JPH02297731A - Optical information recording and reproducing device - Google Patents

Optical information recording and reproducing device

Info

Publication number
JPH02297731A
JPH02297731A JP1119433A JP11943389A JPH02297731A JP H02297731 A JPH02297731 A JP H02297731A JP 1119433 A JP1119433 A JP 1119433A JP 11943389 A JP11943389 A JP 11943389A JP H02297731 A JPH02297731 A JP H02297731A
Authority
JP
Japan
Prior art keywords
current
high frequency
laser diode
light
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1119433A
Other languages
Japanese (ja)
Other versions
JP2731237B2 (en
Inventor
Nobuyuki Kaneko
信之 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP1119433A priority Critical patent/JP2731237B2/en
Publication of JPH02297731A publication Critical patent/JPH02297731A/en
Application granted granted Critical
Publication of JP2731237B2 publication Critical patent/JP2731237B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/126Circuits, methods or arrangements for laser control or stabilisation

Abstract

PURPOSE:To make the time required for rising a high frequency superposing current within such time as of no hindrance to reading the recorded information and hence to securely perform the read-out by controlling a variation of the high frequency superposing current between its on-state and off-state to fall within a prescribed range. CONSTITUTION:When a high frequency superposing module HFM 27 is turned on/off, and a variation of DELTAIop between currents I1 and I2 to flow in a laser diode 7 at this time is calculated by a CPU 33, and then the variation DELTAIop is controlled to become a target value by controlling the high frequency superposing current in amplitude to be supplied to the laser diode 7 from the HFM 27 according to the size of this variation DELTAIop. By setting this variation DELTAIop at the target value, the rising time ton of the HFM 27 at the time of turning on from its off is set less than a prescribed value. By this method, noise can be reduced, while a read error rate can be prevented from increasing as well.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は高周波信号を重畳して半導体レーザの光出力の
υ1111を行う光学式情PiI記録再生装胃に関する
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to an optical information PiI recording and reproducing device that superimposes a high frequency signal to adjust the optical output of a semiconductor laser to υ1111.

[従来技術] 近年、磁気ヘッドを用いる代りに、集光した光ビームを
照射して、情報を記録したり、記録された情報を再生し
たりすることのできる光学式情報記録再生装置が実用化
された。
[Prior art] In recent years, optical information recording and reproducing devices that can record information and reproduce recorded information by irradiating a focused light beam instead of using a magnetic head have been put into practical use. It was done.

この光学式の8置では、レーザ光を用いることにより、
高密度に情報を記録できるという大き/22置を有し、
今後益々普及する状況にある。
This optical 8-position system uses laser light to
It has a large / 22 position that can record information with high density,
It is expected to become more popular in the future.

上記レーザ光の発生源としては小型化できるレーザダイ
オード(半導体レーザ)が広く用いられる。
Laser diodes (semiconductor lasers), which can be miniaturized, are widely used as the source of the laser light.

ところで上記レーザダイオードを用いた装置では、レー
ザダイオードのノイズ低減化のため特公昭59−908
6号に開示されているように、500MH7〜1001
00Oの高周波にてその駆lJ電流を変調することが有
効であることが知られている。
By the way, in the device using the above-mentioned laser diode, in order to reduce the noise of the laser diode,
As disclosed in No. 6, 500MH7~1001
It is known that it is effective to modulate the excitation lJ current with a high frequency of 00O.

又、この変調は、レーザの発光のしきい値をカバーする
振幅で変調するとノイズ低減化に有効であることも公知
である。
It is also known that this modulation is effective in reducing noise if it is modulated with an amplitude that covers the threshold of laser emission.

[発明が解決しようとする問題点] 従来はレーザダイオードのしきい値をカバーするように
変調すると、上述のようにノイズ低減効果が大きくなる
ので高周波信号の振幅を大きくして、その高周波信号の
0N10FFの際レーザダイオードに流れる電流変化間
Δtopを大きくしていた。この電流変化■Δlopの
最大値にっ°いては特に制限されることなく使用してい
た。
[Problems to be solved by the invention] Conventionally, when modulating to cover the threshold of the laser diode, the noise reduction effect increases as described above, so the amplitude of the high-frequency signal is increased and the high-frequency signal is At the time of 0N10FF, the current change period Δtop flowing through the laser diode was increased. The maximum value of this current change ■Δlop was used without any particular restriction.

ところで、上記高周波信りを重畳した状態では情報の記
録を正常に行うことができなくなるので記録[−ドでは
高周波信号の重畳をOFFに切換え、再生モードになる
とONされる。
By the way, since information cannot be recorded normally in the state in which the high frequency signal is superimposed, the superimposition of the high frequency signal is turned off in the recording mode, and turned on when the reproduction mode is entered.

一方、記録媒体(以下ディスクと記す。)は各トラック
が複数のセクタに分割され、各セクタはその先頭部分に
そのセクタのアドレス番号を店ぎ込んだプレピット部が
設けてあり、情報を記録する記録モードの場合でも、プ
レピット部分では、そのアドレスを読み取る必廿上、再
生モードに切換え、記録Jべきセクタであるか否かの認
識等を行う。
On the other hand, in a recording medium (hereinafter referred to as a disk), each track is divided into multiple sectors, and each sector has a pre-pit section at the beginning of which the address number of that sector is stored, and information is recorded. Even in the recording mode, in order to read the address in the pre-pit portion, the mode is switched to the reproduction mode, and it is recognized whether or not this is the sector to be recorded.

