JPH02297006A - Method and device for measuring displacement of object - Google Patents

Method and device for measuring displacement of object

Info

Publication number
JPH02297006A
JPH02297006A JP12017989A JP12017989A JPH02297006A JP H02297006 A JPH02297006 A JP H02297006A JP 12017989 A JP12017989 A JP 12017989A JP 12017989 A JP12017989 A JP 12017989A JP H02297006 A JPH02297006 A JP H02297006A
Authority
JP
Japan
Prior art keywords
memory
displacement
speckle pattern
image signal
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP12017989A
Other languages
Japanese (ja)
Other versions
JP2771594B2 (en
Inventor
Yuuji Akishiba
雄二 秋柴
Makoto Hirai
誠 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Keyence Corp
Original Assignee
Keyence Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Keyence Corp filed Critical Keyence Corp
Priority to JP1120179A priority Critical patent/JP2771594B2/en
Publication of JPH02297006A publication Critical patent/JPH02297006A/en
Application granted granted Critical
Publication of JP2771594B2 publication Critical patent/JP2771594B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To execute the measurement with high accuracy even if the displacement quantity is large by collating successively a measured image signal obtained at the time of measurement and plural scanning image signals stored in a memory and outputting a signal for showing a mutual correlation function. CONSTITUTION:The surface of a moving object 2 is irradiated by a laser beam, and a one-dimensional image sensor (that which is formed by arranging a CCD along the moving direction X of the object 2) 3 is placed so as to be opposed to the irradiated surface 21. As a result, the observation surface of a speckle pattern is formed. An image signal brought to photoelectric conversion by the sensor 3 is brought to A/D conversion 42, and stored successively to a memory 6. A correlator 7 calculates immediately a mutual correlation function of a digital signal for showing a speckle pattern of one scanning point read out of the memory 6, and a digital signal for showing a speckle pattern in one measuring point sent from the A/D converter 42. A result of this calculation is sent to an arithmetic processing circuit 8, and the circuit 8 outputs a signal corresponding to a moving amount of the object 2, based on address data sent from an address switching circuit 61.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、レーザ光を照射した対象物体粗面からの拡散
光によって生じるスペックルパターンを利用して、移動
物体の変位量や所定の変位発生時点を測定する方法、及
びその装置に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention utilizes speckle patterns generated by diffused light from the rough surface of a target object irradiated with laser light to determine the amount of displacement of a moving object or a predetermined displacement. The present invention relates to a method and apparatus for measuring the time point of occurrence.

(従来の技術) 従来、スペックルパターンを応用して物体の微小な変形
量を測定する方法が提案されている(特公昭59−52
963号、J 、 P hys、 E : S ci、
 I nstrum、 19゜1986)。
(Prior Art) Conventionally, a method has been proposed for measuring minute deformations of objects by applying speckle patterns (Japanese Patent Publication No. 59-52
No. 963, J. Phys, E: Sci.
Instrum, 19°1986).

該測定方法は、測定物体の表面にレーザビームを照射し
て、拡散反射光の中にイメージセンサを配置し、該セン
サ出力に基づいて、物体変形前後の出力信号の相互相関
関数を算出するものであって、スペックルパターンの移
動量が、前記相互相関関数のピーク値の位置として得ら
れる。
This measurement method irradiates the surface of the object to be measured with a laser beam, places an image sensor in the diffusely reflected light, and calculates the cross-correlation function of the output signals before and after deforming the object based on the sensor output. The amount of movement of the speckle pattern is obtained as the position of the peak value of the cross-correlation function.

(解決しようとする課題) ところが、従来の方法に於いては、変形前後の2つのス
ペックルパターンの相互相関にのみ基づいて測定が行な
われるから、測定精度の保証される変形範囲が、両スペ
ックルパターンにある程度の相関性が維持される範囲内
に限定される。
(Problem to be solved) However, in the conventional method, measurement is performed only based on the cross-correlation of two speckle patterns before and after deformation, so the deformation range where measurement accuracy is guaranteed is limited to both speckle patterns. limited to a range in which a certain degree of correlation is maintained in the pattern.

従って、従来の変形測定方法を応用して、移動物体の変
位量を測定する場合、変位量がレーザビームの直径より
も大きくなると、移動前後の2つのスペックルパターン
の間には全く相関がなくなり、測定が不可能となる。又
、変位量がビーム径よりも小さい場合に於いても、変位
量が大きくなるにつれて、測定精度が低下する問題が生
じる。
Therefore, when measuring the amount of displacement of a moving object by applying the conventional deformation measurement method, if the amount of displacement becomes larger than the diameter of the laser beam, there will be no correlation between the two speckle patterns before and after the movement. , measurement becomes impossible. Further, even when the amount of displacement is smaller than the beam diameter, a problem arises in that the measurement accuracy decreases as the amount of displacement increases.

本発明の目的は、変位量の大小に拘わらず、精度の高い
測定が可能な移動物体の変位測定方法及び装置を提供す
ることである。
An object of the present invention is to provide a method and apparatus for measuring the displacement of a moving object, which enables highly accurate measurement regardless of the magnitude of displacement.

(課題を解決する為の手段) 本発明に係る移動物体の変位測定方法は、実際の測定前
にレーザビームを移動物体に照射する走査ステップと、
その後、実際の測定時にレーザビームを移動物体に照射
する実測ステップの2つのステップから構成される。
(Means for Solving the Problems) A method for measuring displacement of a moving object according to the present invention includes a scanning step of irradiating the moving object with a laser beam before actual measurement;
After that, it consists of two steps: an actual measurement step in which a moving object is irradiated with a laser beam during actual measurement.

走査ステップに於いては、移動物体(2)の表面にレー
ザビームを照射して、該移動物体(2)に対向した観測
面にスペックルパターンを形成し、該スペックルパター
ンをイメージ信号に変換し、移動物体(2)の変位に伴
って変化するイメージ信号を、移動物体(2)の変位量
と対応づけて、メモリ(6)の複数の格納部に順次格納
する。
In the scanning step, a laser beam is irradiated onto the surface of the moving object (2) to form a speckle pattern on an observation surface facing the moving object (2), and the speckle pattern is converted into an image signal. Then, image signals that change with the displacement of the moving object (2) are sequentially stored in a plurality of storage sections of the memory (6) in association with the amount of displacement of the moving object (2).

実測ステップに於いては、観測面に現れるスペックルパ
ターンのイメージ信号と、メモリ(6)の各格納部に格
納されている複数のイメージ信号との相互相関関数を順
次算出し、最も大きな相関ピーク値が得られるイメージ
信号のメモリ(6)内の格納位置に基づいて、移動物体
(2)の変位を測定する。
In the actual measurement step, the cross-correlation function between the image signal of the speckle pattern appearing on the observation surface and the plurality of image signals stored in each storage section of the memory (6) is calculated in sequence, and the largest correlation peak is calculated. The displacement of the moving object (2) is measured based on the storage position in the memory (6) of the image signal whose value is obtained.

又、本発明に係る物体の変位測定装置は、測定対象とな
る物体の表面に向けてレーザビームを照射するレーザ発
生源と、物体表面からの拡散反射光を受光し得る位置に
配置され該拡散反射光のスペックルパターンを検出する
イメージセンサ−(3)と、該イメージセンサ−(3)
から得られるイメージ信号を、スペックルパターンの相
関性が維持されるピッチで、物体のレーザビーム照射位
置と対応づけて格納する複数の格納部を有するメモリ(
6)と、物体変位測定時に得られる実測イメージ信号と
前記メモリ(6)に格納されている複数の走査イメージ
信号とを次々と照合して相互相関関数を表わす信号を出
力する相関器(7)と、イメージセンサ−(3)を選択
的に相関器(7)又はメモリ(6)へ接続する切換えス
イッチ(5)と、相関器(7)の出力信号に演算処理を
施して物体の変位に応じた信号を出力する演算処理回路
(8)とから構成される。
Further, the object displacement measuring device according to the present invention includes a laser source that irradiates a laser beam toward the surface of the object to be measured, and a laser source that is placed at a position where it can receive the diffusely reflected light from the object surface. an image sensor (3) that detects a speckle pattern of reflected light; and an image sensor (3) that detects a speckle pattern of reflected light.
A memory having a plurality of storage sections that stores the image signals obtained from the image signals in association with the laser beam irradiation position on the object at a pitch that maintains the correlation of the speckle pattern (
6), and a correlator (7) that successively collates the actually measured image signal obtained during object displacement measurement with the plurality of scanned image signals stored in the memory (6) and outputs a signal representing a cross-correlation function. and a changeover switch (5) that selectively connects the image sensor (3) to the correlator (7) or the memory (6), and performs arithmetic processing on the output signal of the correlator (7) to determine the displacement of the object. It is composed of an arithmetic processing circuit (8) that outputs a corresponding signal.

(作 用) 本発明に係る測定方法に於いて、変位測定時には、物体
(2)の移動につれて観測面に現れるスペックルパター
ンが変化し、変化中の一時点におけるスペックルパター
ンのイメージ信号と、メモリ(6)内に既に格納されて
いる複数のスペックルパターンのイメージ信号との間の
相互相関関数が順次、算出される。
(Function) In the measurement method according to the present invention, when measuring displacement, the speckle pattern appearing on the observation surface changes as the object (2) moves, and the image signal of the speckle pattern at a certain point in time during the change, A cross-correlation function between the image signals of a plurality of speckle patterns already stored in the memory (6) is sequentially calculated.

この際、相互相関関数の算出の対象となったイメージ信
号の格納位置に対応する物体の変位量と、測定時点にお
ける物体の実際の変位量との間に大きな差がある場合は
、相互相関関数のピーク値は小さく、前記差が小さい場
合には、相互相関関数のピーク値は大きくなる。
At this time, if there is a large difference between the amount of displacement of the object corresponding to the storage position of the image signal for which the cross-correlation function is calculated and the actual amount of displacement of the object at the time of measurement, the cross-correlation function The peak value of the cross-correlation function is small, and when the difference is small, the peak value of the cross-correlation function becomes large.

従って、最も大きな相関ピーク値が得られた場合のイメ
ージ信号の格納位置に対応する物体変位量が、測定時点
における物体の実際の変位量を表わすことになる。
Therefore, the amount of object displacement corresponding to the storage position of the image signal where the largest correlation peak value is obtained represents the actual amount of displacement of the object at the time of measurement.

又、本発明に係る測定装置を用いて上記測定方法を実施
する場合は、先ずスイッチ(5)をメモリ(6)側に切
り換えた状態で、対象物体の表面をレーザビームにて走
査すると、これに伴って変化するスペックルパターンの
走査イメージ信号が順次メモリ(6)に格納され、本発
明の測定方法における走査ステップが実行される。
In addition, when carrying out the above measurement method using the measuring device according to the present invention, first, the surface of the target object is scanned with a laser beam while the switch (5) is switched to the memory (6) side. The scanning image signals of the speckle pattern that change with the measurement are sequentially stored in the memory (6), and the scanning step in the measurement method of the present invention is executed.

その後、変位測定時には、スイッチ(5)を相関器(7
)側に切換えた状態で、対象物体の表面にレーザビーム
を照射すると、相関器(7)による相互相関関数の算出
、演算処理回路(8)による物体変位に応じた信号の作
成が行なわれ、本発明の測定方法における実測ステップ
が実行される。
After that, when measuring displacement, switch (5) is connected to correlator (7).
) side and irradiates the surface of the target object with a laser beam, the correlator (7) calculates a cross-correlation function, the arithmetic processing circuit (8) creates a signal according to the object displacement, The actual measurement step in the measurement method of the present invention is performed.

(発明の効果) 本発明に係る移動物体の変位測定方法及び装置によれば
、物体の移動量がビームスポット径を超える場合に於い
ても、前記走査ステップにおけるレーザビームの走査範
囲に応じて測定範囲を拡大することが出来、この場合、
メモリにイメージ信号として格納すべきスペックルパタ
ーンの間隔を可及的に小さくすることにより、測定精度
を上げることが可能である。
(Effects of the Invention) According to the method and apparatus for measuring the displacement of a moving object according to the present invention, even when the amount of movement of the object exceeds the beam spot diameter, measurement can be performed according to the scanning range of the laser beam in the scanning step. The range can be expanded, in this case,
It is possible to improve measurement accuracy by reducing the interval between speckle patterns to be stored as image signals in memory as small as possible.

(実施例) 以下、図面に沿って本発明の実施例について説明する。(Example) Embodiments of the present invention will be described below along with the drawings.

尚、実施例は本発明を説明するためのものであって、特
許請求の範囲に記載の発明を限定し、或は範囲を減縮す
る様に解すべきではない。
It should be noted that the examples are for illustrating the present invention, and should not be construed as limiting the invention described in the claims or reducing its scope.

第1図は、本発明の測定方法を用いて移動物体(2)の
平行移動量を測定するための装置構成を示している。
FIG. 1 shows the configuration of an apparatus for measuring the amount of parallel movement of a moving object (2) using the measuring method of the present invention.

移動物体(2)に対向して、レーザ駆動回路(11)に
よって駆動される半導体レーザ(1)が配備されている
。該半導体レーザ(1)から出射されたレーザ光はビー
ム拡大レンズ(12)を経て、移動物体(2)の表面に
所定のビーム径(例えば1 ++on)のレーザビーム
となって照射される。
A semiconductor laser (1) driven by a laser drive circuit (11) is arranged opposite the moving object (2). The laser light emitted from the semiconductor laser (1) passes through a beam expanding lens (12) and is irradiated onto the surface of the moving object (2) as a laser beam with a predetermined beam diameter (for example, 1 ++ on).

又、移動物体(2)のレーザ照射面(21)に対向して
、拡散反射光を受は得る位置に一次元イメージセンサ(
3)が配置される。該イメージセンサ(3)は、例えば
1024個のCCD(電荷結合素子)を移動物体(2)
の移動方向Xに沿ってピッチ14μmで一次元に配列し
たものであって、これによってスペックルパターンの観
測面が形成される。
Further, a one-dimensional image sensor (
3) is placed. The image sensor (3) connects, for example, 1024 CCDs (charge coupled devices) to a moving object (2).
are arranged one-dimensionally at a pitch of 14 μm along the moving direction X, thereby forming the observation surface of the speckle pattern.

尚、−次元イメージセンサ(3)としては、フォトダイ
オードを配列したものも使用可能で、ある。
Note that as the -dimensional image sensor (3), it is also possible to use an array of photodiodes.

−次元イメージセンサ(3)にて光電変換されたイメー
ジ信号は、測定回路(4)に装備した増幅器(41)を
経てA/D変換器(42)へ送られ、8ビツトのデジタ
ル信号に変換される。
- The image signal photoelectrically converted by the dimensional image sensor (3) is sent to the A/D converter (42) via the amplifier (41) equipped in the measurement circuit (4) and converted into an 8-bit digital signal. be done.

前記デジタル信号は、切換えスイッチ(5)の入力端へ
接続され、該スイッチの一方の出力端aはメモリ(6)
のデータ入力ポートへ接続される。又、メモリ(6)の
データ出力ボート及び前記切換えスイッチ(5)の他方
の出力端は、相関器(7)へ接続される。
The digital signal is connected to an input terminal of a changeover switch (5), and one output terminal a of the switch is connected to a memory (6).
connected to the data input port of the Further, the data output port of the memory (6) and the other output end of the changeover switch (5) are connected to a correlator (7).

前記メモリ(6)は、A/D変換器(42)から送られ
てくる移動物体(2)の−走査点におけるデジタル信号
を格納すべき1024バイトの格納部を、第1番地から
第N番地(N = 600)まで具えている。該メモリ
(6)への信号の書込み及び信号の読出しは、アドレス
切換え回路(6I)によって後述の如く制御される。
The memory (6) stores a 1024-byte storage section for storing the digital signal at the -scanning point of the moving object (2) sent from the A/D converter (42), from the 1st address to the Nth address. (N = 600). Writing and reading of signals into the memory (6) is controlled by an address switching circuit (6I) as described below.

又、前記相関器(7)は、メモリ(6)から読み出され
たー走査点のスペックルパターンを表わすデジタル信号
と、A/D変換器(42)から切換えスイッチ(5)を
経て送られてくる一測定点におけるスペックルパターン
を表わすデジタル信号との相互相関関数をリアルタイム
で計算するものである。
The correlator (7) also receives a digital signal representing the speckle pattern of the scanning point read out from the memory (6) and sent from the A/D converter (42) via the changeover switch (5). The cross-correlation function with a digital signal representing a speckle pattern at one measurement point is calculated in real time.

前記A/D変換器(42)及びアドレス切換え回路(6
1)の動作タイミングは制御回路(43)によって後述
の如く制御される。
The A/D converter (42) and address switching circuit (6)
The operation timing of step 1) is controlled by the control circuit (43) as described below.

相関器(7)から得られる相互相関関数の計算結果はマ
イクロコンピュータ等からなる演算処理回路(8)へ送
られる。該演算処理回路(8)は、前記計算結果とアド
レス切換え回路(61)から送られてくる後述のアドレ
スデータとに基づいて、移動物体(2)の移動量に応じ
た信号を出力するものである。
The calculation result of the cross-correlation function obtained from the correlator (7) is sent to an arithmetic processing circuit (8) consisting of a microcomputer or the like. The arithmetic processing circuit (8) outputs a signal corresponding to the amount of movement of the moving object (2) based on the calculation result and address data, which will be described later, sent from the address switching circuit (61). be.

以下、上記変位測定装置を用いた測定方法と、前記各回
路の動作について説明する。
Hereinafter, a measurement method using the above displacement measuring device and the operation of each of the above circuits will be explained.

L麦五ヱ二プ 先ず、実際の変位測定の前に、移動物体(2)をその全
移動範囲に亘って一定速度で移動させつつ、移動物体(
2)に半導体レーザ(1)からのレーザビームを照射し
て、レーザ照射面(21)からの拡散反射光によって形
成されるスペックルパターンをイメージ信号として、メ
モリ(6)に順次格納する走査ステップが実行される。
First, before actual displacement measurement, while moving the moving object (2) at a constant speed over its entire movement range,
2) a scanning step of irradiating the laser beam from the semiconductor laser (1) and sequentially storing the speckle pattern formed by the diffusely reflected light from the laser irradiation surface (21) as an image signal in the memory (6); is executed.

この際、切換えスイッチ(5)はa側に切換えられる。At this time, the changeover switch (5) is switched to the a side.

この過程でA/D変換器(42)は、制御回路(43)
の制御により一定周期で増幅器(41)からのイメージ
信号をデジタル信号に変換し、該デジタル信号を切換え
スイッチ(5)を経てメモリ(6)へ供給する。
In this process, the A/D converter (42)
The image signal from the amplifier (41) is converted into a digital signal at regular intervals under the control of the converter (41), and the digital signal is supplied to the memory (6) via the changeover switch (5).

又、アドレス切換え回路(61)は、制御回路(43)
の制御により前記A/D変換器(42)の動作周期に同
期して、メモリ(6)のデータ格納アドレスを第1番地
から第N番地まで順次切り換える。
Further, the address switching circuit (61) is a control circuit (43).
, the data storage address of the memory (6) is sequentially switched from the first address to the Nth address in synchronization with the operation cycle of the A/D converter (42).

この結果、切換えスイッチ(5)を経て一定周期でメモ
リ(6)へ供給されるデジタル信号は、第3図に示すメ
モリ(6)内の第1番地から第N番地までの格納部(M
l、Ml、・・・Mi、・・・Mn)へ順次格納される
ことになる。
As a result, the digital signal supplied to the memory (6) at regular intervals via the changeover switch (5) is transmitted to the storage section (M
1, Ml, . . . Mi, . . . Mn).

この様にしてメモリ(6)内に格納された複数のデジタ
ル信号(Fl、F2、−F i、 ++ F n)は、
第3図の如くレーザ照射面(21)上に互いに重なって
一定ピッチ(例えば0 、5 mm)で形成されるN個
の走査スポット領域(A、、A8、・・・Ail・・・
An)の粗面状態に対応して、夫々固有のスペックルパ
ターンを表わすことになる。
The plurality of digital signals (Fl, F2, -Fi, ++Fn) stored in the memory (6) in this way are as follows:
As shown in FIG. 3, N scanning spot areas (A, , A8, . . . Ail . . .
Each exhibits a unique speckle pattern corresponding to the rough surface condition of An).

尚、上述の走査ステップは、物体(2)を静止させた状
態で、光源及びイメージセンサからなる測定系を物体移
動方向に沿って移動させることによっても可能である。
Note that the above-described scanning step can also be performed by moving the measurement system consisting of a light source and an image sensor along the object movement direction while the object (2) remains stationary.

又、第3図に示す走査スポット領域(At、A2、・・
・Ail・・・An)を、スポット径よりも小なる所定
の間隔に設定する方法として、測定対象物体と測定系と
の相対速度が一定の場合は、前述の如く一定周期でメモ
リへの書込み動作を行なう方法が採用出来るが、例えば
測定系を手動で移動させる場合の如く、前記相対速度が
一定しない場合は、次の様な方法が採用可能である。こ
の場合、第1図の如くスイッチ(5)の切換えを制御す
る切換え制御回路(51)を装備する。
In addition, the scanning spot area (At, A2, . . .
・As a method of setting Ail...An) to a predetermined interval smaller than the spot diameter, if the relative speed between the object to be measured and the measurement system is constant, write to the memory at a constant cycle as described above. For example, when the relative velocity is not constant, as in the case of manually moving the measuring system, the following method can be adopted. In this case, a switching control circuit (51) for controlling switching of the switch (5) is provided as shown in FIG.

先ず第1図の切換えスイッチ(5)をa側に切り換え、
この状態で第1番目のスポット領域A1にレーザビーム
を照射する。これによって該領域のスペックルパターン
がメモリ(6)の第1番地に格納される。
First, switch the changeover switch (5) in Figure 1 to side a,
In this state, the first spot area A1 is irradiated with a laser beam. As a result, the speckle pattern of the area is stored at the first address of the memory (6).

その後、切換え制御回路(51)によってスイッチ(5
)がb側に切り換えられ、この状態でレーザ照射位置を
徐々に移動させる。これによって、実測スペックルパタ
ーンと前記メモリ内の第1番地の走査スペックルパター
ンとの相関関数が繰り返し計算され、この結果得られる
相関ピーク値が所定値を下回る時点、即ち両スペックル
パターンの相関がとれ難くなる前の時点が検出される。
After that, the switch (5) is controlled by the switching control circuit (51).
) is switched to side b, and in this state the laser irradiation position is gradually moved. As a result, the correlation function between the measured speckle pattern and the scanning speckle pattern at the first address in the memory is repeatedly calculated, and the correlation peak value obtained as a result of the correlation function is lower than a predetermined value, that is, the correlation between both speckle patterns. The point in time before it becomes difficult to remove is detected.

又、このときの相関ピーク位置からレーザ照射位置の変
位量が計算される。
Further, the amount of displacement of the laser irradiation position is calculated from the correlation peak position at this time.

これと同時に切換え制御回路(51)によってスイッチ
(5)がa側に切り換えられ、A/D変換器(42)か
ら得られるイメージデータを、第3図の第2番目の走査
スポット領域A、のスペックルパターンとしてメモリ(
6)の第2番地に格納すると共に、前記レーザ照射位置
の変位量の計算結果を記憶する。
At the same time, the switch (5) is switched to the a side by the switching control circuit (51), and the image data obtained from the A/D converter (42) is transferred to the second scanning spot area A in FIG. Memory as a speckle pattern (
6), and also stores the calculation result of the amount of displacement of the laser irradiation position.

以後同様に、最新にメモリへ格納されたスペックルパタ
ーンを基準として、相関ピーク値の低下により、次の走
査スポット領域となるべき位置が検知されると共に、該
走査スポット領域と直前の走査スポット領域との間隔を
記憶する動作が繰り返される。
Thereafter, in the same way, the position that should become the next scanning spot area is detected based on the decrease in the correlation peak value using the speckle pattern most recently stored in the memory as a reference, and the position that should become the next scanning spot area is detected, and the position that should become the next scanning spot area is detected. The operation of memorizing the interval is repeated.

この結果、第3図の各走査スポット領域(AI、A3、
・・・Ail・・・An)のスペックルパターンがメモ
リ内に設定されると共に、各走査スポット領域の間隔が
記憶されることになる。
As a result, each scanning spot area (AI, A3,
.

尚、上記走査ステップに於いて、相関性が維持され難く
なる直前の時点を検出し、単にその時点のスペックルパ
ターンを記憶する動作を繰り返すことによっても、略一
定ピツチで第3図の走査スポット領域(A i、A x
、・・・AI5・・・An)が設定されるから、走査ス
ポット領域の変位量の算出は必ずしも必要でない。即ち
、走査ステップにおける全走査長とメモリに格納される
スペックルパターンの数から、走査スポット領域の間隔
(ピッチ)を近似値として算出するのである。
In addition, in the above scanning step, by repeating the operation of detecting the point immediately before the correlation becomes difficult to maintain and simply storing the speckle pattern at that point, the scanning spot shown in FIG. 3 can be obtained at a substantially constant pitch. Area (A i, A x
, . . . AI5 . . . An) are set, it is not necessarily necessary to calculate the amount of displacement of the scanning spot area. That is, the interval (pitch) between scanning spot areas is calculated as an approximate value from the total scanning length in the scanning step and the number of speckle patterns stored in the memory.

裏貞しヒーLブ 次に移動物体(2)の移動量の実測ステップに移る。こ
の際、切換えスイッチ(5)は第1図の如くb側に切り
換えられ、相関器(7)及び演算処理回路(8)が更に
動作状態に設定される。
Next, the process moves to the step of actually measuring the amount of movement of the moving object (2). At this time, the changeover switch (5) is switched to the b side as shown in FIG. 1, and the correlator (7) and the arithmetic processing circuit (8) are further set to the operating state.

例えば移動物体(2)がある変位量だけ移動し、第3図
の如く、レーザビームが照射面(21)上のスポット領
域Ai′を照射した時点で、該変位量を測定する場合、
第1図の一次元イメージセンサ(3)から増幅器(41
)を経てリアルタイムで得られるイメージ信号は、A/
D変換器(42)にてデジタル信号に変換された後、切
換えスイッチ(5)を経て相関器(7)へ送られる。
For example, when the moving object (2) moves by a certain amount of displacement and the amount of displacement is measured when the laser beam irradiates the spot area Ai' on the irradiation surface (21) as shown in FIG.
From the one-dimensional image sensor (3) in Fig. 1 to the amplifier (41
), the image signal obtained in real time is A/
After being converted into a digital signal by a D converter (42), it is sent to a correlator (7) via a changeover switch (5).

一方、アドレス切換え回路(61)の動作によって、メ
モリ(6)からは、第3図の如く第1番地の格納部M1
から第N番地の格納部Mnに格納されているデジタル信
号(F、、F2、・・・Fil・・・Fn)が順次読み
出され、相関器(7)へ一定周期で送られる。
On the other hand, due to the operation of the address switching circuit (61), data is transferred from the memory (6) to the storage section M1 at the first address as shown in FIG.
The digital signals (F, , F2, . . . , Fil . . . Fn) stored in the storage unit Mn at the Nth address are sequentially read out and sent to the correlator (7) at regular intervals.

相関器(7)は、前記切換えスイッチ(5)を経て供給
されたデジタル信号Gと、前記メモリ(6)から送られ
てくるデジタル信号との相互相関関数を順次計算し、計
算結果を次々と第1図の演算処理回路(8)へ送り出す
The correlator (7) sequentially calculates a cross-correlation function between the digital signal G supplied via the changeover switch (5) and the digital signal sent from the memory (6), and outputs the calculation results one after another. It is sent to the arithmetic processing circuit (8) in FIG.

演算処理回路(8)は、相関器(7)から送られてきた
N個の相関関数の内、最大の相関ピーク値が得られた相
関関数を選択し、該相関関数の計算の対象となったメモ
リ(6)内のデジタル信号Fiの格納アドレスを、アド
レス切換え回路(61)からのアドレスデータによって
検知する。
The arithmetic processing circuit (8) selects the correlation function for which the maximum correlation peak value has been obtained from among the N correlation functions sent from the correlator (7), and selects the correlation function for which the maximum correlation peak value has been obtained. The storage address of the digital signal Fi in the memory (6) is detected based on the address data from the address switching circuit (61).

ここで最大の相関ピーク値が得られた相関関数の計算の
基礎となったスペックルパターンは、実際にレーザビー
ムが照射されている測定スポット領域Ai′ と重なり
且つ最も重複面積の大きい走査スポット領域Aiについ
てのスペックルパターンである。従って、前記デジタル
信号Fiの格納アドレスに対応する走査スポット領域の
位置として、測定スポット領域Ai′の位置を前記走査
スポットピッチ(0、5mm)から一定誤差範囲内で割
り出すことが出来る。
The speckle pattern that served as the basis for calculating the correlation function for which the maximum correlation peak value was obtained is the scanning spot area that overlaps with the measurement spot area Ai′ that is actually irradiated with the laser beam and has the largest overlap area. This is a speckle pattern for Ai. Therefore, as the position of the scanning spot area corresponding to the storage address of the digital signal Fi, the position of the measurement spot area Ai' can be determined within a certain error range from the scanning spot pitch (0.5 mm).

尚、前述の如く走査ステップにて、各走査スボット領域
の間隔が測定され記憶されている場合、或は該間隔の近
似値が判明している場合は、実測開始以後のスポット領
域間隔を読み出して積算することによって、測定スポッ
ト領域Ai′の位置を算出することが可能である。
In addition, if the spacing between each scanning sbot area is measured and stored in the scanning step as described above, or if an approximate value of the spacing is known, the spot area spacing after the start of the actual measurement is read out. By integrating, it is possible to calculate the position of the measurement spot area Ai'.

又、演算処理回路(8)は、最大の相関ピーク値が得ら
れた相互相関関数の分布から、第5図に示すピーク位置
δを求め、該ピーク位置δに基づいて、第4図に示す走
査スポット領域Aiと測定スポット領域Ai′ との位
置ずれΔXを算出する。
Further, the arithmetic processing circuit (8) calculates the peak position δ shown in FIG. 5 from the distribution of the cross-correlation function from which the maximum correlation peak value was obtained, and based on the peak position δ, calculates the peak position δ shown in FIG. A positional deviation ΔX between the scanning spot area Ai and the measuring spot area Ai' is calculated.

更に演算処理回路(8)は、前記走査スポット領域Ai
の位置として割り出された移動量の計算結果に対し、前
記位置ずれΔXに基づく補正を施すことにより、測定ス
ポット領域Ai′の位置、即ち移動物体(2)の移動量
を正確に計算し、その結果を出力する。
Furthermore, the arithmetic processing circuit (8)
The position of the measurement spot area Ai', that is, the movement amount of the moving object (2), is accurately calculated by applying correction based on the positional deviation ΔX to the calculation result of the movement amount determined as the position of . Output the result.

前記出力信号は、例えば表示器(図示省略)へ供給して
、移動量をデジタル表示することが可能である。
The output signal can be supplied to, for example, a display (not shown) to digitally display the amount of movement.

又、上記測定装置をロボットアーム等の自動位置決め装
置に応用する場合は、演算処理回路(8)によって第5
図に示す位置ずれδが零になった時点を検知して、該検
知信号を制御対象となるモータ駆動回路等へ供給すれば
、高精度の位置決めが可能となる。
In addition, when the above measuring device is applied to an automatic positioning device such as a robot arm, the arithmetic processing circuit (8)
By detecting the point in time when the positional deviation δ shown in the figure becomes zero and supplying the detection signal to a motor drive circuit or the like to be controlled, highly accurate positioning becomes possible.

尚この場合、走査ステップにて、位置決めの目標となる
各位置に夫々走査スポット領域を設定しておくことによ
り、演算処理回路(8)は、最大の相関ピーク値が所定
値を上回った時点、例えば正規化された相関ピーク値が
略1となった時点で、該相関ピーク値算出の基礎となっ
たイメージ信号のメモリ(6)内の格納位置に応じた出
力信号を発生すれば可く、第5図に示すピーク位置のず
れに基づく移動量の算出は省略出来る。
In this case, by setting a scanning spot area at each position that is a positioning target in the scanning step, the arithmetic processing circuit (8) determines when the maximum correlation peak value exceeds a predetermined value. For example, when the normalized correlation peak value becomes approximately 1, it is sufficient to generate an output signal corresponding to the storage position in the memory (6) of the image signal that is the basis for calculating the correlation peak value. The calculation of the amount of movement based on the deviation of the peak position shown in FIG. 5 can be omitted.

本発明に係る変位測定方法によれば、前記走査ステップ
を1回実行すれば、その後は実測ステップのみを実行す
ることにより、移動物体(2)に対して特別なスケール
等を取り付けることなく、然も非接触にて、移動物体(
2)の変位をリアルタイムで測定出来る。この際、第3
図に示す走査スポット領域のピッチを可及的に小さくす
ることによって、測定精度を上げることが出来る。
According to the displacement measuring method according to the present invention, once the scanning step is executed, only the actual measurement step is executed after that, thereby eliminating the need to attach a special scale or the like to the moving object (2). A moving object (
2) Displacement can be measured in real time. At this time, the third
By making the pitch of the scanning spot areas shown in the figure as small as possible, measurement accuracy can be increased.

尚、図面及び上記実施例の説明は、本発明を説明するた
めのものであって、特許請求の範囲に記載の発明を限定
し、或は範囲を減縮する様に解すべきではない。
Note that the drawings and the description of the above-mentioned embodiments are for explaining the present invention, and should not be interpreted to limit the invention described in the claims or to reduce its scope.

又、本発明の各部構成は上記実施例に限らず、特許請求
の範囲に記載の技術的範囲内で種々の変形が可能である
ことは勿論である。
Further, it goes without saying that the configuration of each part of the present invention is not limited to the above-mentioned embodiments, and various modifications can be made within the technical scope of the claims.

例えば、第1図の一次元イメージセンサ(3)を二次元
イメージセンサに置き換えれば、物体(2)の二次元方
向の変位量を測定することが可能である。
For example, if the one-dimensional image sensor (3) in FIG. 1 is replaced with a two-dimensional image sensor, it is possible to measure the amount of displacement of the object (2) in the two-dimensional direction.

又第2図に示す様に、ドラム状の回転物体(23)の外
周面(24)にレーザビームを照射すれば、該回転物体
(23)の回転角度を測定することが出来、これによっ
てロータリーエンコーダを構成することも可能である。
Furthermore, as shown in Fig. 2, by irradiating the outer peripheral surface (24) of a drum-shaped rotating object (23) with a laser beam, the rotation angle of the rotating object (23) can be measured. It is also possible to configure an encoder.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る変位測定装置の構成例を示す図、
第2図は変位測定装置の他の構成例を示す図、第3図は
実測ステップでの装置動作を説明する図、第4図はビー
ムスポットの位置ずれを示す図、第5図は相関器から得
られる相互相関関数を示すグラフである。
FIG. 1 is a diagram showing an example of the configuration of a displacement measuring device according to the present invention,
Fig. 2 is a diagram showing another configuration example of the displacement measuring device, Fig. 3 is a diagram explaining the operation of the device in the actual measurement step, Fig. 4 is a diagram showing the positional deviation of the beam spot, and Fig. 5 is a correlator. It is a graph showing a cross-correlation function obtained from .

Claims (1)

【特許請求の範囲】 [1]測定の対象となる物体(2)の表面をレーザビー
ムにて物体移動方向に走査し、該物体(2)のレーザ照
射面(21)に対向した観測面に現れるスペックルパタ
ーンをイメージ信号に変換し、前記走査に伴って変化す
るイメージ信号を、前記レーザ照射面(21)上のレー
ザビームの照射位置と対応づけてメモリ(6)の複数の
格納部に順次格納した後、物体(2)の変位測定時に、
前記観測面に現れるスペックルパターンのイメージ信号
と、前記メモリ(6)の各格納部に格納されている複数
のイメージ信号との相互相関関数を算出し、最大の相関
ピーク値が得られるイメージ信号のメモリ(6)内の格
納位置に基づいて、物体(2)の変位を検知することを
特徴とする物体の変位測定方法。 [2]測定対象物体(2)の表面をレーザビームにて走
査する過程で、観測面に現れる1時点のスペックルパタ
ーンをメモリ(6)に格納した後、該スペックルパター
ンと、その後の走査に伴って変化するスペックルパター
ンとの相互相関関数を繰り返し算出し、相関ピーク値が
所定値を下回った時点で、レーザビームが照射している
位置のスペックルパターンをメモリ(6)内の次の格納
位置に格納する動作を繰り返して、メモリ(6)内に順
次スペックルパターンを記憶する特許請求の範囲第1項
に記載の変位測定方法。 [3]移動物体(2)の変位測定時に、最大の相関ピー
ク値が得られるイメージ信号のメモリ(6)内の格納位
置に基づいて、移動物体(2)の移動量を一定の誤差範
囲内で検知し、更に前記イメージ信号と観測面に現れる
スペックルパターンのイメージ信号との相互相関関数の
ピーク位置を検知し、前記両検知に基づいて、移動物体
(2)の変位量を高精度で算出する特許請求の範囲第1
項に記載の変位測定方法。 [4]移動物体(2)の変位測定時に、最大の相関ピー
ク値が所定値を上回った時点で、該相関ピーク値算出の
基礎となったイメージ信号のメモリ(6)内の格納位置
に応じた出力信号を発生し、該出力信号は、物体(2)
の自動位置決めを行なう為の制御信号として利用する特
許請求の範囲第1項に記載の変位測定方法。 [5]測定対象となる物体の表面に向けてレーザビーム
を照射するレーザ発生源と、物体表面からの拡散反射光
を受光し得る位置に配置され該拡散反射光のスペックル
パターンを検出するイメージセンサー(3)と、該イメ
ージセンサー(3)から得られるイメージ信号を、スペ
ックルパターンの相関性が維持されるピッチで、物体の
レーザビーム照射位置と対応づけて格納する複数の格納
部を有するメモリ(6)と、物体変位測定時に得られる
実測イメージ信号と前記メモリ(6)に格納されている
複数の走査イメージ信号とを次々と照合して相互相関関
数を表わす信号を出力する相関器(7)と、イメージセ
ンサー(3)を選択的に相関器(7)又はメモリ(6)
へ接続する切換えスイッチ(5)と、相関器(7)の出
力信号に演算処理を施して物体の変位に応じた信号を出
力する演算処理回路(8)とから構成される物体の変位
測定装置。
[Claims] [1] The surface of the object (2) to be measured is scanned with a laser beam in the direction of object movement, and the surface of the object (2) to be measured is scanned on the observation surface opposite to the laser irradiation surface (21). The appearing speckle pattern is converted into an image signal, and the image signal that changes with the scanning is stored in a plurality of storage sections of the memory (6) in association with the irradiation position of the laser beam on the laser irradiation surface (21). After sequential storage, when measuring the displacement of object (2),
An image signal from which a maximum correlation peak value is obtained by calculating a cross-correlation function between an image signal of a speckle pattern appearing on the observation surface and a plurality of image signals stored in each storage section of the memory (6). A method for measuring the displacement of an object, characterized in that the displacement of the object (2) is detected based on the storage position in the memory (6) of the object (2). [2] In the process of scanning the surface of the object to be measured (2) with a laser beam, the speckle pattern that appears on the observation surface at one point in time is stored in the memory (6), and then the speckle pattern and subsequent scanning are stored in the memory (6). The cross-correlation function with the speckle pattern, which changes with the 2. The displacement measuring method according to claim 1, wherein the speckle pattern is sequentially stored in the memory (6) by repeating the operation of storing the speckle pattern in the storage position. [3] When measuring the displacement of the moving object (2), the amount of movement of the moving object (2) is determined within a certain error range based on the storage position in the memory (6) of the image signal where the maximum correlation peak value is obtained. Furthermore, the peak position of the cross-correlation function between the image signal and the image signal of the speckle pattern appearing on the observation surface is detected, and based on both detections, the amount of displacement of the moving object (2) is determined with high precision. First claim to be calculated
Displacement measurement method described in Section. [4] When measuring the displacement of the moving object (2), at the point when the maximum correlation peak value exceeds a predetermined value, according to the storage position in the memory (6) of the image signal that was the basis for calculating the correlation peak value the object (2);
The displacement measuring method according to claim 1, wherein the displacement measuring method is used as a control signal for automatic positioning. [5] An image of a laser source that irradiates a laser beam toward the surface of an object to be measured, and a laser source that is placed at a position where it can receive the diffusely reflected light from the object's surface and detects the speckle pattern of the diffusely reflected light. It has a sensor (3) and a plurality of storage units that store image signals obtained from the image sensor (3) in association with the laser beam irradiation position of the object at a pitch that maintains the correlation of the speckle pattern. a memory (6), and a correlator (for outputting a signal representing a cross-correlation function) by sequentially collating the actually measured image signal obtained during object displacement measurement with the plurality of scanned image signals stored in the memory (6); 7), and the image sensor (3) is selectively connected to a correlator (7) or a memory (6).
An object displacement measuring device consisting of a changeover switch (5) connected to the correlator (7), and an arithmetic processing circuit (8) that performs arithmetic processing on the output signal of the correlator (7) and outputs a signal according to the displacement of the object. .
JP1120179A 1989-05-11 1989-05-11 Method and apparatus for measuring displacement of object Expired - Fee Related JP2771594B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1120179A JP2771594B2 (en) 1989-05-11 1989-05-11 Method and apparatus for measuring displacement of object

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1120179A JP2771594B2 (en) 1989-05-11 1989-05-11 Method and apparatus for measuring displacement of object

Publications (2)

Publication Number Publication Date
JPH02297006A true JPH02297006A (en) 1990-12-07
JP2771594B2 JP2771594B2 (en) 1998-07-02

Family

ID=14779875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1120179A Expired - Fee Related JP2771594B2 (en) 1989-05-11 1989-05-11 Method and apparatus for measuring displacement of object

Country Status (1)

Country Link
JP (1) JP2771594B2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07110216A (en) * 1993-10-08 1995-04-25 Kishimoto Sangyo Kk Method and instrument for measuring vertical and lateral movement of speckle pattern utilizing laser light
JPH0914914A (en) * 1994-06-06 1997-01-17 Kishimoto Sangyo Kk Laser light projection method and apparatus therefor in device measuring for moving value by laser speckle pattern
US6642506B1 (en) 2000-06-01 2003-11-04 Mitutoyo Corporation Speckle-image-based optical position transducer having improved mounting and directional sensitivities
US6873422B2 (en) 2000-12-08 2005-03-29 Mitutoyo Corporation Systems and methods for high-accuracy displacement determination in a correlation based position transducer
JP2009528514A (en) * 2006-02-27 2009-08-06 プライム センス リミティド Range mapping using uncorrelated speckle
JP2009288351A (en) * 2008-05-27 2009-12-10 Canon Inc Image forming apparatus
US7763875B2 (en) 2005-09-07 2010-07-27 Romanov Nikolai L System and method for sensing position utilizing an uncalibrated surface
JP2010530070A (en) * 2007-06-15 2010-09-02 コグネックス・コーポレイション Method and system for optoelectronic detection and localization of objects
US8369726B2 (en) 2008-05-27 2013-02-05 Canon Kabushiki Kaisha Image forming apparatus
US8565627B2 (en) 2008-05-27 2013-10-22 Canon Kabushiki Kaisha Image forming apparatus and control method thereof
US8718319B2 (en) 2007-06-15 2014-05-06 Cognex Corporation Method and system for optoelectronic detection and location of objects
JP2015152490A (en) * 2014-02-17 2015-08-24 株式会社ミツトヨ Displacement detection apparatus, displacement detection system, and displacement detection method
CN106123787A (en) * 2016-08-30 2016-11-16 宁波舜宇智能科技有限公司 The control system of laser displacement sensor and method
US9962444B2 (en) 2016-09-27 2018-05-08 Shane Malek Pharmacokinetically extended action topical hair growth formulation, and administration method
CN112595238A (en) * 2020-11-25 2021-04-02 四川云盾光电科技有限公司 High-low speed compatible linear displacement increment precision measurement method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626208A (en) * 1979-08-09 1981-03-13 Rikagaku Kenkyusho Malformation measuring method
JPS5979801A (en) * 1982-10-29 1984-05-09 Hitachi Ltd Apparatus for measuring displacement and variability of information medium

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5626208A (en) * 1979-08-09 1981-03-13 Rikagaku Kenkyusho Malformation measuring method
JPS5979801A (en) * 1982-10-29 1984-05-09 Hitachi Ltd Apparatus for measuring displacement and variability of information medium

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07110216A (en) * 1993-10-08 1995-04-25 Kishimoto Sangyo Kk Method and instrument for measuring vertical and lateral movement of speckle pattern utilizing laser light
JPH0914914A (en) * 1994-06-06 1997-01-17 Kishimoto Sangyo Kk Laser light projection method and apparatus therefor in device measuring for moving value by laser speckle pattern
US6642506B1 (en) 2000-06-01 2003-11-04 Mitutoyo Corporation Speckle-image-based optical position transducer having improved mounting and directional sensitivities
US6873422B2 (en) 2000-12-08 2005-03-29 Mitutoyo Corporation Systems and methods for high-accuracy displacement determination in a correlation based position transducer
US7763875B2 (en) 2005-09-07 2010-07-27 Romanov Nikolai L System and method for sensing position utilizing an uncalibrated surface
JP2009528514A (en) * 2006-02-27 2009-08-06 プライム センス リミティド Range mapping using uncorrelated speckle
US8927917B2 (en) 2007-06-15 2015-01-06 Cognex Corporation Method and system for optoelectronic detection and location of objects
JP2010530070A (en) * 2007-06-15 2010-09-02 コグネックス・コーポレイション Method and system for optoelectronic detection and localization of objects
JP2014222235A (en) * 2007-06-15 2014-11-27 コグネックス・コーポレイション Technological detection of photoelectron of object, and method and system for localization
US8718319B2 (en) 2007-06-15 2014-05-06 Cognex Corporation Method and system for optoelectronic detection and location of objects
US8565627B2 (en) 2008-05-27 2013-10-22 Canon Kabushiki Kaisha Image forming apparatus and control method thereof
US8442409B2 (en) 2008-05-27 2013-05-14 Canon Kabushiki Kaisha Image forming apparatus including a rotation member circumference calculator and control method thereof
US8369726B2 (en) 2008-05-27 2013-02-05 Canon Kabushiki Kaisha Image forming apparatus
JP2009288351A (en) * 2008-05-27 2009-12-10 Canon Inc Image forming apparatus
JP2015152490A (en) * 2014-02-17 2015-08-24 株式会社ミツトヨ Displacement detection apparatus, displacement detection system, and displacement detection method
CN106123787A (en) * 2016-08-30 2016-11-16 宁波舜宇智能科技有限公司 The control system of laser displacement sensor and method
CN106123787B (en) * 2016-08-30 2019-05-28 宁波舜宇智能科技有限公司 The control system and method for laser displacement sensor
US9962444B2 (en) 2016-09-27 2018-05-08 Shane Malek Pharmacokinetically extended action topical hair growth formulation, and administration method
US10342872B2 (en) 2016-09-27 2019-07-09 Celmatrix Corporation Pharmacokinetically extended action topical hair growth formulation, and administration method
CN112595238A (en) * 2020-11-25 2021-04-02 四川云盾光电科技有限公司 High-low speed compatible linear displacement increment precision measurement method

Also Published As

Publication number Publication date
JP2771594B2 (en) 1998-07-02

Similar Documents

Publication Publication Date Title
JPH02297006A (en) Method and device for measuring displacement of object
US4752964A (en) Method and apparatus for producing three-dimensional shape
US5319442A (en) Optical inspection probe
US4373804A (en) Method and apparatus for electro-optically determining the dimension, location and attitude of objects
US5280179A (en) Method and apparatus utilizing an orientation code for automatically guiding a robot
JPH0329806A (en) Measuring method of shape of object
WO1998053327A1 (en) Method and device for contactless measuring of movement
US5104216A (en) Process for determining the position and the geometry of workpiece surfaces
JPH0612252B2 (en) Automatic three-dimensional shape measurement method
JPS5852508A (en) Shape measuring device
JP2626611B2 (en) Object shape measurement method
US20020135782A1 (en) Scanning using position transmission for triggering the recording of measured values
JP3381420B2 (en) Projection detection device
JPS61225607A (en) Method and device for measuring optical multidimensional shape of body
JPH0755438A (en) Shape measuring method
JPH07198347A (en) Measurement device of plunger
JPH0427264A (en) Image sensor
JPH08339434A (en) Method and device for curved surface image input
JPH10281722A (en) Method and device for measuring pattern coordinate
JPH0658730A (en) Measuring method of precision of superposition
JPH0629703B2 (en) Deformation measurement method
JPS63292011A (en) Conversion of output signal of sensor
JPS631907A (en) Method for measuring depth and width
JPS63232319A (en) Method of processing wafer alignment
JPH0567196A (en) Three-dimensional shape reader

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees