of the double nozzle, Figure 2 (c) is the cooling capacity. Diagram showing. FIG. 3 shows Example 2, FIG. 3(a) is a cross-sectional view for explaining the entire device, and FIG. 3(d) is a perspective view of a grooved nozzle. bottom view,
The sectional view and FIG. 3(e) are diagrams showing cooling capacity. FIG. 4 is a diagram for explaining a conventional example. In fig. 1 is a refrigerant container. 11 is a refrigerant. 2 is the base. 31 to 33 are semiconductor elements. 4 is a nozzle, and a first nozzle 5. 41 is a refrigerant supply pipe, which is a first refrigerant supply pipe. 5 is a nozzle, which is a second nozzle. 51 is a refrigerant supply pipe, which is a second refrigerant supply pipe. 6 is a double nozzle. 61 is the inner nozzle. 62 is the outer nozzle. 7 is a grooved nozzle. 71 is a groove. 81 to 83 are cooling auxiliary blocks (b) *1 construction'! Figure 51 ([No. 2) Offshore naked theft degree ('c) (C) Tora Bon Example 1 %10 (No. 3) Be offense 6. Double Nozu J Shikushi) Tani color display, Shiori] [2 in 322) Atsushi Tamata (1) (CI officer) Tomoe Mamoru X No. 20 (Part 3) 23' / Shadow: jJ-('CI (e) Tora Mawari flJ M 3rd '23 (No. 3)

Claims (1)

【特許請求の範囲】 〔1〕半導体素子(31乃至33)を冷媒中に浸漬し冷
媒を循環させることにより該半導体素子(31乃至33
)を冷却する冷却装置であって、 該半導体素子(31乃至33)の上方に配置され、該半
導体素子(31乃至33)のほぼ中央部に冷媒を噴射す
る第1のノズル(4)と、 該半導体素子(31乃至33)の周囲に近接して配置さ
れ、該半導体素子(31乃至33)の周囲近傍に冷媒を
噴射する第2のノズル(5)と を有することを特徴とする冷却装置。 〔2〕半導体素子(31乃至33)を冷媒中に浸漬し冷
媒を循環させることにより該半導体素子(31乃至33
)を冷却する冷却装置であって、 該半導体素子(31乃至33)の上方に配置され、該半
導体素子(31乃至33)のほぼ中央部に冷媒を噴射す
る内側ノズル(61)と、該内側ノズル(61)の外側
に配置され、内径が下方に向かって徐々に小さく且つ上
部が開放されている外側ノズル(62)とからなる二重
ノズル(6)を有することを特徴とする冷却装置。 〔3〕半導体素子(31乃至33)を冷媒中に浸漬し冷
媒を循環させることにより該半導体素子(31乃至33
)を冷却する冷却装置であって、 該半導体素子(31乃至33)の上方に配置され、内部
に該半導体素子(31乃至33)の周辺へ向かって放射
状に延びる溝(71)を持ち、該半導体素子(31乃至
33)に冷媒を噴射する溝つきノズル(7)を有するこ
とを特徴とする冷却装置。
[Scope of Claims] [1] The semiconductor elements (31 to 33) are immersed in a refrigerant and the refrigerant is circulated.
), the first nozzle (4) is disposed above the semiconductor element (31 to 33) and injects a refrigerant approximately to the center of the semiconductor element (31 to 33); A cooling device characterized by having a second nozzle (5) that is arranged close to the periphery of the semiconductor element (31 to 33) and injects a refrigerant near the periphery of the semiconductor element (31 to 33). . [2] The semiconductor elements (31 to 33) are immersed in a refrigerant and the refrigerant is circulated.
), which comprises: an inner nozzle (61) disposed above the semiconductor element (31 to 33) and injecting a refrigerant to a substantially central portion of the semiconductor element (31 to 33); A cooling device characterized by having a double nozzle (6) consisting of a nozzle (61) and an outer nozzle (62) whose inner diameter gradually decreases downward and whose top is open. [3] The semiconductor elements (31 to 33) are immersed in a refrigerant and the refrigerant is circulated.
), which is disposed above the semiconductor elements (31 to 33) and has grooves (71) inside thereof that extend radially toward the periphery of the semiconductor elements (31 to 33). A cooling device characterized by having a grooved nozzle (7) for injecting a refrigerant to semiconductor elements (31 to 33).
JP1119904A 1989-05-12 1989-05-12 Cooling apparatus Pending JPH02298054A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1119904A JPH02298054A (en) 1989-05-12 1989-05-12 Cooling apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1119904A JPH02298054A (en) 1989-05-12 1989-05-12 Cooling apparatus