このため高周波重畳信号を発生する高周波重畳信号ジュ
ールの動作を0N10FFさせて高周波重畳信号を0N
10FF切換えることが多々ある。
For this reason, the operation of the high frequency superimposed signal Joule that generates the high frequency superimposed signal is set to 0N10FF, and the high frequency superposed signal is reduced to 0N.
I often switch to 10FF.

ところが、高周波Φ畳モジュールの0N10FFによる
高周波m畳信号の0N10FFの際の電流変化間Δlo
pの大きさと、高周波重畳信号が立ち上がるまでのON
時間にはほぼ比例関係があり、電流変化量Δlopがあ
まり大きくなると、記録し一ドから再生モードに切換え
た際、立ち上がるまでに時間がかかり、ブレピッ1〜部
のアドレス等の情報を読取ることができなくなってしま
うという問題があった。
However, when the high-frequency m-tatami signal is 0N10FF due to the 0N10FF of the high-frequency Φ-tatami module, the current change Δlo
The magnitude of p and the ON time until the high frequency superimposed signal rises
There is an almost proportional relationship with time, and if the current change amount Δlop is too large, it will take time to start up when switching from recording mode to playback mode, and it will be difficult to read information such as addresses of bleep 1 to 1. The problem was that I couldn't do it.

本発明は上述した点にかんがみてなされたもので、記録
モードから再生モードに切換えられた際に記録情報を読
取ることのできる光学式情報記録再生装置を提供するこ
とを目的とする。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide an optical information recording and reproducing device that can read recorded information when switching from recording mode to reproducing mode.

[問題点を解決する手段及び作用] 本発明では高周波重畳電流をオンした場合とオフにした
場合とでの高周波垂畳電流の変化量を所定の範囲内に制
御して、高周波重畳電流が立上がるのに要する時間が記
録情報を読取るのに支障がない時間以内となるようにし
て、確実に読取りを行えるようにしている。
[Means and effects for solving the problem] In the present invention, the amount of change in the high frequency superimposed current between when the high frequency superimposed current is turned on and when the high frequency superimposed current is turned off is controlled within a predetermined range, so that the high frequency superposed current rises. The time required to raise the record information is within the time that does not pose a problem in reading the recorded information, so that reading can be performed reliably.

[実施例] 以下、図面を参照して本発明を具体的に説明する。[Example] Hereinafter, the present invention will be specifically described with reference to the drawings.

第1図ないし第7図は本発明の第1実施例に係り、第1
図は第1実施例における電流変化間制御系の構成図、第
2図は第1実施例の全体的構成図、第3図は高周波重畳
電流をffi!した場合と重畳しない場合との駆動電流
と出射パワーとの関係を示す特性図、第4図はレーザダ
イオードのノイズと電流変化量の関係を示す特性図、第
5図はライト発光からリード発光に切換えた際の高周波
重畳電流の立上がりの様子を示す波形図、第6図は電流
変化間と高周波重畳電流が立上がるのに要する時間との
関係を示す特性図、第7図は電流変化量が大きくなると
高周波重畳電流が立上がるのに要する時間が長くなるこ
とを示す説明図である。
FIGS. 1 to 7 relate to the first embodiment of the present invention.
The figure is a block diagram of the current change control system in the first embodiment, Figure 2 is the overall block diagram of the first embodiment, and Figure 3 is a block diagram of the high-frequency superimposed current ffi! Figure 4 is a characteristic diagram showing the relationship between laser diode noise and current variation, and Figure 5 is from light emission to read emission. A waveform diagram showing how the high-frequency superimposed current rises when switching. Figure 6 is a characteristic diagram showing the relationship between the current change and the time required for the high-frequency superimposed current to rise. Figure 7 shows how the amount of current change FIG. 7 is an explanatory diagram showing that as the frequency increases, the time required for the high frequency superimposed current to rise becomes longer.

第2図に示すように第1実施例の光学式情報記録再生装
置1は、スピンドルモータ2にて回転駆動される光ディ
スク3に対向して光(学式)ピックアップ4が配置しで
ある。この光ピツクアップ4は、可動台5に取付けられ
、ボイスコイルモータ6等の光ピツクアップ移動手段に
て光ディスク3の半径方向(つまり、光ディスク3の同
心円状又はスパイラル状トラックを横断する方向)Rに
移動自在にしである。
As shown in FIG. 2, in the optical information recording and reproducing apparatus 1 of the first embodiment, an optical (academic) pickup 4 is arranged opposite to an optical disk 3 that is rotationally driven by a spindle motor 2. As shown in FIG. This optical pickup 4 is attached to a movable base 5, and is moved in the radial direction R of the optical disk 3 (that is, the direction that traverses the concentric or spiral tracks of the optical disk 3) by an optical pickup moving means such as a voice coil motor 6. It's up to you.

上記光ピツクアップ4は、レーザダイオード7を有し、
このレーザダイオード7の光ビームを光ディスク3に集
光照射して、情報の記録とか再生を行えるようにしてい
る。このレーザダイオード7は、ビンフォトダイオード
8等のモニタ用光検出器とがハウジング9内に1体月入
しである(第1図参照)。しかして、レーザダイオード
7の前面光が記録とか再生に用いられ、一方背面光tま
ピンフォトダイオード8にて受光され、この光電変換出
力にてレーザダイオード7の発光徂制顛が行われる。
The optical pickup 4 has a laser diode 7,
The light beam of this laser diode 7 is focused and irradiated onto the optical disc 3 so that information can be recorded or reproduced. The laser diode 7 and a monitoring photodetector such as a bin photodiode 8 are housed in the housing 9 (see FIG. 1). The front light of the laser diode 7 is used for recording or reproduction, while the back light is received by the pinned photodiode 8, and the light emission range of the laser diode 7 is controlled by this photoelectric conversion output.

−F記ピックアップ4は次のような構成である。-F The pickup 4 has the following configuration.

レーザダイオード7の前面光はコリメータレンズ11で
平行ビーム光にされた後、偏光ビームスプリッタ12に
Pla光で入射され、殆ど100%透過する。この偏光
ビームスプリッタ12を透過した光ビームは1/4波長
板13により、円偏光にされた後、対物レンズ14によ
り集光されてディスク3に照射される。
The front light of the laser diode 7 is made into a parallel beam by the collimator lens 11, and then enters the polarizing beam splitter 12 as Pla light, where almost 100% of the light is transmitted. The light beam transmitted through the polarizing beam splitter 12 is made into circularly polarized light by a quarter-wave plate 13, and then condensed by an objective lens 14 and irradiated onto the disk 3.

上記ディスク3からの戻り光は、対物レンズ14.1/
4波長板13を経てS偏光にされ、偏光ビームスプリッ
タ12に入射され、殆ど100%反射される。この反射
光は臨界角プリズム15に入射し、この臨界角プリズム
15を経た光はファーフィールド位置にRaした4分割
光検出器16に入射される。
The return light from the disk 3 is transmitted through the objective lens 14.1/
The light passes through the four-wavelength plate 13, becomes S-polarized light, enters the polarizing beam splitter 12, and is almost 100% reflected. This reflected light is incident on a critical angle prism 15, and the light that has passed through this critical angle prism 15 is incident on a four-split photodetector 16 located at a far field position.

この光検出器16の出力信号は加減算回路17に入射さ
れ、加筒により再生信号が生成される。
The output signal of this photodetector 16 is input to an addition/subtraction circuit 17, and a reproduced signal is generated by the cylinder.

又、半径方向Rに平行なうイン″C分割される1対の差
動出力にて、フォーカスエラー信号FERが生成され、
トラックの接線6向と平行なうインで分割される1対の
差動出力にて、トラックエラー信号「Rが生成される。
In addition, a focus error signal FER is generated by a pair of differential outputs that are divided into two sides parallel to the radial direction R.
A track error signal ``R'' is generated by a pair of differential outputs divided by an in parallel to the six tangent directions of the track.

これら両信号F ER,下[Rはそれぞれドライブ回路
18.19を介してレンズアクチュエータを形成するフ
ォーカシング−lイル21、トラッキングコイル22に
印加され、対物レンズ14をフォーカス状態及びトラツ
ー1−ング状態に保持づるサーボ系が構成される。
These two signals FER and R are respectively applied via drive circuits 18 and 19 to a focusing coil 21 and a tracking coil 22 which form a lens actuator to bring the objective lens 14 into a focusing state and a tracking state. A holding servo system is constructed.

ところで、上記レーザダイオード7の前面光をモニタす
るピンフォトダイオード8(第1図参照)の出力は記録
発光伝制御部24と再生光量υll1I1手段を構成す
るAPC回路25とに入力される。
Incidentally, the output of the pin photodiode 8 (see FIG. 1) which monitors the front light of the laser diode 7 is input to the recording light transmission control section 24 and the APC circuit 25 constituting the reproduction light amount υll1I1 means.

上記記録発先組制御部24は、記録モードでのライト発
光量を適正値に保つように制御を行うためのものであり
、その出力でレーザ駆動回路26を介してレーザダイオ
ード7の記録発光Mを例えば予め設定した発光長に保持
する。
The recording start group control unit 24 is for controlling the light emission amount in the recording mode to maintain an appropriate value, and its output is used to control the recording emission M of the laser diode 7 via the laser drive circuit 26. For example, the light emission length is maintained at a preset emission length.

一方、APC回路25は再生モードでの再生光量(リー
ド光量)が一定値になるように制御するためのもので、
レーザ駆動回路26を介してシー1fダイオード7のリ
ード元画が一定値になるように自動光51υ1ffII
が行われる。
On the other hand, the APC circuit 25 is for controlling the reproduction light amount (read light amount) in the reproduction mode to a constant value.
The automatic light 51υ1ffII is transmitted through the laser drive circuit 26 so that the read original image of the sea 1f diode 7 becomes a constant value.
will be held.

この再生モードにおいては、レーザ駆動回路26には、
レーザダイオード7のノイズを低減する高周波信号発生
手段としての高周波miモジュール(以下HFMと略記
する。)27の高周波重畳信号が△PC回路25のDC
成分に重畳して入力される。
In this reproduction mode, the laser drive circuit 26 includes:
A high frequency superimposed signal from a high frequency mi module (hereinafter abbreviated as HFM) 27 serving as a high frequency signal generating means for reducing the noise of the laser diode 7 is transmitted to the DC of the △PC circuit 25.
It is input superimposed on the component.

この実施例では、上記HFM27を0N10FFした際
のレーザダイオード7に供給される駆動電流11.12
の差、つまり電流変化」ΔIop(12−11)が一定
値以内となるように制御する電流変化量制御部28が設
けである。
In this embodiment, the drive current supplied to the laser diode 7 when the HFM 27 is 0N10FF is 11.12.
A current change amount control section 28 is provided to control the difference between the two, that is, the current change "ΔIop(12-11), to be within a certain value.

この電流変化Iυ制御部28は、レーザ駆動回路26か
らレーザダイオード7に流れる電流を検出して、その検
出出力に基づいてHFM27の高周波IH比出力 os
cをル11 Hするようにしている。
This current change Iυ control unit 28 detects the current flowing from the laser drive circuit 26 to the laser diode 7, and adjusts the high frequency IH ratio output os of the HFM 27 based on the detected output.
I am trying to make c into le11h.

上記M流変化m制御郡28の周辺部の具体的構成を第1
図に示づ。
The specific configuration of the peripheral area of the M flow change m control group 28 is described first.
As shown in the figure.

シー4rダイオード7のアノードはGNDに接続され、
そのカソードはレーザ駆動回路26を構成する1−ラン
ジスタQ1のコレクタに接続され、そのエミッタは抵抗
R1を介°して負の′七源喘−VCCに接続され、その
ベースは△PC回路25の出力端に接続され、APC回
路25の出力レベルでレーデダイオード7に流れる駆動
電流Iを制御している。
The anode of the sea 4r diode 7 is connected to GND,
Its cathode is connected to the collector of a transistor Q1 constituting the laser drive circuit 26, its emitter is connected to the negative VCC via a resistor R1, and its base is connected to the ΔPC circuit 25. It is connected to the output terminal, and controls the drive current I flowing through the radar diode 7 based on the output level of the APC circuit 25.

上記APC回路25の入力端は、ピンフォトダイオード
8の7ノードに接続されている。このピンフォトダイオ
ード8のカソードはGNDに接続され、そのアノードは
抵抗R2を介して負の電源端−Vccに接続されている
。このピンフォトダイオード8のアノード電位は、シー
11ダイオード7からの光重に応じて変化し、その変化
が△PC回路25で検出され、APC回路25内の図示
しないせ準埴との誤差出力でトランジスタQ1を介して
レーザダイオード7の駆!JI電流を一定となるJ、う
に制御している。
The input terminal of the APC circuit 25 is connected to the 7th node of the pin photodiode 8. The cathode of this pin photodiode 8 is connected to GND, and the anode is connected to the negative power supply terminal -Vcc via a resistor R2. The anode potential of this pin photodiode 8 changes according to the light weight from the sea 11 diode 7, and this change is detected by the ΔPC circuit 25, and is output as an error output from the not-shown quasi-cell in the APC circuit 25. Laser diode 7 is driven through transistor Q1! The JI current is controlled to be constant.

上記トランジスタQ1のコレクタにはl−I F M 
27の出力端が接続され、HFM27が動作状態では高
周波重畳信号1 oscが供給される。この)−IFM
27はl−IFM  ON/CUFFN/C上って、動
作状態あるいは非動作状態に切換えられる。
The collector of the transistor Q1 has l-I F M
The output end of HFM 27 is connected, and when the HFM 27 is in operation, a high frequency superimposed signal 1 osc is supplied. this)-IFM
27 goes up l-IFM ON/CUFFN/C and is switched to an active state or a non-active state.

又、上記レーデダイオード7の駆動電流は抵抗R1の両
端の電圧を検出する差動アンプ31によって検出される
。この差動アンプ31は、OPアンプA1によって構成
され、このOPアンプA1の各入力端はそれぞれ抵抗R
3,R4を介して抵抗R1の両端に接続されている。こ
のOPアンプA1の非反転入力端は抵抗R5を介してG
NDと接続され、反転入力端は抵抗R6を介して出力端
と接続されている。この差動アンプ31で検出された駆
動電流■に対応する電圧はA/Dコンバータ32によっ
て、ディジタル信号に変換されCPU33に入力される
。このCPU33は、イニシャル診断の際に上記HFM
27を動作状態及び非01作状態に切換えて、それぞれ
の状態でのA/Dコンバータ32を介して各駆動電流1
1.12を検出し、これらの差から電流変化量Δlop
を検出する。この電流変化量ΔlopはD/A:lンバ
ータ34を介してアナ[1グけに変換され、差動アンプ
35の一方の入力端に印加される。この差動アンプ35
の他方の入力端には電流変化用Δlopの[」標(「1
となる基準電圧■rが印加してあり、この差動アンプ3
5はこの基準電圧Vrに対づるニアi差電圧をHF M
 27の発振出力制御端に印加づる。
Further, the drive current of the radar diode 7 is detected by a differential amplifier 31 that detects the voltage across the resistor R1. This differential amplifier 31 is constituted by an OP amplifier A1, and each input terminal of this OP amplifier A1 is connected to a resistor R.
3, connected to both ends of the resistor R1 via R4. The non-inverting input terminal of this OP amplifier A1 is connected to G through a resistor R5.
ND, and the inverting input terminal is connected to the output terminal via a resistor R6. The voltage corresponding to the drive current (2) detected by the differential amplifier 31 is converted into a digital signal by the A/D converter 32 and input to the CPU 33. This CPU 33 performs the above HFM during initial diagnosis.
27 into an operating state and a non-operating state, each drive current 1 is outputted via the A/D converter 32 in each state.
1.12, and from these differences the current change amount Δlop
Detect. This current change amount Δlop is converted into an analog signal via a D/A converter 34 and applied to one input terminal of a differential amplifier 35. This differential amplifier 35
At the other input terminal of the
A reference voltage ■r is applied, and this differential amplifier 3
5 is the near i difference voltage with respect to this reference voltage Vr HF M
It is applied to the oscillation output control terminal of 27.

つまり、7IS流変化量Δlopが目標値より小さい場
合にはHF M 27の高周波重畳電流の振幅が大きく
され、一方電流変化量Δlopが目標値より大きい場合
にはHF M 27の高周波重畳電流の振幅が小さくさ
れて、電流変化量Δ[opは目標値と一致するように設
定される。尚、上記基t%雷圧Vrは、電流変化酊ΔI
opが例えば2111Aないしは6I11への間となる
ように設定される。
In other words, when the 7IS flow change amount Δlop is smaller than the target value, the amplitude of the high frequency superimposed current of HF M 27 is increased, and on the other hand, when the current change amount Δlop is larger than the target value, the amplitude of the high frequency superimposed current of HF M 27 is increased. is made small, and the current change amount Δ[op is set to match the target value. In addition, the above basic t% lightning pressure Vr is calculated by the current change ΔI
OP is set to be between 2111A and 6I11, for example.

コノように−HFM27を0N10FFし−(、その時
のレーザダイオード7に流れる電流11.12の変化量
Δ1of)をCPU33により計篩し、この変化量Δl
opの大小によりHFM27からレーザダイオード7に
供給される高周波重畳電流の振幅を制御して、変化量Δ
lopが目標値になるように制御している。
In this way, the HFM27 is set to 0N10FF, and the CPU 33 measures and sieves the amount of change Δ1of the current 11.12 flowing through the laser diode 7 at that time.
The amplitude of the high frequency superimposed current supplied from the HFM 27 to the laser diode 7 is controlled by the magnitude of op, and the amount of change Δ
Control is performed so that lop becomes the target value.

この変化量ΔIOpを目標値に設定することによりHF
M27をOFFからONにした場合のHFM27の立上
がり時間tO口を所定の値以下となるようにしている。
By setting this amount of change ΔIOp as the target value, the HF
The rise time t0 of the HFM 27 when the M27 is turned from OFF to ON is set to be less than or equal to a predetermined value.

ところで、HFM27の動作を0N10FFした場合、
つまり高周波信号の重畳を0N10FFした場合のレー
ザ駆動電流■対レーザダイオード7の出射パワーPの関
係を第3図に示す。
By the way, when the operation of HFM27 is 0N10FF,
In other words, FIG. 3 shows the relationship between the laser drive current (2) and the output power P of the laser diode 7 when the high frequency signal is superimposed on a 0N10FF basis.

リードパワーがRPaの状態でl−I F M 27を
ONした時にはBのカーブにより、OFFにした場合に
はAで示すカーブとなる。しかして、第3図の下側に示
す高周波重畳信号1 oscを直流成分11に加算して
レーザダイオード7に供給すると、第3図の右側に示す
ような出射パワーとなる。
When the l-I FM 27 is turned on with the read power being RPa, the curve shown by B is obtained, and when it is turned OFF, the curve shown by A is obtained. When the high frequency superimposed signal 1 osc shown on the lower side of FIG. 3 is added to the DC component 11 and supplied to the laser diode 7, the output power is as shown on the right side of FIG. 3.

上記1−IFM27をOFFにすると、その電流はI2
になり、HFP27を0N10FF時の変化RΔlop
はI 2−11となる。
When the above 1-IFM27 is turned off, the current is I2
The change RΔlop when HFP27 is 0N10FF is
becomes I2-11.

上記変化量Δ101)を大きくなるようにすると、第4
図に示″rJR/Nノイズ(レーザダイオードノイズ)
の特性から分るようにR/Nノイズを小さくでき、特に
変化量Δlopの最小値をΔ1opn+(例えば2+1
1^)以上に設定すると、R/Nノイズを小さい状態に
保持できる。
If the amount of change Δ101) is increased, the fourth
"rJR/N noise (laser diode noise) shown in the figure
As can be seen from the characteristics of
If it is set to 1^) or more, the R/N noise can be kept small.

一方、第5図(a)に示ずようにライト発光(WP)状
態からリード発光(RP)状態に変化させると同時に、
同図(b)に示1ようにHFMON10FFコントロー
ル信号によりトIFM27をONさせた場合、このHF
 M 27の高周波重畳電流l oscは同図(C)に
示すような立上がり特性を示す。つまり、HFM27を
ONLでからこのトIFM27の高周波重畳電流1 o
scが瞬間的に立上がらないため、ビンモニタ出力上で
リードパワーRPが安定状態の値RPaの90%に達す
るまでに時間tonを必要とする。
On the other hand, as shown in FIG. 5(a), at the same time as changing from the write light emission (WP) state to the read light emission (RP) state,
When IFM27 is turned on by the HFMON10FF control signal as shown in Fig. 1 (b), this HF
The high-frequency superimposed current l osc of M27 exhibits a rising characteristic as shown in FIG. In other words, since HFM27 is ONL, the high frequency superimposed current of IFM27 1o
Since sc does not rise instantaneously, it takes time ton for the read power RP to reach 90% of the stable state value RPa on the bin monitor output.

第4図からは高周波型が電流[OSCを大きくした法が
、ノイズを低減化できるので、て−さ−るだけ大きくす
ることが望ましい。
From FIG. 4, it can be seen that in the high frequency type, the method of increasing the current [OSC] can reduce noise, so it is desirable to increase it by a certain amount.

一方、高周波重畳電流1 oscを大きくづると立上が
りに要する時間tonも大きくなり、その関係は第6図
に示すようにリニアな関係を承り。
On the other hand, if the high frequency superimposed current 1 osc is increased, the time ton required for rising also becomes large, and the relationship is linear as shown in FIG.

上記高周波重畳電流1 oscを大きくすると、立上が
りに要する時間tonが大きくなる様子を第7図で示す
FIG. 7 shows how the time ton required for rising increases as the high frequency superimposed current 1 osc increases.

ライトパワーWPをオフにしてリードパワーにした場合
、HFM  OFFのカーブに沿って矢印Cのような軌
跡となり、リードパワーRP以下まe下がり、高周波重
畳電流の大きさに応じて設定された直流レベル1a又は
Ib又はlcから11−1F  ON時の特性に向かっ
て矢印a、b、cのように移る。
When the write power WP is turned off and the read power is set, the trajectory follows the HFM OFF curve as shown by arrow C, and drops below the read power RP, reaching the DC level set according to the magnitude of the high-frequency superimposed current. It moves from 1a, Ib, or lc toward the characteristics when 11-1F is ON as shown by arrows a, b, and c.

この遷移の軌跡から電流変化mΔlopを大きくづる程
Δ1opa、Δ1opb、Δl opcの順に所定のリ
ードパワー状態に移るまでに大きな時間が必要になる様
子が分る。
From the locus of this transition, it can be seen that as the current change mΔlop increases, a longer time is required to shift to a predetermined read power state in the order of Δ1opa, Δ1opb, and Δloopc.

このため、電流変化量Δtopを大きくするとライl−
発光状態からリード発光状態に切換えて、例えばプレピ
ット部分のアドレス等を読み取ろうとしてbリードパワ
ー状態が所定の値に達するまでに0.1間がかがり7ぎ
てしまうために、読取りに失敗するエラーレートが大き
くなる。
Therefore, if the amount of current change Δtop is increased, the line l-
An error that occurs when switching from the light emitting state to the read light emitting state and attempting to read, for example, the address of a pre-pit part, and the reading fails because it takes 0.1 seconds for the b read power state to reach a predetermined value. rate increases.

このため本実施例では第1図に示JようにI−I FM
27をONI、た時とOFFとの電流変化量ΔIOpが
一定となるように制御し、リードパワーRPが所定レベ
ルに達(るまでの時間tonをデータ読取りに影響を及
ぼさない時間以内に設定している。
Therefore, in this embodiment, as shown in FIG.
27 is controlled so that the current change amount ΔIOp between ONI and OFF is constant, and the time ton until the read power RP reaches a predetermined level is set within a time that does not affect data reading. ing.

従つC1この実施例にJ:れば、ノイズを低減化できる
と共に、読取りの1ラーレ−1−が人ぎくなることも防
止できる。
Accordingly, by applying C1 to J: in this embodiment, noise can be reduced and it is also possible to prevent the 1-Ray-1- reading from becoming distracting.

第8図は本発明の第2実施例の光学系の主要部を示づ。FIG. 8 shows the main parts of an optical system according to a second embodiment of the present invention.

この第2実施例は、第2図に示ず第1実施例の光学系に
おいて、]リメータレンズ11と偏光ビームスプリッタ
13との間に減光フィルタ41が設けてあり、偏光ビー
ムスプリッタ13を経て、ディスク3に照射されるレー
ザ売出を小さくしている。つまり、レーザダイオード7
の出射ビームの全体でなくその一部のみを実際に用いる
ことにより、減光フィルタ41を用いない場合よりも実
際の出射レベルを大きくすることができ、電流変化量Δ
lopが小さくなるような条件で使用する。
In this second embodiment, a neutral density filter 41 is provided between the remeter lens 11 and the polarizing beam splitter 13 in the optical system of the first embodiment, which is not shown in FIG. , the laser beam irradiated onto the disc 3 is reduced. In other words, laser diode 7
By actually using only a part of the output beam instead of the entire output beam, the actual output level can be made larger than when the neutral density filter 41 is not used, and the current change amount Δ
Use under conditions where the lop is small.

このようにレーザダイオード7の出射パワーを高めに設
定して記録媒体側に照射される光量をフィルタ41で減
ら1ことにより、電流変化間ΔIOpを小さい条件(例
えば21IA〜6I^)′C−使用する。
In this way, by setting the output power of the laser diode 7 to be high and reducing the amount of light irradiated to the recording medium side with the filter 411, the condition (for example, 21IA to 6I^) where the current change interval ΔIOp is small (for example, 21IA to 6I^)'C-use is achieved. do.

尚、この場合には第1図に示すような発振電流1 os
cの制御を行わない。
In this case, the oscillation current 1 os as shown in FIG.
c is not controlled.

又、上記フィルタ41は、高めに設定した出射パワーが
ディスク3に照射されるレベルがリードパワーに適した
レベルまで減光する。
Further, the filter 41 reduces the level at which the output power, which is set to be high, is irradiated onto the disk 3 to a level suitable for the read power.

尚、第8図では1/4波長板14と対物レンズ14との
間にミラー42を介装した構成にしている。
In FIG. 8, a mirror 42 is interposed between the 1/4 wavelength plate 14 and the objective lens 14.

この第2実施例によれば、電流変化量Δ1011を一定
値に制御する必要がないという利点を有する。
This second embodiment has the advantage that it is not necessary to control the current change amount Δ1011 to a constant value.

尚、第1実施例では電流変化山ΔIOpを一定値になる
ように制御しているが、所定の範囲内となるようにυI
Inして6良い。
In the first embodiment, the current change peak ΔIOp is controlled to be a constant value, but υI is controlled to be within a predetermined range.
In and 6 good.

[発明の効果] 以上述べたように本発明によれば、高周波19畳電流を
動作及びノド動作状態に切換えた場合にI3Gフる¥i
流流化化分大きさを所定の範囲内となるように制御して
いるので、ライト発光状態からリード発光状態に切換え
た際、高周波fI′J畳電流が立上がるのに要する時間
を読取りに支障にない時間以内に設定できる。
[Effects of the Invention] As described above, according to the present invention, when the high frequency 19 tatami current is switched to the operating state and the throat operating state, the I3G is
Since the flow rate is controlled to be within a predetermined range, it is possible to read the time required for the high-frequency fI'J current to rise when switching from the write light emission state to the read light emission state. Settings can be made within a reasonable amount of time.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ないし第7図は本発明の第1実施例に係り、第1
図は第1実施例におけるT1流変化ffl fi、制御
系の構成図、第2図は第1実施例の全体的構成図、第3
図は高周波重畳電流を重畳した場合と重介しない場合と
の駆動電流と出射パワ:との関係を示す特性図、第4図
はレーザダイオードのノイズと電流変化量の関係を示す
特性図、第5図はライト発光からリード発光に切換えた
際の高周波fif11電流の立上がりの様子を示す波形
図、第6図は電流変化量と高周波重畳電流が立上がるの
に要Jる時間との関係を示す特性図、第7図は電流変化
量が大きくなると高周波重畳電流が立上がるのに要する
時間が長くなることを示す説明図、第8図は本発明の第
2実施例における光学系の一部を示す側面図である。 1・・・光学式情報記録再生装置 3・・・ディスク     4・・・光学ヘッド7・・
・レーザダイオード 8・・・ピンフォトダイオード 24・・・記録発光品制御部 25・・・APC回路 27・・・高周波重畳モジュール(HFM)28・・・
電流変化母制御部 31・・・差動アンプ   33・・・CPU第1図 第2図 第3図 第4図 第5図 tOn 第6図 tOn 第7図 第8図
FIGS. 1 to 7 relate to the first embodiment of the present invention.
The figure shows the T1 flow change ffl fi in the first embodiment and the configuration diagram of the control system. Figure 2 is the overall configuration diagram of the first embodiment.
Figure 4 is a characteristic diagram showing the relationship between drive current and output power when high-frequency superimposed current is superimposed and when it is not superimposed. Figure 4 is a characteristic diagram showing the relationship between laser diode noise and current variation. Figure 5 is a waveform diagram showing how the high frequency FIF11 current rises when switching from write light emission to read light emission, and Figure 6 shows the relationship between the amount of current change and the time required for the high frequency superimposed current to rise. A characteristic diagram, FIG. 7 is an explanatory diagram showing that the time required for the high-frequency superimposed current to rise increases as the amount of current change increases, and FIG. 8 shows a part of the optical system in the second embodiment of the present invention. FIG. 1... Optical information recording/reproducing device 3... Disk 4... Optical head 7...
・Laser diode 8... Pin photodiode 24... Recording light emitting product control unit 25... APC circuit 27... High frequency superimposition module (HFM) 28...
Current change bus control unit 31...Differential amplifier 33...CPU Fig. 1 Fig. 2 Fig. 3 Fig. 4 Fig. 5 tOn Fig. 6 tOn Fig. 7 Fig. 8

Claims (1)

【特許請求の範囲】 1、記録媒体に光ビームを照射し、その戻り光を受光す
る機能を有する光学ヘッドの光源として用いられる半導
体レーザと、そのノイズ低減のために高周波重畳電流を
供給する高周波発振器と、この高周波発振器のオン/オ
フを制御するオン/オフ制御手段と、前記半導体レーザ
の出力を一定に制御する出力制御部とを備えた光学式情
報記録再生装置において、 前記高周波発振器のオフ時とオン時との前記半導体レー
ザへの駆動電流の差を所定の範囲内に制御する制御手段
を設けたことを特徴とする光学式情報記録再生装置。 2、前記半導体レーザの出射パワーを大きくして、記録
媒体側に照射されるレーザ光量を低減化する手段を設け
、前記駆動電流の差を相対的に小さくしたことを特徴と
する請求項1記載の光学式情報記録再生装置。
[Claims] 1. A semiconductor laser used as a light source for an optical head that has the function of irradiating a recording medium with a light beam and receiving the returned light, and a high-frequency laser that supplies a high-frequency superimposed current to reduce noise. An optical information recording/reproducing device comprising an oscillator, an on/off control means for controlling on/off of the high frequency oscillator, and an output control section for controlling the output of the semiconductor laser to a constant level, comprising: 1. An optical information recording and reproducing apparatus, comprising: a control means for controlling a difference in drive current to the semiconductor laser between when the semiconductor laser is turned on and when it is on to within a predetermined range. 2. A device according to claim 1, characterized in that a means is provided for increasing the output power of the semiconductor laser to reduce the amount of laser light irradiated onto the recording medium side, thereby making the difference in the drive current relatively small. optical information recording and reproducing device.
JP1119433A 1989-05-12 1989-05-12 Optical information recording / reproducing device Expired - Fee Related JP2731237B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1119433A JP2731237B2 (en) 1989-05-12 1989-05-12 Optical information recording / reproducing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1119433A JP2731237B2 (en) 1989-05-12 1989-05-12 Optical information recording / reproducing device

Publications (2)

Publication Number Publication Date
JPH02297731A true JPH02297731A (en) 1990-12-10
JP2731237B2 JP2731237B2 (en) 1998-03-25

Family

ID=14761310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1119433A Expired - Fee Related JP2731237B2 (en) 1989-05-12 1989-05-12 Optical information recording / reproducing device

Country Status (1)

Country Link
JP (1) JP2731237B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7065012B2 (en) 2002-06-14 2006-06-20 Fujitsu Limited Optical storage device and emission control method
US7414952B2 (en) 2003-02-19 2008-08-19 Sony Corporation Laser driving apparatus and associated methodology of controlling a drive current
US8045438B2 (en) * 2005-05-06 2011-10-25 Mediatek, Inc. High frequency modulation of a light beam in optical recording

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104391A (en) * 1986-10-21 1988-05-09 Seiko Epson Corp Semiconductor laser driving device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63104391A (en) * 1986-10-21 1988-05-09 Seiko Epson Corp Semiconductor laser driving device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7065012B2 (en) 2002-06-14 2006-06-20 Fujitsu Limited Optical storage device and emission control method
US7414952B2 (en) 2003-02-19 2008-08-19 Sony Corporation Laser driving apparatus and associated methodology of controlling a drive current
US8045438B2 (en) * 2005-05-06 2011-10-25 Mediatek, Inc. High frequency modulation of a light beam in optical recording

Also Published As

Publication number Publication date
JP2731237B2 (en) 1998-03-25

Similar Documents

Publication Publication Date Title
JPH06251371A (en) Defective position designating signal recorder for disc medium
US4967417A (en) Laser driving device provided with two reference signal sources, and optical information recording apparatus using the same device
JPS6343819B2 (en)
JPH02297731A (en) Optical information recording and reproducing device
JP3619371B2 (en) Optical pickup device and tilt detection method thereof
JPH0227533A (en) Laser diode driving device
JP4305043B2 (en) Information recording apparatus and information reproducing apparatus
JPS60143438A (en) Information recording and reproducing device
US5088078A (en) Optical pickup apparatus
JPS60239925A (en) Semiconductor laser driving circuit
JPH06215438A (en) Laser recorder
JP2003059083A (en) Optical head and optical disk playing-back device
JPH0922530A (en) Optical output setting method for information recording and reproduction
JPH0689453A (en) Optical disk recording device
JP2842533B2 (en) Optical disk recording / reproducing device
JPH0636501Y2 (en) Recordable optical disk recording / reproducing apparatus
KR910005648B1 (en) Focus servo circuit and method thereof for optical disk reproducing apparatus
JP2000011421A (en) Method of recording and reproducing optical disk and device therefor
JPH03116553A (en) Optical disk device
KR0119889B1 (en) Automatic laser power control apparatus for optical pick-up system
JPH03116531A (en) Optical disk device
JPS61156540A (en) Optical information recording and reproducing device
JPS59184578A (en) Controlling device for stabilizing output of semiconductor laser oscillator
JPH03142724A (en) Optical disk device
JPH07129975A (en) Device for recording/reproducing information

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081219

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees