JPH02297982A - Superconducting device - Google Patents

Superconducting device

Info

Publication number
JPH02297982A
JPH02297982A JP1117311A JP11731189A JPH02297982A JP H02297982 A JPH02297982 A JP H02297982A JP 1117311 A JP1117311 A JP 1117311A JP 11731189 A JP11731189 A JP 11731189A JP H02297982 A JPH02297982 A JP H02297982A
Authority
JP
Japan
Prior art keywords
oxide superconductor
film
current
region
superconducting device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1117311A
Other languages
Japanese (ja)
Inventor
Masashi Tsugai
番 雅司
Tsuneo Ichiguchi
市口 恒雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1117311A priority Critical patent/JPH02297982A/en
Publication of JPH02297982A publication Critical patent/JPH02297982A/en
Pending legal-status Critical Current

Links

Landscapes

  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To restrict energy produced when a current is driven to an oxide superconductor by joining an oxide superconductor region and a conductor region through an insulator region and applying a magnetic field generated by a control signal to the oxide superconductor region. CONSTITUTION:In a variable amplification factor signal amplifier, an insulator film 2 is formed on an oxide superconductor film 1 on which two electrodes 5, 6 are provided, on which insulator film two oxide superconductor films 3, 4 are formed, on opposite ends of which electrodes 10-13 are provided. The electrodes 12, 13 are connected through a conductive material and a power supply 8 is connected to the electrodes 10, 11. A current source 7 and a volt meter are connected to the electrodes 5, 6. Thereupon, the power supply 7 provides an input signal and the power supply 8 provides a control signal. Voltage indicated by the volt meter 9 produced owing to a change in a current from the power supply source 7 is changed by power exponents of the magnetic field and temperature, the power exponent providing an amplification factor. The current I0 flowing through the films 3, 4 generates the magnetic field H which is then altered as a function of the current I0 to control the amplification factor.

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は、酸化物超伝導体を用いた新規な素子に係り、
特に酸化物超伝導体に固有な電圧、電流、磁場の間に成
り立つ物理法則を利用した超伝導デバイスに関する。 (従来の技術1 従来のBC8超伝導体を用いた各種装置には、磁束量子
の運動にともなって発生する電圧を抑えるために、超伝
導体材料にピン止めと呼ばれる構造が導入されている。 このピン止めは磁束量子の運動を抑えるために、例えば
超伝導材料中に不純物を導入して磁束量子をポテンシャ
ルの井戸で束縛しようとするものである。 また、従来のバルクなりC8超伝導体における電圧、電
流、磁場の間に成り立つ関係は、VcI:HXI。 で与えられることが知られている(例えば。「超伝導入
門」 中嶋貞雄 培風館)。ここで、■は超伝導体に発
生する電圧、■は超伝導体に流す電流であり、Hは外部
磁場である。 [発明が解決しようとする課題] 酸化物高温超伝導体は、2次元伝導性を有し、また超伝
導性を示す温度が高いという特徴を持つ。 このために熱的揺らぎの影響を大きく受けることとなる
。この熱的揺らぎの影響のために、磁束1子が生成され
やすく、酸化物超伝導体に電流を流す場合、従来のBC
3超伝導体に比べて、非常に電圧が発生し易いという性
質を持つ。また、熱的揺らぎの影響が大きいために、従
来のBC8超伝導体のように磁束量子に対するピン止め
導入の効果は、酸化物超伝導体に対して有効であるとは
考えられない。酸化物超伝導体に発生する電圧Vは、v
cc ニー IT、 H)            (
1)VOCH″+?−1)          (2)
というベキ法則に従う。ここで、■は超伝導体に流す電
流、Hは超伝導体にかける磁場、そしてTは超伝導体の
温度である。上記のベキ法則のために、どんなに小さな
電流を流しても、酸化物超伝導体には必ず有限の電圧が
発生してしまう。言いかえれば、酸化物超伝導体にはエ
ネルギーの損失なしに電流を流すことはできない。した
がって、酸化物超伝導体は電力輸送には適さない。 本発明の目的は、酸化物超伝導体に電流を流した場合の
エネルギー損失を抑えるデバイスを提供することであり
、さらに、上記の酸化物超伝導体に特有なベキ法則を積
極的に利用した利用したデバイスを提供することである
[Industrial Application Field] The present invention relates to a novel element using an oxide superconductor,
In particular, it relates to superconducting devices that utilize the physical laws that exist among voltage, current, and magnetic fields unique to oxide superconductors. (Prior art 1) In various devices using conventional BC8 superconductors, a structure called pinning is introduced in the superconductor material in order to suppress the voltage generated due to the movement of magnetic flux quanta. In order to suppress the movement of magnetic flux quanta, this pinning involves introducing impurities into the superconducting material to bind the magnetic flux quanta in potential wells. It is known that the relationship between voltage, current, and magnetic field is given by VcI:HXI (for example, "Introduction to Superconductivity", Sadao Nakajima, Baifukan). Here, ■ is the voltage generated in the superconductor , ■ is the current flowing through the superconductor, and H is the external magnetic field. [Problems to be solved by the invention] Oxide high-temperature superconductors have two-dimensional conductivity and also exhibit superconductivity. It is characterized by high temperature.For this reason, it is greatly influenced by thermal fluctuations.Due to the influence of these thermal fluctuations, single magnetic flux is easily generated, which causes current to flow through the oxide superconductor. In case, conventional B.C.
3. Compared to superconductors, it has the property of generating voltage much more easily. Furthermore, since the influence of thermal fluctuations is large, the effect of introducing pinning on magnetic flux quanta as in conventional BC8 superconductors is not considered to be effective for oxide superconductors. The voltage V generated in the oxide superconductor is v
cc knee IT, H) (
1) VOCH″+?-1) (2)
It follows the power law. Here, ■ is the current flowing through the superconductor, H is the magnetic field applied to the superconductor, and T is the temperature of the superconductor. Because of the above power law, no matter how small the current is passed through, a finite voltage is always generated in the oxide superconductor. In other words, it is not possible to pass current through an oxide superconductor without losing energy. Therefore, oxide superconductors are not suitable for power transport. The purpose of the present invention is to provide a device that suppresses energy loss when current is passed through an oxide superconductor. The purpose is to provide the devices used.

【課題を解決するための手段】[Means to solve the problem]

本発明の1局面によれば、酸化物超伝導体領域と導電体
領域とを絶縁体領域を介して接合して形成した層状構造
を有する超伝導デバイスが提供される。この酸化物超伝
導体領域にはその内部に入力信号を印加するための手段
が配設される。上記導電体領域には信号の増幅率を制御
するための制御信号を印加するための手段が配設される
。この制御信号により発生する磁場が上記酸化物超伝導
体領域に作用することにより、信号の増幅率が変化する
。 本発明の限定された局面によれば、上記導電体領域が超
伝導体である超伝導デバイスが提供される。 本発明の他の局面によれば、複数の酸化物超伝導体領域
を絶縁体領域を介して接合して形成した層状構造を有す
る半遵体デバイスが提供される。 このとき、il!!縁体領域の厚さは、それを挾持する
複数の酸化物超伝導体領域が磁気的に結合し、かつ十分
に絶縁性が担保される程度とする。酸化物超伝導体領域
が3つ以上ある場合には、これらすべての領域が磁気的
に結合しているとさらに好ましい。この磁気的な結合は
本発明に係る超伝導デバイスの本質である。上記複数の
熾化物超伝導体領域内の量子化された磁束同志が上記絶
縁体領域を介してカップリングすることを意味する。酸
化物超伝導体間の距離若しくは上記絶縁体領域の厚さは
、挾持する複数の酸化物超伝導体領域の磁束侵入長のう
ち、小さい方の長さ程度以内がよい。 このような超伝導デバイスは、磁気的に結合した酸化物
超伝導体領域内に電流を通すための手段が配設(電気的
に接続)され、例えば電流を印加するための一対の電極
を有することとなる。この電極対は上記複数の超伝導体
領域のうちのひとつに電流を通す。別の上記酸化物超伝
導体領域にも同様の酸化物超伝導体間内に電流を起こす
ための手段が配設される。 本発明の限定された局面によれば、上記複数の酸化物超
伝導体の内部を流れる複数の電流により磁束量子に働く
複数の力が打ち消し合うように、上記複数の電流を通す
ための手段が設けられた超伝導デバイスが提供される。 本発明では、上記複数の酸化物超伝導体間に電圧を印加
する手段は存在せず、上記絶縁体領域を介して流れる電
流を生じないようにする。 本発明のさらに他の局面によれば、複数の酸化物超伝導
体領域を有し、これらに共通に貫く磁束量子に働く力を
打ち消すように上記複数の酸化物超伝導体領域にそれぞ
れ電流を通すための手段を設けた超伝導デバイスが提供
される。
According to one aspect of the present invention, there is provided a superconducting device having a layered structure formed by joining an oxide superconductor region and a conductor region via an insulator region. This oxide superconductor region is provided with means for applying an input signal therein. Means for applying a control signal for controlling the amplification factor of the signal is disposed in the conductive region. When the magnetic field generated by this control signal acts on the oxide superconductor region, the amplification factor of the signal changes. According to a limited aspect of the invention, a superconducting device is provided, wherein the conductor region is a superconductor. According to another aspect of the present invention, there is provided a semiconducting device having a layered structure formed by bonding a plurality of oxide superconductor regions via an insulator region. At this time, il! ! The thickness of the edge region is such that the plurality of oxide superconductor regions sandwiching it are magnetically coupled and sufficient insulation is ensured. When there are three or more oxide superconductor regions, it is more preferable that all these regions are magnetically coupled. This magnetic coupling is the essence of the superconducting device according to the invention. This means that the quantized magnetic fluxes in the plurality of amorphous superconductor regions couple together via the insulator region. The distance between the oxide superconductors or the thickness of the insulator region is preferably within the length of the smaller of the magnetic flux penetration lengths of the plurality of sandwiched oxide superconductor regions. Such a superconducting device is provided with means for passing an electric current into the magnetically coupled oxide superconductor region (electrically connected), for example comprising a pair of electrodes for applying an electric current. It happens. The electrode pair conducts current through one of the plurality of superconductor regions. Means for generating an electric current between similar oxide superconductors is arranged in another of the oxide superconductor regions. According to a limited aspect of the invention, the means for passing the plurality of currents such that the plurality of forces acting on the magnetic flux quantum due to the plurality of currents flowing inside the plurality of oxide superconductors cancel each other out. A superconducting device is provided. In the present invention, there is no means for applying a voltage between the plurality of oxide superconductors, so that no current flows through the insulator regions. According to still another aspect of the present invention, a plurality of oxide superconductor regions are provided, and a current is applied to each of the plurality of oxide superconductor regions so as to cancel out a force acting on a magnetic flux quantum that commonly penetrates the oxide superconductor regions. A superconducting device is provided that includes means for passing.

【作用】[Effect]

超伝導体の内部では磁束は量子化されて、磁束量子とい
う形で存在する。磁束量子には、外部磁場によって生成
されるものと熱的に励起されるものがある。このような
磁束量子が運動することによって、超伝導体にエネルギ
ー損失がもたらされる。上記のように1例えば酸化物超
伝導体膜と絶縁体膜とを交互に重ねあわせた層状構造で
は、各酸化物超伝導体膜で生成された磁束量子は、他の
酸化物超伝導体膜をも貫くことになる。このような場合
には、磁束量子の運動がすべての酸化物超伝導体膜で同
じになる。したがって、1つの酸化物超伝導体膜での磁
束量子の運動を制御すれば、他のすべての酸化物超伝導
体膜での磁束量子の運動が制御されることになる。この
ことを利用すれば、酸化物超伝導体におけるエネルギー
損失を抑えることができ、さらに様々な機能デバイスを
作ることができる。 利用される磁束量子は、外部磁場によって生成されたも
のであっても、熱的に励起されたものであってもよい。 したがって、上記の作用は外部磁場が存在する場合にお
いても、存在しない場合においての成り立つ。 上記のことから、酸化物超伝導体膜と絶縁体膜を交互に
重ねあわせた層状構造をにおいて、一つの酸化物超伝導
体膜をその他の酸化物超伝導体膜の電気的磁気的性質を
制御するために用いることによって、様々な機能を得る
ことができる。 [実施例] 第1図は本発明の第1の実施例である。第1図は増幅率
が可変な信号増幅器であり、その構成は次のようである
。2つの電極5.6を相対する2辺に設けた酸化物超伝
導体膜1の上に絶縁体膜2を形成する。さらに、この#
@縁体膜2の上に2枚の酸化物超伝導体膜3,4を作る
。この酸化物超伝導体膜3,4の面端にはそれぞれ電極
10゜11.12.13を設ける。そして、電極12と
電極13を導電性材料で接続し、電極10と電極11に
電流源8を接続する。また、電極5と電極6に電流源7
と電圧計9を接続する。このとき、電流源7が入力信号
を与え、電流源8が制御用イご号を与える。本装置の動
作を以下で説明する。酸化物超伝導体膜に流す電流と発
生する電圧との関係は(1)式で与えられる。したがっ
て、電流源7の電流値が工からΔ工だけ変化した場合、
電圧計9達示す値■に生じる変化ΔVは次の式で与えら
れる。 ΔV/V=n(T、H)・ΔI / I 。(3)ここ
で、n(T、H)は(1)式のベキ関数の指数であり、
磁場と温度の関数である。(3)式かられかるように、
このベキ指数が信号の増幅率を与える。一方、電流g8
からの電流工。が酸化物超伝導体膜3,4を流れること
によって、磁場Hが発生し、この磁場が酸化物超伝導体
薄膜1を貫く。 したがって、指数あるいは増幅率n(T、H)に現れる
磁場Hは電流工。の関数である1以上のことから、電流
源8の電流値工。を変えることによって、増幅率を制御
することができる。したがって、本装置は増幅率が可変
な信号増幅器として動作する。この場合には、酸化物超
伝導体膜3,4の換わりに、酸化物超伝導体以外の導電
性材料を用いてもよい。 本実施例は、以下で示すようにベキ法則(2)に基すい
た増幅率が可変な信号増幅装置にもなる。 この場合、電流源8が入力信号となり、電流源7が制御
用信号となる。入力信号電流工。がつくる磁場をH(I
。)と表わす。この磁場は、酸化物超伝導体膜1にとっ
ての外部磁場となる。入力信号がΔIだけ変動したとき
の磁場の変動をΔH(=(dH/dI。)・Δ工)と表
わす。このときの電圧計36が示す電圧Vの変化ΔVは
、ベキ法則(2)から次の式で与えられることがわかる
。 ΔV/V=m(T、I)・ΔH/H(4)=m(T、I
)・(dlogH/d 1.) ・Δ工ここで、■は電
流源7による制御用電流の値である。(4)式からベキ
法則(2)の指数m(T、I)が増幅率を与えることが
わかる。そして、この増幅率は電流17からの制御用電
流工によって変えることができる。したがって、増幅率
が可変な信号増幅装置として動作する。以上のことから
、本実施例においては、電流[7と電流源8のどちらを
入力用として用いてもよい。 第2図は本発明の第2の実施例である。第2(a)図は
装置を上から見たところであり、第2(b)図は第2(
a)図を直線ABで切った断面であり、第2(c)図は
第2(a)図を直ficDで切った断面である。本装置
は″コ″の字型の酸化物超伝導膜17、絶縁体膜18、
酸化物超伝導体11119、電流源14,15、電圧計
16、電極20.21から構成される増幅率が可変な信
号増幅器である。動作は第1の実施例と全く同じである
。 第3図は本発明の第3の実施例である。第3図は2つの
電極を相対する2辺に有した2枚の酸化物超伝導体膜2
4.26を絶縁体膜25を介して、酸化物超伝導体膜2
4−絶縁体膜25−酸化物超伝導体膜26という3N構
造と、電流源22及び負荷23から構成されるエネルギ
ー輸送デバイスである。ここで、27,28,29.3
0は酸化物超伝導体膜に取付けた電極である。そして、
電流を流す向きが、上側の酸化物超伝導体膜24と下側
の酸化物超伝導体膜26で反対になるように、電流源2
2と負荷23を接続するものとする。このように接続し
たとき、例えば電流′g22からでた電流は、上側の酸
化物超伝導体膜24を通って負荷23に入り、そこで仕
事を行った後、下側の酸化物超伝導体膜26を通って電
流源22に戻る。 王のような方法で電流を流すことによって、以下で説明
する理由で途中でのエネルギー損失を防ぐことができる
。作用で説明したように酸化物超伝導体膜−絶総体膜一
酸化物超伝導体膜°という層状構造では磁束量子が2つ
の酸化物超伝導体膜に共通に貫いているので、2つの酸
化物超伝導体膜で電流の向きが異なる場合、磁束量子が
電流から受ける力の向きは2つの酸化物超伝導体膜で反
対であり、かつ大きさが等しいので、各磁束量子に働く
力が打ち消しあって、磁束量子の運動が起こらなくなる
。このために、電流を流しても電圧が発生しなくなる。 したがって、電力輸送の途中でのエネルギー損失を防ぐ
ことができる。 第4図は本発明の第4の実施例である。これは酸化物超
伝導体膜34−絶縁体膜35−酸化物超伝導体膜36と
いう3層構造と、2つの電流源31.32、電圧計33
から構成される電流値比較装置である。ここで、37,
38,39.40は酸化物超伝導体膜に取付けた電極で
ある。また、電流源32は上側の酸化物超伝導体膜36
に、電流源31は下側の酸化物超伝導体膜24にそれぞ
れ接続する。第3の実施例の場合と同様に、電流を流す
向きは、上側の酸化物超伝導体膜36と下側の酸化物超
伝導体膜34で反対である。そして、一方の酸化物超伝
導体膜(第2図では下側)の両端に電圧計33を接続す
る。電流源31の電流値を工1、電流源32の電流値を
I、とする。このとき、上側の酸化物超伝導体膜36に
おけるの磁束量子に働く力の大きさはF2=ΦJ2/c
であり、下側の酸化物超伝導体膜34における磁束量子
に働く力の大きさはF工=ΦJ、/cである。そして、
力の向きは互いに反対向きである。ここで、Φ(=π 
c / e :  はブランク定数、Cは光の速度の大
きさ、eは電気素量)は磁束量子°の基本単位であり、
J工とJ2はそれぞれの電流を電流密度で表わしたもの
である。したがって、このとき各磁束量子に働く力は F=F1−F2=Φ(JtJ2)/c。 で与えられる。この式かられかるように、電流密度J1
とJ2の大小関係、したがって電流値I工と))2の大
小関係で磁束量子に働く力の向きが異なり、磁束量子の
運動の向きが異なる。磁束量子の運動の向きは、酸化物
超伝導体に発生する電圧の符号を決める。よって、電圧
計33が示す電圧値の符号によって、電流値I工とI2
の大小が判定できる。したがって、本装置は電流値比較
装置として動作する。本実施例では、電流入力の場合を
考えたが、電圧入力の場合は電圧−電流変換器を入力部
分に設けることによって、本発明は電圧比較装置として
用いることができる。酸化物超伝導体膜−絶総体膜一酸
化物超伝導体膜の層状構造の面積は小さくてよいので、
アナログ−ディジタル変換器やディジタル−アナログ変
換器等のシステムLSIに内蔵される電流値比較装置や
電圧値比較器等として用いることもできる。 第5図は本発明の第5の実施例である。これは酸化物超
伝導体膜44−絶縁体膜45−酸化物超伝導体膜46−
絶縁体膜47−酸化物超伝導体膜48という5′層構造
と、電流源41.42及び電圧計43から構成される電
流値比較装置である。 酩こで、49,50,51,52,53,54は酸化物
超伝導体膜に取付けた電極である。そして、電流源41
は酸化物超伝導体膜44に、電流源42は酸化物超伝導
体膜48に、電圧計43は酸化物超伝導体膜46に接続
する。また、電流源41の電流値を工、とし、電流源4
2の電流値を12とする。また、電流を流す向きは互い
に逆向きとする。このとき、第4の実施例の場合と全く
同様の理由により、電流計43が示す電圧値の符号によ
って、電流慎重□と工2の大小関係が判定できる。第4
の実施例と第5の実施例との違いは、第5の実施例では
入力電流信号と出力電圧信号が分離されていることであ
る。また、電圧−電流変換装置を入力部分に設けること
によって、電圧を入力信号として用いることができる。 第6図は本発明の第6の実施例である。これは、酸化物
超伝導体膜57−絶縁体膜58−酸化物超伝導体膜59
なる形の31′I構造と、電流源55及び電圧計56か
ら構成される電流−電圧変換装置である。ここで、60
,61,62.63は酸化物超伝導体膜に取付けた電極
である。また、電流源55は酸化物超伝導体膜57に、
電圧計56は酸化物超伝導体膜59に接続する。下側の
酸化物超伝導体膜57に電流工を流すと、磁束量子に力
が働き運動を始める。この運動は磁気的に結合した上側
の超伝導体膜59に伝えらる。このために、上側の酸化
物超伝導体膜59に電圧が発生する。 したがって、電流入力に対して、電圧出力が得られるの
で、電流−電圧変換装置として動作する。 入力部分に電圧−電流変換装置を接続して、電圧入力と
すれば、この装置は、いわゆる直流トランスとして動作
する。 【発明の効果1 本発明によれば、酸化物超伝導体の欠点である磁束量子
の運動にともなうエネルギーの損失を抑えることができ
る。さらに、酸化物超伝導体に特有な物理的性質を積極
的に利用した機能デバイス(電流値比較装置、増幅率可
変信号増幅器、電流−電圧変換装置、直流トランス)を
得ることができる。
Inside a superconductor, magnetic flux is quantized and exists in the form of magnetic flux quanta. Some magnetic flux quanta are generated by external magnetic fields and others are thermally excited. The movement of such magnetic flux quanta causes energy loss in the superconductor. As mentioned above, 1. For example, in a layered structure in which oxide superconductor films and insulator films are stacked alternately, the magnetic flux quantum generated in each oxide superconductor film is transferred to the other oxide superconductor film. It will also be carried through. In such a case, the motion of magnetic flux quanta will be the same in all oxide superconductor films. Therefore, if the motion of magnetic flux quanta in one oxide superconductor film is controlled, the motion of magnetic flux quanta in all other oxide superconductor films will be controlled. By utilizing this fact, energy loss in oxide superconductors can be suppressed, and various functional devices can be created. The magnetic flux quanta utilized may be generated by an external magnetic field or may be thermally excited. Therefore, the above effect holds true both in the presence and absence of an external magnetic field. From the above, in a layered structure in which oxide superconductor films and insulator films are stacked alternately, one oxide superconductor film has the electrical and magnetic properties of the other oxide superconductor films. By using it for control, various functions can be obtained. [Example] FIG. 1 shows a first example of the present invention. FIG. 1 shows a signal amplifier with a variable amplification factor, and its configuration is as follows. An insulator film 2 is formed on an oxide superconductor film 1 on which two electrodes 5.6 are provided on two opposing sides. Additionally, this #
@Create two oxide superconductor films 3 and 4 on the rim film 2. Electrodes 10.degree. 11.12.13 are provided at the surface edges of the oxide superconductor films 3 and 4, respectively. Then, the electrodes 12 and 13 are connected using a conductive material, and the current source 8 is connected to the electrodes 10 and 11. In addition, a current source 7 is connected to the electrode 5 and the electrode 6.
and voltmeter 9. At this time, current source 7 provides an input signal, and current source 8 provides a control signal. The operation of this device will be explained below. The relationship between the current flowing through the oxide superconductor film and the voltage generated is given by equation (1). Therefore, if the current value of the current source 7 changes from Δ to ΔΔ,
The change ΔV that occurs in the value ■ shown by the voltmeter 9 is given by the following equation. ΔV/V=n(T,H)・ΔI/I. (3) Here, n(T, H) is the exponent of the power function of equation (1),
It is a function of magnetic field and temperature. As can be seen from equation (3),
This power index gives the signal amplification factor. On the other hand, the current g8
An electrician from. flows through the oxide superconductor films 3 and 4, a magnetic field H is generated, and this magnetic field penetrates the oxide superconductor thin film 1. Therefore, the magnetic field H appearing at the index or amplification factor n(T, H) is a current factor. Since it is a function of 1 or more, the current value of the current source 8 is By changing the amplification factor, the amplification factor can be controlled. Therefore, this device operates as a signal amplifier with a variable amplification factor. In this case, instead of the oxide superconductor films 3 and 4, a conductive material other than the oxide superconductor may be used. This embodiment also serves as a signal amplification device with variable amplification factor based on the power law (2), as shown below. In this case, current source 8 serves as an input signal, and current source 7 serves as a control signal. Input signal current engineer. The magnetic field created by H(I
. ). This magnetic field becomes an external magnetic field for the oxide superconductor film 1. The variation in the magnetic field when the input signal varies by ΔI is expressed as ΔH (=(dH/dI.)·ΔH). It can be seen from the power law (2) that the change ΔV in the voltage V indicated by the voltmeter 36 at this time is given by the following equation. ΔV/V=m(T, I)・ΔH/H(4)=m(T, I
)・(dlogH/d 1.)・ΔΔHere, ■ is the value of the control current from the current source 7. It can be seen from equation (4) that the exponent m(T, I) of power law (2) gives the amplification factor. This amplification factor can be changed by a control current generator from the current 17. Therefore, it operates as a signal amplification device with a variable amplification factor. From the above, in this embodiment, either the current [7 or the current source 8 may be used for input. FIG. 2 shows a second embodiment of the invention. Figure 2(a) shows the device viewed from above, and Figure 2(b) shows the second (
Fig. 2(c) is a cross section of Fig. 2(a) taken along line ficD. This device consists of a U-shaped oxide superconducting film 17, an insulating film 18,
This is a signal amplifier with a variable amplification factor, which is composed of an oxide superconductor 11119, current sources 14 and 15, a voltmeter 16, and electrodes 20 and 21. The operation is exactly the same as the first embodiment. FIG. 3 shows a third embodiment of the invention. Figure 3 shows two oxide superconductor films 2 with two electrodes on opposite sides.
4.26 through the insulator film 25, the oxide superconductor film 2
This is an energy transport device composed of a 3N structure of 4-insulator film 25-oxide superconductor film 26, a current source 22, and a load 23. Here, 27, 28, 29.3
0 is an electrode attached to the oxide superconductor film. and,
The current source 2 is arranged so that the direction of current flow is opposite between the upper oxide superconductor film 24 and the lower oxide superconductor film 26.
2 and a load 23 are connected. When connected in this way, the current emitted from the current 'g22 enters the load 23 through the upper oxide superconductor film 24, performs work there, and then passes through the lower oxide superconductor film 24. 26 and returns to the current source 22. By passing current in this way, energy loss along the way can be prevented for reasons explained below. As explained in the function, in the layered structure of oxide superconductor film-absolute film monoxide superconductor film°, the magnetic flux quantum commonly penetrates the two oxide superconductor films, so the two oxide superconductors When the direction of the current is different in the two oxide superconductor films, the direction of the force that the magnetic flux quanta receives from the current is opposite in the two oxide superconductor films, and the magnitude is the same, so the force acting on each magnetic flux quantum is They cancel each other out, and no movement of magnetic flux quanta occurs. For this reason, no voltage is generated even if current is applied. Therefore, energy loss during power transportation can be prevented. FIG. 4 shows a fourth embodiment of the present invention. This has a three-layer structure of oxide superconductor film 34 - insulator film 35 - oxide superconductor film 36, two current sources 31 and 32, and a voltmeter 33.
This is a current value comparison device consisting of. Here, 37,
38, 39, and 40 are electrodes attached to the oxide superconductor film. Further, the current source 32 is connected to the upper oxide superconductor film 36.
In addition, the current sources 31 are connected to the lower oxide superconductor film 24, respectively. As in the case of the third embodiment, the direction of current flow is opposite between the upper oxide superconductor film 36 and the lower oxide superconductor film 34. Then, a voltmeter 33 is connected to both ends of one oxide superconductor film (lower side in FIG. 2). Let the current value of the current source 31 be 1, and the current value of the current source 32 be I. At this time, the magnitude of the force acting on the magnetic flux quantum in the upper oxide superconductor film 36 is F2=ΦJ2/c
The magnitude of the force acting on the magnetic flux quantum in the lower oxide superconductor film 34 is F = ΦJ, /c. and,
The directions of the forces are opposite to each other. Here, Φ(=π
c/e: is the blank constant, C is the speed of light, e is the elementary charge) is the basic unit of magnetic flux quantum °,
J engineering and J2 represent the respective currents in terms of current density. Therefore, at this time, the force acting on each magnetic flux quantum is F=F1-F2=Φ(JtJ2)/c. is given by As can be seen from this equation, the current density J1
The direction of the force acting on the magnetic flux quantum differs depending on the magnitude relationship between and J2, and therefore the magnitude relationship between the current value I and )2, and the direction of the motion of the magnetic flux quantum differs. The direction of the magnetic flux quantum's motion determines the sign of the voltage generated in the oxide superconductor. Therefore, depending on the sign of the voltage value indicated by the voltmeter 33, the current values I and I2 are
The size of can be determined. Therefore, this device operates as a current value comparison device. In this embodiment, the case of current input was considered, but in the case of voltage input, the present invention can be used as a voltage comparator by providing a voltage-current converter at the input section. Oxide superconductor film - Absolute total film Since the area of the layered structure of the monoxide superconductor film may be small,
It can also be used as a current value comparator, a voltage value comparator, etc. built into a system LSI such as an analog-to-digital converter or a digital-to-analog converter. FIG. 5 shows a fifth embodiment of the present invention. This is an oxide superconductor film 44 - an insulator film 45 - an oxide superconductor film 46 -
This is a current value comparison device composed of a 5' layer structure of an insulator film 47 and an oxide superconductor film 48, current sources 41 and 42, and a voltmeter 43. Here, 49, 50, 51, 52, 53, and 54 are electrodes attached to the oxide superconductor film. And current source 41
is connected to the oxide superconductor film 44 , the current source 42 is connected to the oxide superconductor film 48 , and the voltmeter 43 is connected to the oxide superconductor film 46 . Also, let the current value of the current source 41 be , and the current value of the current source 41 is
Let the current value of 2 be 12. Also, the directions of current flow are opposite to each other. At this time, for the same reason as in the fourth embodiment, the magnitude relationship between the current □ and the current 2 can be determined based on the sign of the voltage value indicated by the ammeter 43. Fourth
The difference between the embodiment and the fifth embodiment is that the input current signal and the output voltage signal are separated in the fifth embodiment. Furthermore, by providing a voltage-current converter at the input section, voltage can be used as an input signal. FIG. 6 shows a sixth embodiment of the present invention. This is an oxide superconductor film 57 - an insulator film 58 - an oxide superconductor film 59
This is a current-to-voltage converter comprising a 31'I structure, a current source 55, and a voltmeter 56. Here, 60
, 61, 62, and 63 are electrodes attached to the oxide superconductor film. Further, the current source 55 is connected to the oxide superconductor film 57,
Voltmeter 56 is connected to oxide superconductor film 59. When an electric current is passed through the lower oxide superconductor film 57, a force acts on the magnetic flux quanta and they begin to move. This motion is transmitted to the magnetically coupled upper superconductor film 59. Therefore, a voltage is generated in the upper oxide superconductor film 59. Therefore, since a voltage output is obtained in response to a current input, the device operates as a current-voltage converter. If a voltage-current converter is connected to the input section to input voltage, this device operates as a so-called DC transformer. Effects of the Invention 1 According to the present invention, it is possible to suppress energy loss accompanying the movement of magnetic flux quanta, which is a drawback of oxide superconductors. Furthermore, functional devices (current value comparator, variable gain signal amplifier, current-voltage converter, DC transformer) that actively utilize the physical properties specific to oxide superconductors can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の第1の実施例で、第1の増幅率が可変
な信号増幅器を説明するための図、第2(a)、(b)
および(c)図は本発明の第2の実施例であり、第2の
増幅率が可変な信号増幅器を説明するための図、第3図
は本発明の第3の実施例であり、エネルギー損失を抑え
ることが可能な電力輸送装置を説明するための図、第4
図は本発明の第4の実施例で、第1の電流値比較装置を
説明するための図、第5図は本発明の第5の実施例で、
第2の電流値比較装置を説明するための図、第6図は本
発明の第6の実施例で、電流−電圧変換装置を説明する
ための図である。 符号の説明 1・・・酸化物超伝導体膜、2・・・L/#@縁体膜、
3.4・・・産物超伝導体膜、5.6・・・電極、7.
8・・・電流源、9・・・電圧計、10.11,12.
13・・・電極、14.15・・・電流源、16・・・
電圧計、17・・・酸化物超伝導体膜、18・・・絶縁
体膜、20.21・・・電極、22・・・電流源、2J
・・・負荷、24・・・酸化物超伝導体膜、25・・・
絶縁体膜、26・・・酸化物超伝導体膜、27.28,
29.30・・・電極、31.32・・・電流源、33
・・・電圧計、34・・・酸化物超伝導体膜1.35・
・・絶縁体膜、36・・・酸化物超伝導体膜、37.3
8,39.40・・・電極、41.42・・電流源、4
3・・・電圧計、44・・・酸化物超伝導体膜、45・
・・絶縁体膜、46・・・酸化物超伝導体膜、47・・
・#@縁体膜、48・・・酸化物超伝導体膜、49.5
0,51,52,53.54・・・電極、55・・・電
流源、56・・・電圧計、57・・・酸化物超伝導体膜
、58・・・絶縁体膜、59・・・酸化物超伝導体膜、
60,61,62.63・・・電極。
FIG. 1 is a first embodiment of the present invention, which is a diagram for explaining a signal amplifier with a variable first amplification factor, and FIGS. 2(a) and 2(b)
and (c) is a second embodiment of the present invention, which is a diagram for explaining a signal amplifier with a variable second amplification factor, and FIG. 3 is a third embodiment of the present invention, in which the energy Diagram 4 for explaining a power transport device capable of suppressing loss
The figure shows a fourth embodiment of the present invention, which is a diagram for explaining the first current value comparison device, and FIG. 5 shows a fifth embodiment of the present invention.
A diagram for explaining the second current value comparison device, and FIG. 6 is a diagram for explaining the current-voltage converter according to the sixth embodiment of the present invention. Explanation of symbols 1...Oxide superconductor film, 2...L/#@limb membrane,
3.4... Product superconductor film, 5.6... Electrode, 7.
8... Current source, 9... Voltmeter, 10.11, 12.
13... Electrode, 14.15... Current source, 16...
Voltmeter, 17... Oxide superconductor film, 18... Insulator film, 20.21... Electrode, 22... Current source, 2J
...Load, 24...Oxide superconductor film, 25...
Insulator film, 26... Oxide superconductor film, 27.28,
29.30... Electrode, 31.32... Current source, 33
...Voltmeter, 34...Oxide superconductor film 1.35.
...Insulator film, 36...Oxide superconductor film, 37.3
8,39.40... Electrode, 41.42... Current source, 4
3... Voltmeter, 44... Oxide superconductor film, 45.
...Insulator film, 46...Oxide superconductor film, 47...
・#@limb membrane, 48...Oxide superconductor membrane, 49.5
0,51,52,53.54... Electrode, 55... Current source, 56... Voltmeter, 57... Oxide superconductor film, 58... Insulator film, 59...・Oxide superconductor film,
60, 61, 62.63... electrode.

Claims (1)

【特許請求の範囲】 1、酸化物超伝導体領域と導電体領域とを絶縁体領域を
介して接合して形成した層状構造と、この酸化物超伝導
体領域の内部に入力信号を印加するための手段と、上記
導電体領域に信号の増幅率を制御するための制御信号を
印加するための手段とを有し、この制御信号により発生
する磁場を上記酸化物超伝導体領域に作用させることに
より、信号の増幅率を変化させることを特徴とする超伝
導デバイス。 2、請求項1に記載の超伝導デバイスにおいて、前記導
電体領域が超伝導体である超伝導デバイス。 3、複数の酸化物超伝導体領域を絶縁体領域を介して接
合して形成した層状構造を有し、上記絶縁体領域の厚さ
が、それを挾持する上記複数の酸化物超伝導体領域が磁
気的に結合し、かつ十分に絶縁性が担保される程度であ
ることを特徴とする超伝導デバイス。 4、請求項3に記載の超伝導デバイスにおいて、前記酸
化物超伝導体領域が3つ以上あり、これらすべての酸化
物超伝導体領域が磁気的に結合している超伝導デバイス
。 5、請求項3に記載の超伝導デバイスが、1つの前記酸
化物超伝導体領域内に電流を通すための手段を有する超
伝導デバイス。 6、請求項3に記載の超伝導デバイスにおいて、前記電
流を通すための手段が電流を印加するための一対の電極
である超伝導デバイス。 7、請求項5に記載の超伝導デバイスが、前記1つの超
伝導体領域以外の前記酸化物超伝導体領域内に電流を通
すための手段を有する超伝導デバイス。 8、請求項7に記載の超伝導デバイスにおいて、前記複
数の酸化物超伝導体の内部を流れる複数の電流により磁
束量子に働く複数の力が打ち消し合うように、上記複数
の電流を通すための手段が配設された超伝導デバイス。 9、複数の酸化物超伝導体領域を有し、これらに共通に
貫く磁束量子に働く力を打ち消すように上記複数の酸化
物超伝導体領域にそれぞれ電流を通すための手段を設け
た超伝導デバイス。 10、相対する2辺のそれぞれに、少なくともその一部
に電極を設けた第1の酸化物超伝導体膜の上に、第1の
絶縁体膜を形成し、この絶縁体膜上の少なくとも両端に
導電性領域を形成したことを特徴とする、超伝導デバイ
ス。 11、第1の絶縁体膜上の導電性領域の間に第2の酸化
物超伝導体膜を形成したことを特徴とする請求項10に
記載の超伝導デバイス。 12、相対する2辺のそれぞれに、少なくともその一部
に電極を設けた、少なくとも2枚以上の第3の酸化物超
伝導体膜と、これらの酸化物超伝導体膜同士がお互いに
磁気的に結合できる程度の厚さの第2の絶縁体膜とを交
互に重ねあわせた層状構造を持つことを特徴とする請求
項10に記載の超伝導デバイス。 13、第1の絶縁体膜上の導電性領域の間に第2の酸化
物超伝導体膜を形成し、さらに、相対する2辺のそれぞ
れに、少なくともその1部に電極を設けた、少なくとも
2枚以上の第3の酸化物超伝導体膜と、これらの酸化物
超伝導体膜同士がお互いに磁気的に結合できる程度の厚
さの第2の絶縁体膜とを交互に重ねあわせた層状構造を
持つことを特徴とする請求項10に記載の超伝導デバイ
ス。 14、第1の絶縁体膜上の導電性領域を第1の絶縁体膜
の縁に跨るように配置したことを特徴とする請求項10
に記載の超伝導デバイス。 15、第1の絶縁体膜上の導電性領域を第1の絶縁体膜
の縁に跨るように配置し、さらに、相対する2辺のそれ
ぞれに、少なくともその一部に電極を設けた、少なくと
も2枚以上の第3の酸化物超伝導体膜と、これらの酸化
物超伝導体膜同士がお互いに磁気的に結合できる程度の
厚さの絶縁体膜とを交互に重ねあわせた層状構造を持つ
ことを特徴とする請求項10に記載の超伝導デバイス。
[Claims] 1. A layered structure formed by joining an oxide superconductor region and a conductor region via an insulator region, and applying an input signal to the inside of this oxide superconductor region. and means for applying a control signal for controlling a signal amplification factor to the conductor region, and causing a magnetic field generated by the control signal to act on the oxide superconductor region. A superconducting device that is characterized by changing the amplification factor of a signal. 2. The superconducting device according to claim 1, wherein the conductor region is a superconductor. 3. It has a layered structure formed by joining a plurality of oxide superconductor regions via an insulator region, and the thickness of the insulator region is the same as the plurality of oxide superconductor regions sandwiching it. A superconducting device characterized by being magnetically coupled to each other and having sufficient insulation properties. 4. The superconducting device according to claim 3, wherein there are three or more oxide superconductor regions, and all of these oxide superconductor regions are magnetically coupled. 5. A superconducting device according to claim 3, comprising means for passing electrical current into one of said oxide superconductor regions. 6. The superconducting device according to claim 3, wherein the means for passing current is a pair of electrodes for applying current. 7. A superconducting device according to claim 5, comprising means for passing current through said oxide superconductor regions other than said one superconductor region. 8. The superconducting device according to claim 7, for passing the plurality of currents so that the plurality of forces acting on the magnetic flux quantum due to the plurality of currents flowing inside the plurality of oxide superconductors cancel each other out. A superconducting device equipped with means. 9. A superconductor having a plurality of oxide superconductor regions and provided with a means for passing a current through each of the plurality of oxide superconductor regions so as to cancel the force acting on the magnetic flux quantum that commonly penetrates these regions. device. 10. A first insulator film is formed on the first oxide superconductor film in which electrodes are provided on at least a portion of each of the two opposing sides, and at least both ends of the insulator film are formed on the first oxide superconductor film. A superconducting device characterized by having a conductive region formed therein. 11. The superconducting device according to claim 10, wherein a second oxide superconductor film is formed between the conductive regions on the first insulator film. 12. At least two or more third oxide superconductor films, each of which has an electrode on at least a portion of each of its two opposing sides, and these oxide superconductor films are magnetically connected to each other. 11. The superconducting device according to claim 10, wherein the superconducting device has a layered structure in which second insulating films are alternately laminated with a second insulating film having a thickness that allows the superconducting film to be bonded to the second insulating film. 13. A second oxide superconductor film is formed between the conductive regions on the first insulator film, and an electrode is provided on at least a portion of each of the two opposing sides. Two or more third oxide superconductor films and a second insulator film having a thickness such that these oxide superconductor films can be magnetically coupled to each other are alternately stacked. The superconducting device according to claim 10, having a layered structure. 14. Claim 10, characterized in that the conductive region on the first insulating film is arranged so as to straddle the edge of the first insulating film.
Superconducting device described in. 15. The conductive region on the first insulating film is arranged so as to straddle the edge of the first insulating film, and an electrode is provided on at least a part of each of the two opposing sides. A layered structure in which two or more third oxide superconductor films and an insulator film having a thickness such that these oxide superconductor films can be magnetically coupled to each other are stacked alternately. The superconducting device according to claim 10, characterized in that it has.
JP1117311A 1989-05-12 1989-05-12 Superconducting device Pending JPH02297982A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1117311A JPH02297982A (en) 1989-05-12 1989-05-12 Superconducting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1117311A JPH02297982A (en) 1989-05-12 1989-05-12 Superconducting device

Publications (1)

Publication Number Publication Date
JPH02297982A true JPH02297982A (en) 1990-12-10

Family

ID=14708612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1117311A Pending JPH02297982A (en) 1989-05-12 1989-05-12 Superconducting device

Country Status (1)

Country Link
JP (1) JPH02297982A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828079A (en) * 1992-06-29 1998-10-27 Matsushita Electric Industrial Co., Ltd. Field-effect type superconducting device including bi-base oxide compound containing copper

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828079A (en) * 1992-06-29 1998-10-27 Matsushita Electric Industrial Co., Ltd. Field-effect type superconducting device including bi-base oxide compound containing copper

Similar Documents

Publication Publication Date Title
Dil Spin and angle resolved photoemission on non-magnetic low-dimensional systems
Dieleman et al. Observation of Andreev reflection enhanced shot noise
EP2144295A2 (en) Spin injection device having a shared superconductor electrode
Goldman et al. Meissner effect and vortex penetration in Josephson junctions
KR970029372A (en) Large scale magnetoresistance material and its formation method
US2814015A (en) Hall generators of increased sensitivity
JPH02297982A (en) Superconducting device
Coraiola et al. Spin-degeneracy breaking and parity transitions in three-terminal Josephson junctions
Curnoe et al. Structural phase transition and anti-quadrupolar ordering in PrFe4P12 and PrRu4P12
Suzuki et al. Spin-current generation from local spin polarization induced by current through local inversion asymmetry: Double quantum well structure
JPS6393161A (en) Semiconductor switching element
US3790880A (en) Variable coupling dc superconducting transformer
de Bruyn Ouboter et al. Magnetic flux locking in two weakly coupled superconducting rings
De Melo The superconducting state in magnetic fields: special topics and new trends
Sun et al. Spin seebeck effect in a hybridized quantum-dot/majorana-nanowire with spin heat accumulation
Takayama et al. Higher-Order Corrections due to the Order Parameter to the Flux-Flow Conductivity of Dirty, Type-II Superconductors
Miao et al. Spin switch based on double spin-filter tunnel junction geometry
Nevirkovets et al. Fabrication and characterization of multiterminal superconductor-insulator-normal metal-insulator-superconductor Josephson devices
Liu et al. Tunable-π transition by spin precession in Josephson junctions
JP2012015427A (en) Multi-band superconductor, superconductor device using the same superconductor, and method of creating the same superconductor
JPS61196587A (en) Direct-current superconducting quantum interference device
JPS63280473A (en) Switching element
Bakurskiy et al. Compact Josephson φ-junctions
US5939764A (en) Direct current voltage transformer
Wawrzyniak et al. Influence of interface spin-flip scattering on spin accumulation and spin currents in magnetic multilayers with collinear magnetizations