Publications (1)

Publication Number Publication Date
JPH02298054A true JPH02298054A (en) 1990-12-10

Family

ID=14773091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1119904A Pending JPH02298054A (en) 1989-05-12 1989-05-12 Cooling apparatus

Country Status (1)

Country Link
JP (1) JPH02298054A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04239162A (en) * 1991-01-14 1992-08-27 Nec Corp Jet flow collision-based cooling system
DE4237414A1 (en) * 1991-11-08 1993-05-13 Hitachi Ltd Cooling appts. for heat generating semiconductor devices - circulates cooling fluid through nozzles and over surfaces of devices in enclosed space
DE4326985A1 (en) * 1992-09-04 1994-03-10 Hitachi Ltd Fluid-cooled electronic component - has transversal element in path of cooling medium flow ensuring distribution across rear of semiconductor element
WO2007116894A1 (en) * 2006-04-06 2007-10-18 Toyota Jidosha Kabushiki Kaisha Cooling device
JP2007335530A (en) * 2006-06-13 2007-12-27 Toyota Motor Corp Semiconductor module and semiconductor device
JP2015002291A (en) * 2013-06-17 2015-01-05 富士通株式会社 Semiconductor device and cooling method for the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04239162A (en) * 1991-01-14 1992-08-27 Nec Corp Jet flow collision-based cooling system
DE4237414A1 (en) * 1991-11-08 1993-05-13 Hitachi Ltd Cooling appts. for heat generating semiconductor devices - circulates cooling fluid through nozzles and over surfaces of devices in enclosed space
DE4237414C2 (en) * 1991-11-08 1997-05-28 Hitachi Ltd Device for cooling heat generating elements
DE4326985A1 (en) * 1992-09-04 1994-03-10 Hitachi Ltd Fluid-cooled electronic component - has transversal element in path of cooling medium flow ensuring distribution across rear of semiconductor element
DE4326985C2 (en) * 1992-09-04 1998-07-02 Hitachi Ltd Liquid-cooled electronic component
US5959351A (en) * 1992-09-04 1999-09-28 Hitachi, Ltd. Liquid-cooled electronic device
WO2007116894A1 (en) * 2006-04-06 2007-10-18 Toyota Jidosha Kabushiki Kaisha Cooling device
JP2007281163A (en) * 2006-04-06 2007-10-25 Toyota Motor Corp Cooler
JP4649359B2 (en) * 2006-04-06 2011-03-09 トヨタ自動車株式会社 Cooler
JP2007335530A (en) * 2006-06-13 2007-12-27 Toyota Motor Corp Semiconductor module and semiconductor device
JP4729443B2 (en) * 2006-06-13 2011-07-20 トヨタ自動車株式会社 Semiconductor device
JP2015002291A (en) * 2013-06-17 2015-01-05 富士通株式会社 Semiconductor device and cooling method for the same

Similar Documents

Publication Publication Date Title
US5239443A (en) Blind hole cold plate cooling system
US5491363A (en) Low boiling point liquid coolant cooling structure for electronic circuit package
US7284389B2 (en) Two-fluid spray cooling system
JPH0282561A (en) Semiconductor cooling apparatus and its manufacture
CN109149325B (en) A kind of mixed structure micro-channel heat sink
JPH1084139A (en) Thermoelectric conversion device
JPH05304234A (en) Cooling structure for integrated circuit
US5283464A (en) Electrically insulated heat pipe type cooling apparatus for semiconductor
TWM248227U (en) Liquid cooling apparatus
JPH11172401A (en) Cooling of strip and device therefor
US4450896A (en) Method and apparatus for heat exchange at solid surfaces
US20030168202A1 (en) CPU cooler
JPH02298054A (en) Cooling apparatus
CN108766943B (en) A kind of adaptive Heat And Mass Transfer radiator of intelligent response die hot spots
CN110662403A (en) Jet cooling device for array turbulence column
JPH06120387A (en) Heat sink
US7365980B2 (en) Micropin heat exchanger
JPH0311759A (en) Cooling device for semiconductor device
JPH0837260A (en) Semiconductor cooler
JPH05251600A (en) Immersion jet cooling heat sink
DE112020003635T5 (en) re-entry flow cold plate
EP0401743A1 (en) Electrically insulated heat pipe type cooling apparatus for semiconductor
JPH0637218A (en) Semiconductor device
CN111787750A (en) Water cooling head
JPH08241943A (en) Liquid-cooled heat sink for power semiconductor element