JPH02297067A - Angular velocity sensor for detecting attitude of vehicle - Google Patents

Angular velocity sensor for detecting attitude of vehicle

Info

Publication number
JPH02297067A
JPH02297067A JP1118997A JP11899789A JPH02297067A JP H02297067 A JPH02297067 A JP H02297067A JP 1118997 A JP1118997 A JP 1118997A JP 11899789 A JP11899789 A JP 11899789A JP H02297067 A JPH02297067 A JP H02297067A
Authority
JP
Japan
Prior art keywords
angular velocity
vehicle
velocity sensor
sensor
generated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1118997A
Other languages
Japanese (ja)
Inventor
Takahiro Manabe
真鍋 高弘
Mikio Nozu
野津 幹雄
Yasuto Osada
長田 康人
Toshihiko Ichise
俊彦 市瀬
Jiro Terada
二郎 寺田
Kazumitsu Ueda
上田 和光
Hiroshi Takenaka
寛 竹中
Hiroshi Senda
千田 博史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1118997A priority Critical patent/JPH02297067A/en
Publication of JPH02297067A publication Critical patent/JPH02297067A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PURPOSE:To detect only the angular velocity without causing a malfunction by placing this sensor so that a bimorph structure of a detecting element becomes vertical to the road surface on which a vehicle runs. CONSTITUTION:A first and a second angular velocity sensors 11, 12 are placed in a vehicle so that a bimorph structure of detecting elements 11a, 11b, 12a and 12b becomes vertical to an X - Y plane being the running direction surface of a vehicle. These first and second angular velocity sensors 11, 12 can detect an angular velocity in the roll direction and in the pitch direction. In this state, for instance, when a translational motion of a Z axis is applied to the elements 11a, 11b, displacement shown by a broken line is generated, but to the element 11a, 11b, the displacement is applied in the direction in which a reverse piezoelectric phenomenon is not generated, therefore, no charge is generated on the surface of the elements 11a, 11b. In such a way, by placing the sensor 11 in the vehicle, a malfunction can be reduced against vibration generated in the Z axis direction.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は車両に発生する角速度を検知する車両姿勢検知
用角速度センサに関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an angular velocity sensor for detecting vehicle attitude that detects the angular velocity generated in a vehicle.

従来の技術 近年、半導体の進歩により複雑な演算処理機能を持った
LSI、マイクロコンピュータが開発され、これらを使
用してきめこまかな制御機能を持つ制御機器が実現され
ている。またこれら制御機器の信頼性も向上し、車両に
搭載されるような非常に厳しい環境下においても正常な
動作が保証される技術も実現されている。このような背
景に於て、特にきめこまかな制御が必要とされる車両の
制御に活用されている。特に最近、車両の乗り心地及び
操安性向上を目的とする姿勢制御装置の開発が盛んであ
る。従来この種の装置に於ては、車両の操縦中に発生す
るような車両の外乱を、車両に設置されたセンサからの
情報により、アクチュエータを動作させ、乗り心地及び
操安性を確保してきた。これら車両の外乱を検知するセ
ンサとして、角速度を検知する角速度センサがある。こ
の角速度センサについて第3図〜第5図に基づき説明す
る。
BACKGROUND OF THE INVENTION In recent years, advances in semiconductors have led to the development of LSIs and microcomputers with complex arithmetic processing functions, and these have been used to realize control devices with detailed control functions. The reliability of these control devices has also improved, and technology has been realized that guarantees normal operation even in extremely harsh environments such as those installed in vehicles. Against this background, it is being utilized particularly for vehicle control that requires fine-grained control. Particularly recently, there has been active development of attitude control devices aimed at improving ride comfort and handling of vehicles. Conventionally, this type of device operates an actuator based on information from sensors installed in the vehicle to ensure ride comfort and maneuverability in response to vehicle disturbances that occur while the vehicle is being operated. . As a sensor for detecting these vehicle disturbances, there is an angular velocity sensor that detects angular velocity. This angular velocity sensor will be explained based on FIGS. 3 to 5.

角速度センサは第3図に示す様な構造であり、主に4つ
の圧電バイモルフからなる駆動素子、モニター素子第1
及び第2の検知素子で構成され、駆動素子101と第1
の検知素子103を接合部105で直交接合した第1の
振動ユニット109と、モニター素子102と第2の検
知素子104゜を接合部106で直交接合した第2の振
動ユニット110とを連結板107で連結し、この連結
板107を支持棒108で一点支持した音叉構造となっ
ている。
The angular velocity sensor has a structure as shown in Fig. 3, and consists of a driving element mainly consisting of four piezoelectric bimorphs, and a first monitoring element.
and a second sensing element, and includes a driving element 101 and a first sensing element.
A connecting plate 107 connects a first vibration unit 109 in which a detection element 103 is orthogonally joined at a joint 105, and a second vibration unit 110 in which a monitor element 102 and a second detection element 104 are orthogonally joined at a joint 106. , and this connecting plate 107 is supported at one point by a support rod 108 to form a tuning fork structure.

駆動素子101に正弦波電圧信号を与えると、逆圧電効
果により第1の振動ユニット109が振を始め、音叉振
動により第2の振動ユニット110も振動を開始する。
When a sinusoidal voltage signal is applied to the drive element 101, the first vibration unit 109 starts vibrating due to the inverse piezoelectric effect, and the second vibration unit 110 also starts vibrating due to the tuning fork vibration.

従ってモニター素子102の圧電効果によって素子表面
に発生する電荷は駆動素子101へ印加している正弦波
電圧信号に比例する。このモニター素子102に発生す
る電荷を検出し、これが一定振幅になる様に駆動素子1
01へ印加する正弦波電圧信号をコントロールする事に
より安定した音叉振動を得る事ができる。
Therefore, the charge generated on the surface of the monitor element 102 due to the piezoelectric effect is proportional to the sinusoidal voltage signal applied to the drive element 101. The charge generated in the monitor element 102 is detected, and the drive element 1 is arranged so that the charge has a constant amplitude.
By controlling the sinusoidal voltage signal applied to 01, stable tuning fork vibration can be obtained.

このセンサが角速度に比例した出力を発生させるメカニ
ズムを第4図及び第S図を用いて説明する。
The mechanism by which this sensor generates an output proportional to the angular velocity will be explained using FIG. 4 and FIG.

第4図は第3図に示した角速度センサを上からみたもの
で、速度υで振動している検知素子103に角速度ωの
回転が加わると、検知素子103にはrコリオリの力」
が生ずる。この「コリオリの力」は速度υに垂直で大き
さは2mυωである。
FIG. 4 shows the angular velocity sensor shown in FIG. 3 viewed from above. When rotation at an angular velocity ω is applied to the sensing element 103, which is vibrating at a speed υ, the r Coriolis force is applied to the sensing element 103.
occurs. This "Coriolis force" is perpendicular to the speed υ and has a magnitude of 2mυω.

検知素子103は音叉振動をしているので、ある時点で
検知素子103が速度υで振動しているとすれば、検知
素子104は速度−〇で振動しており「コリオリの力」
は−2mυωである。よって検知素子103,104は
第5図の様に互いに「コリオリの力」が働く方向に変形
し、素子表面には圧電効果によって電荷が生じる。ここ
でυは音叉振動によって生じる運動であり、音叉振動が
v=a−sin  ωOt   a:音叉振動の振幅ω
0:音叉振動の周期 であるとすれば「コリオリの力」は Fc=a ”ω’ s jn  ct)Otとなり角速
度ω及び音叉振幅aに比例しており、検知素子103,
104を面方向に変形させる力となる。従って検知素子
103.104の表面電荷量Qは Qoca11ω@Sin ωat となり音叉振幅aが一定にコントロールされているとす
れば Q oc a 11 S  i n   ωo tとな
り検知素子103.104に発生する表面電荷量Qは角
速度ωに比例した出力として得られ、この信号をωot
で同期検波すれば角速度ωに比例した直流信号が得られ
る。
Since the sensing element 103 is vibrating like a tuning fork, if the sensing element 103 is vibrating at a speed υ at a certain point, the sensing element 104 is vibrating at a speed -〇, which is the "Coriolis force".
is −2mυω. Therefore, the sensing elements 103 and 104 are deformed toward each other in the direction of the "Coriolis force" as shown in FIG. 5, and charges are generated on the surfaces of the elements due to the piezoelectric effect. Here, υ is the motion caused by tuning fork vibration, and the tuning fork vibration is v=a-sin ωOt a: amplitude of tuning fork vibration ω
0: If it is the period of tuning fork vibration, the "Coriolis force" is Fc = a "ω' s jn ct) Ot, which is proportional to the angular velocity ω and the tuning fork amplitude a, and the detection element 103,
This becomes a force that deforms 104 in the plane direction. Therefore, the surface charge Q of the sensing elements 103 and 104 is Qoca11ω@Sin ωat, and if the tuning fork amplitude a is controlled to be constant, Q oc a 11 S i n ωo t, and the surface charge generated on the sensing elements 103 and 104. The quantity Q is obtained as an output proportional to the angular velocity ω, and this signal is called ωot
If synchronous detection is performed with , a DC signal proportional to the angular velocity ω can be obtained.

以上説明してきた角速度センサは、車両の姿勢検知用セ
ンサとして使用でき、センサからの情報から車両の姿勢
を制御するアクチュエータを駆動して、乗り心地や操安
性を向上させるシステムに活用される。
The angular velocity sensor described above can be used as a sensor for detecting the attitude of a vehicle, and is used in a system that drives an actuator that controls the attitude of the vehicle based on information from the sensor to improve ride comfort and steering performance.

発明が解決しようとする課題 ところが、車両の様な動作時の苛酷な撮動状態において
、センサ類の誤動作がシステムの信頼性にとって重要な
問題点となる。特に車両の車高方向の撮動は大きく、車
両の走行する路面に対し、検出軸が平行になるように角
速度センサが配置されるような場合、第3図〜第5図で
説明した音叉構造撮動型角速度センサにおいても、角速
度の変位以外の並進運動によりセンサが誤動作してしま
う、という問題点があった。この並進運動において誤動
作のメカニズムを第6図で説明する。Y軸上に検出軸を
もつ角速度センサに、図中Z軸方向に並進運動が発生し
たと考えると、角速度センサの検出素子103.104
はバイモルフ構造がZ軸に対して垂直となっているので
、図中破線に示すような変位が生じる。従来例では、検
知素子103゜104に変位が生じると検知素子103
.104表面に電荷が発生する事になる。この挙動をキ
ャンセルさせるために、第6図の矢印方向から見た図で
ある第7図に示すように第1の検知素子103のA面と
、第2の検知素子104のB面とを結線させ同電位とし
、同じく第1の検知素子103の8面と、第2の検知素
子104のA面とを結線させ同電位として角速度センサ
のセンサ出力としており、並進運動により第1.第2の
検知素子103゜104が検知してしまう電荷を、相殺
されるようにしている。ところが、第1と第2の検知素
子103゜104には微妙な違いがあり、例えば大きさ
の違い、振動ユニット109.110の直交度の違いな
どがあり、並進運動による誤動作を完全にキャンセルさ
せる事はできなかった。
Problems to be Solved by the Invention However, malfunction of sensors becomes an important problem for the reliability of the system in severe imaging conditions during operation such as in a vehicle. In particular, when capturing images in the height direction of a vehicle, the angular velocity sensor is arranged so that the detection axis is parallel to the road surface on which the vehicle is running, the tuning fork structure explained in Figures 3 to 5 is used. The imaging type angular velocity sensor also has a problem in that the sensor malfunctions due to translational motion other than angular velocity displacement. The mechanism of malfunction in this translational movement will be explained with reference to FIG. Considering that an angular velocity sensor having a detection axis on the Y-axis undergoes a translational movement in the Z-axis direction in the figure, the detection elements 103 and 104 of the angular velocity sensor
Since the bimorph structure is perpendicular to the Z axis, a displacement as shown by the broken line in the figure occurs. In the conventional example, when the sensing elements 103 and 104 are displaced, the sensing elements 103
.. An electric charge will be generated on the surface of 104. In order to cancel this behavior, the A side of the first sensing element 103 and the B side of the second sensing element 104 are connected as shown in FIG. 7, which is a view seen from the direction of the arrow in FIG. Similarly, the 8 surfaces of the first sensing element 103 and the A side of the second sensing element 104 are connected to have the same potential, which is used as the sensor output of the angular velocity sensor. The charges detected by the second detection elements 103 and 104 are canceled out. However, there are subtle differences between the first and second sensing elements 103 and 104, such as differences in size and orthogonality of the vibration units 109 and 110, which completely cancels malfunctions caused by translational motion. I couldn't do anything.

課題を解決するための手段 上記問題点を解決するために本発明は、車両の走行する
路面に平行な角速度検出軸をもつ音叉構造振動型角速度
センサを有し、検知素子のバイモルフ構造を車両の走行
する路面に対し垂直になるように角速度センサを車両に
配置して、車両の姿勢を検知できるようにしたものであ
る。
Means for Solving the Problems In order to solve the above-mentioned problems, the present invention has a tuning fork structure vibrating angular velocity sensor having an angular velocity detection axis parallel to the road surface on which the vehicle travels, and the bimorph structure of the sensing element is adapted to the vehicle. An angular velocity sensor is placed on the vehicle so that it is perpendicular to the road surface on which the vehicle is traveling, so that the attitude of the vehicle can be detected.

作用 以上の構成とすれば、検知素子のバイモルフ構造が車両
の走行する路面に対し垂直であるので、車両の車高方向
振動の並進運動の影響を角速度センサが受けに<(、誤
動作なしに角速度のみを検知し車両の姿勢を検知するこ
とができる。
If the above-described configuration is adopted, the bimorph structure of the sensing element is perpendicular to the road surface on which the vehicle travels, so the angular velocity sensor is not affected by the translational motion of the vehicle's vibration in the vehicle height direction. It is possible to detect the attitude of the vehicle by detecting the position of the vehicle.

実施例 以下本発明による車両姿勢検知角速度センサの一実施例
を図面に基づいて説明する。
Embodiment Hereinafter, an embodiment of a vehicle attitude detection angular velocity sensor according to the present invention will be described based on the drawings.

第1図は、2個の車両姿勢検知角速度センサ11.12
を車両に配置した一実施例であり、車両の進行方向であ
るX軸に検出軸をもち、ロール角速度を検出する第1の
角速度センサ11と、車両の車幅方向であるY軸に検出
軸をもち、ピッチ角速度を検出する第2の角速度センサ
12が2個車両に配置されている。この第1、第2の角
速度センサ11,12は、検知素子11a、llb。
Figure 1 shows two vehicle attitude detection angular velocity sensors 11 and 12.
This is an embodiment in which a first angular velocity sensor 11 has a detection axis on the X-axis, which is the traveling direction of the vehicle, and detects roll angular velocity, and a detection axis is on the Y-axis, which is the width direction of the vehicle. Two second angular velocity sensors 12 that detect pitch angular velocity are arranged in the vehicle. The first and second angular velocity sensors 11 and 12 include detection elements 11a and llb.

12a、12bのバイモルフ構造が車両の走行方向面で
あるX−Y平面に対し、垂直になるよう車両に配置され
ている。この第1と第2の角速度センサは、ロール方向
とピッチ方向の角速度が検知でき、車両の姿勢制御を行
なう上で重要な変位情報となっている。
The bimorph structures 12a and 12b are arranged on the vehicle so as to be perpendicular to the X-Y plane, which is the plane in the running direction of the vehicle. The first and second angular velocity sensors can detect angular velocity in the roll direction and pitch direction, which is important displacement information for controlling the attitude of the vehicle.

第2図は第1図の第1の角速度センサ11を拡大した図
で、車両の動作中に発生する最大の振動である図中Z軸
の並進運動が検知素子11a。
FIG. 2 is an enlarged view of the first angular velocity sensor 11 shown in FIG. 1, and the translational movement along the Z axis in the figure, which is the largest vibration generated during vehicle operation, is detected by the sensing element 11a.

11bに加わると、図中破線に示した変位が発生するが
、検知素子11a、Ilbには逆圧電現象が発生しない
方向に変位が加わるので、検知素子11a、llbの表
面には電荷が発生しない。このように角速度センサ11
を車両に配置することにより車高方向くZ軸方向)に発
生する振動に対し誤動作の少ないセンサを提供すること
ができる。
11b, the displacement shown by the broken line in the figure occurs, but since the displacement is applied to the sensing elements 11a and Ilb in a direction in which no inverse piezoelectric phenomenon occurs, no charge is generated on the surfaces of the sensing elements 11a and Ilb. . In this way, the angular velocity sensor 11
By disposing the sensor in a vehicle, it is possible to provide a sensor that is less likely to malfunction due to vibrations generated in the vehicle height direction (Z-axis direction).

発明の詳細 な説明してきたように本発明は、角速度検出軸が車両の
走行する路面に平行であり、かつ検知素子のバイモルフ
構造が車両の走行する路面に対し垂直になるよう車両に
角速度センサを配置することにより、車両の車高方向の
振動に対し誤動作がなくなり、信頼性の高い車両姿勢検
知角速度センサを提供することができる。
As described in detail, the present invention provides an angular velocity sensor mounted on a vehicle such that the angular velocity detection axis is parallel to the road surface on which the vehicle travels, and the bimorph structure of the sensing element is perpendicular to the road surface on which the vehicle travels. This arrangement eliminates malfunctions due to vibrations in the height direction of the vehicle, making it possible to provide a highly reliable vehicle attitude detection angular velocity sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による車両姿勢検知角速度センサの一実
施例を示す車両への実装状態を示す概念図、第2図は第
1図中の第1の角速度センサの動作説明図、第3図は音
叉構造振動型角速度センサの斜視図、第4図及び第5図
は動作説明図、第6図及び第7図は従来の角速度センサ
の配置例を示す動作説明図である。 11・・・・・・第1の角速度センサ、12・・・・・
・第2の角速度センサ、11a、1 lb、12a、1
2b・・・・・・検知素子、101・・・・・・駆動素
子、102・・・・・・モニター素子、103・・・・
・・第1の検知素子、104・・・・・・第2の検知素
子、105,106・・・・・・接合部、107・・・
・・・連結板、109・・・・・・第1の振動ユニット
、110・・・・・・第2の振動ユニット。 代理人の氏名 弁理士 粟野重孝 ほか−名吊 図 第 図 第 図 弗 図
FIG. 1 is a conceptual diagram showing an embodiment of the vehicle attitude detection angular velocity sensor according to the present invention, showing how it is mounted on a vehicle, FIG. 2 is an explanatory diagram of the operation of the first angular velocity sensor in FIG. 1, and FIG. 3 1 is a perspective view of a tuning fork structure vibration type angular velocity sensor, FIGS. 4 and 5 are operation explanatory diagrams, and FIGS. 6 and 7 are operation explanatory diagrams showing an arrangement example of a conventional angular velocity sensor. 11...First angular velocity sensor, 12...
・Second angular velocity sensor, 11a, 1 lb, 12a, 1
2b...detection element, 101...drive element, 102...monitor element, 103...
...First sensing element, 104... Second sensing element, 105, 106... Joint part, 107...
...Connecting plate, 109...First vibration unit, 110...Second vibration unit. Name of agent: Patent attorney Shigetaka Awano et al.

Claims (1)

【特許請求の範囲】[Claims] 駆動用圧電バイモルフ素子と第1の検知用バイモルフ素
子とを互に直交接合してなる第1の振動ユニット、及び
モニター用圧電バイモルフ素子と第2の検知用バイモル
フ素子とを互に直交接合してなる第2の振動ユニットか
らなりかつ前記第1,第2の振動ユニットを検知軸に沿
って互に平行になるように前記駆動用圧電バイモルフ素
子と前記モニター用圧電バイモルフ素子の自由端どうし
を連結板で連結して音叉構造とした角速度センサを有し
、角速度検出軸が車両の走行する路面に平行でかつ前記
第1,第2の検知用バイモルフ素子のバイモルフ構造が
車両の走行する路面に対し垂直になるように前記角速度
センサを車両に配置した車両姿勢検知用角速度センサ。
A first vibration unit in which a driving piezoelectric bimorph element and a first sensing bimorph element are orthogonally connected to each other, and a monitoring piezoelectric bimorph element and a second sensing bimorph element are orthogonally connected to each other. the driving piezoelectric bimorph element and the monitoring piezoelectric bimorph element are connected to each other at their free ends such that the first and second vibration units are parallel to each other along the detection axis; The angular velocity sensor has a tuning fork structure connected by a plate, the angular velocity detection axis is parallel to the road surface on which the vehicle is running, and the bimorph structure of the first and second detection bimorph elements is parallel to the road surface on which the vehicle is running. An angular velocity sensor for detecting vehicle attitude, wherein the angular velocity sensor is arranged vertically on the vehicle.
JP1118997A 1989-05-12 1989-05-12 Angular velocity sensor for detecting attitude of vehicle Pending JPH02297067A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1118997A JPH02297067A (en) 1989-05-12 1989-05-12 Angular velocity sensor for detecting attitude of vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1118997A JPH02297067A (en) 1989-05-12 1989-05-12 Angular velocity sensor for detecting attitude of vehicle

Publications (1)

Publication Number Publication Date
JPH02297067A true JPH02297067A (en) 1990-12-07

Family

ID=14750447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1118997A Pending JPH02297067A (en) 1989-05-12 1989-05-12 Angular velocity sensor for detecting attitude of vehicle

Country Status (1)

Country Link
JP (1) JPH02297067A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7677076B2 (en) 2004-10-07 2010-03-16 Panasonic Corporation Angular velocity sensor unit and angular velocity sensor diagnosing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7677076B2 (en) 2004-10-07 2010-03-16 Panasonic Corporation Angular velocity sensor unit and angular velocity sensor diagnosing device

Similar Documents

Publication Publication Date Title
JPH02306111A (en) Angular velocity detector
US11047685B2 (en) Configuration to reduce non-linear motion
JPH02296514A (en) Suspension controller for vehicle
US9068834B2 (en) Double-axial, shock-resistant rotation rate sensor with nested, linearly oscillating seismic elements
US20080210007A1 (en) Angular velocity sensor
CN1782714B (en) Acceleration sensor
CN101443629A (en) Rate-of-rotation sensor having a coupling bar
US6443008B1 (en) Decoupled multi-disk gyroscope
JPH03226620A (en) Driving apparatus of angular velocity sensor
US8342022B2 (en) Micromechanical rotational speed sensor
JPH02297067A (en) Angular velocity sensor for detecting attitude of vehicle
JPH09159460A (en) Angular velocity sensor
JPH09218040A (en) Self-diagnostic method for angular speed sensor
JPH0786417B2 (en) Vibrating gyro
US5578754A (en) Vibration-type angular-velocity sensor
JP4858215B2 (en) Compound sensor
JP5125138B2 (en) Compound sensor
JP3019322B2 (en) Vehicle suspension control device
JP2008232704A (en) Inertia force sensor
JP2566707B2 (en) Vibration gyro with diagnostic function
JPH02296515A (en) Suspension controller for vehicle
JPH09325031A (en) Vibration type angular velocity sensor
JPH07167890A (en) Capacitor type acceleration sensor
JP2008232703A (en) Inertia force sensor
JPH04339264A (en) Angular velocity detection device