JPH02296244A - X-ray mask - Google Patents

X-ray mask

Info

Publication number
JPH02296244A
JPH02296244A JP1142288A JP14228889A JPH02296244A JP H02296244 A JPH02296244 A JP H02296244A JP 1142288 A JP1142288 A JP 1142288A JP 14228889 A JP14228889 A JP 14228889A JP H02296244 A JPH02296244 A JP H02296244A
Authority
JP
Japan
Prior art keywords
mask
ray
electric charge
absorbing layer
pattern
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1142288A
Other languages
Japanese (ja)
Inventor
Ho-Yong Kang
姜 浩英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung Electronics Co Ltd
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of JPH02296244A publication Critical patent/JPH02296244A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/06Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising selenium or tellurium in uncombined form other than as impurities in semiconductor bodies of other materials
    • H01L21/08Preparation of the foundation plate
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/22Masks or mask blanks for imaging by radiation of 100nm or shorter wavelength, e.g. X-ray masks, extreme ultraviolet [EUV] masks; Preparation thereof

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PURPOSE: To improve the productivity of a semiconductor element by forming a thin electric charge transmission film between the transmissible substrate and the X-lay absorbing layer of a mask and grounding so as to eliminate the inaccuracy of inspection and judgement by a stored electric charge. CONSTITUTION: The transmissible substrate 20 necessary for maintaining the pattern of the X-ray absorbing layer 40 to be formed later is formed on a flame 10, and the electric charge transmission film 30 is formed on the transmissible substrate 20. Then the electric charge transmission film 30 is grounded lest the residual electric charge except for the electric charge extinguished by reconnection among the electrical charges made to ride on the X-ray absorbing layer 40 generate electrostatic interference to electronic lines made to ride continually. Thereby a defect, etc., generated in the middle of the manufacturing process or the using of the mask is detected and removed to accurately measure the size of a line width.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、超高密度半導体の製造において、ウェハ上す
こ回路の構造的な画像化を再現をするためのX線リソグ
ラフィ(Lfthography)マスクに関するもの
で、更に詳細にはマイクロ単位の微細パターンのマスク
に対してその規格化された線幅の寸法及び欠陥等を正確
に検査をするために、この構造を改善されたX線マスク
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an X-ray lithography mask for reproducing structural imaging of circuits on a wafer in the production of ultra-high density semiconductors. More specifically, the present invention relates to an X-ray mask having an improved structure in order to accurately inspect the standardized line width dimension, defects, etc. of a mask with a fine pattern in micro units.

〔従来の技術〕[Conventional technology]

半導体分野において、素子の線幅の大きさが、0.1〜
1μm程度の高密度なパターンを要求され、半導体素子
の集積度が大きくなり、今現在の状勢においてその大き
さが、やはりμm以下の微細化されている実情である。
In the semiconductor field, the line width of an element is 0.1~
High-density patterns of about 1 μm are required, and the degree of integration of semiconductor devices has increased, and in the current situation, the size of semiconductor devices has been reduced to micrometers or less.

このことは、通常の写真印刷技術ではなし遂げることが
できない。μm以下の線幅を有しているパターンを形成
するだめの技術は、電子ビーム或いはX線リソグラフィ
を利用されている。
This cannot be accomplished with conventional photographic printing techniques. Techniques for forming patterns having line widths of .mu.m or less utilize electron beam or X-ray lithography.

電子ビームリソグラフィは、電子ビームを利用した画像
走査(image Scanning)方法によって微
細化された画像を直接マスクに転写することができる。
In electron beam lithography, a microscopic image can be directly transferred onto a mask using an image scanning method using an electron beam.

しかしこの装置は、コストが高いばかりではなく複雑な
構造のために生産性が低い短所をもち、他方のX線リソ
グラフィは、その作動が通常の写真印刷技術と類似し、
かつ比較的簡単な構造であるので操作及び線幅の調節が
容易にでき、さらに製造歩留まりの高い長所をもってい
る。
However, this equipment has the disadvantage of not only high cost but also low productivity due to its complicated structure.
Moreover, since it has a relatively simple structure, it can be easily operated and the line width can be adjusted, and furthermore, it has the advantage of high manufacturing yield.

このようなX線リソグラフィシステムは、アメリカ合衆
国特許第3873824号(1975年3月25日)に
開示されいる。第1図において、X線リソグラフィシス
テムの概略的な構成を図示されてるが、特にそのパター
ンの形成過程において、下記に述べる。
Such an X-ray lithography system is disclosed in US Pat. No. 3,873,824 (March 25, 1975). FIG. 1 shows a schematic configuration of an X-ray lithography system, and the pattern forming process will be described below.

電子ソース11から与えられた電子ビーム12は、X線
ターゲット13の所定部位に入射され、さらに入射され
た電子ビームエ2がX線ターゲット13と反応し、X線
ターゲット13からX線15を放出する。この時放出さ
れたX線は、高真空状態において4〜7人の波長範囲で
、透過し易いソフトX線であり、そして放出されたX線
15は、低真空状態で透明ウィンドー14を通じてマス
ク16及びウェハ18を介し流入される。
The electron beam 12 given from the electron source 11 is incident on a predetermined portion of the X-ray target 13, and the incident electron beam 2 reacts with the X-ray target 13, causing the X-ray target 13 to emit X-rays 15. . The X-rays emitted at this time have a wavelength range of 4 to 7 people in a high vacuum state, and are soft X-rays that are easily transmitted. and wafer 18.

上記の過程を経て低真空状態で流入されたソフトX線1
5は、マスク16のパターンによりマスク16を通過す
るか或いはマスク16内に吸収され、更に、感光膜17
を塗布されたウェハ18の上層に、マスク16のパター
ンがそのまま再現されている。
Soft X-rays 1 injected in a low vacuum state through the above process
5 passes through the mask 16 or is absorbed into the mask 16 by the pattern of the mask 16, and furthermore, the photoresist film 17
The pattern of the mask 16 is reproduced as it is on the upper layer of the wafer 18 coated with.

このようなX線リングラフィの画像再現の方法おいて、
サブミクロン単位のパターンを収録されたマスク16が
、半導体素子パターンの微細性及び精度性と直接的な関
係を持ち、これによりマスクパターンの線幅の寸法及び
欠陥状態を正確に検査する過程は、究極的に、半導体素
子の特性及び生産の歩溜りと密着な関係を持つ。
In such an image reproduction method of X-ray phosphorography,
The mask 16 containing submicron patterns has a direct relationship with the fineness and accuracy of the semiconductor device pattern, and the process of accurately inspecting the line width dimension and defect status of the mask pattern is as follows: Ultimately, it has a close relationship with the characteristics of semiconductor devices and production yield.

第2(A)図において、マスク全体を支持するリング状
のフレーム1の上にX線を透過させる薄型の透過性基板
2があり、さらにX線を遮断するためのX線吸収層3が
、所定の形状で配列され、X線マスクは、その微細なパ
ターンをウェハ上に複写する。しかし、そのウェハ上に
複写する前に、規定された形状及び整列状態を認識し、
さらに規格された線幅の寸法を測定し、次の行程の流れ
の可否を判定するために検査行程を設けなければならな
い。
In FIG. 2(A), there is a thin transparent substrate 2 that transmits X-rays on a ring-shaped frame 1 that supports the entire mask, and an X-ray absorption layer 3 that blocks X-rays. Arranged in a predetermined shape, the X-ray mask copies the fine pattern onto the wafer. However, before copying onto the wafer, the defined shape and alignment are recognized and
Furthermore, an inspection process must be provided to measure the standardized line width and determine whether or not the next process is possible.

X線マスクのパターンの大きさは、0.5μmm以下で
あり、線幅及び欠陥等の検査方法は、電子顕微鏡を利用
される。
The size of the pattern of the X-ray mask is 0.5 μmm or less, and an electron microscope is used to inspect line width, defects, etc.

第2(B)図は、従来のX線マスクの電子顕微鏡による
線幅及び欠陥等の検査過程を概略的に図示したものであ
る。このマスクの構成上に次の点に問題がある。即ち、
絶縁体である透過性基板2上にストライプの形状に配列
されたX線吸収層3は、例えば金のような金属薄膜から
構成されているので、電子顕微鏡から走査さらた照射電
子線5によって前記X線吸収層3のパターン周囲に電荷
e−が蓄積される。照射電子線5は、検査中に発生する
このような蓄積電荷e−によって曲げられ、従ってこの
パターンを正確に検査を判断する能力を失なわれる。
FIG. 2B schematically illustrates the process of inspecting line widths, defects, etc. of a conventional X-ray mask using an electron microscope. The structure of this mask has the following problems. That is,
The X-ray absorbing layer 3 arranged in a stripe shape on the transparent substrate 2, which is an insulator, is made of a metal thin film such as gold, so that the Charges e- are accumulated around the pattern of the X-ray absorption layer 3. The irradiating electron beam 5 is bent by such accumulated charge e- generated during the inspection and thus loses its ability to accurately judge the inspection of this pattern.

[発明が解決しようとする課題l しかしながら、マスクの製造工程中或いは使用中に発生
した欠陥等の検出及び除去することが不可能であり、線
幅の寸法を正確に測定することかでかなかった。
[Problems to be Solved by the Invention] However, it is impossible to detect and remove defects that occur during the mask manufacturing process or during use, and it is difficult to accurately measure the line width dimension. Ta.

本発明の目的は、電子顕微鏡を利用してX線マスクの線
幅の寸法及び欠陥の検査の際に、蓄積電荷e−による検
査判断の不正確性の除去及び究極的には半導体素子の生
産性を高めることができるように構造されたX線マスク
を提供することである。
It is an object of the present invention to eliminate inaccuracies in inspection judgments due to accumulated charge e- when inspecting the line width dimensions and defects of X-ray masks using an electron microscope, and ultimately to improve the production of semiconductor devices. It is an object of the present invention to provide an X-ray mask structured to enhance the performance of the X-ray mask.

〔課題を解決するための手段〕[Means to solve the problem]

上記の目的を達成するために本発明の特徴的な構成は、
検査過程において、電荷が蓄積される前にそれを除去し
、マスクの透過性基板上に伝導性の金属薄膜を形成した
ものである。
In order to achieve the above object, the characteristic configuration of the present invention is as follows:
During the inspection process, the charge is removed before it accumulates, and a conductive metal thin film is formed on the transparent substrate of the mask.

〔実施例〕〔Example〕

本発明を図面に示す実施例により詳細に説明する。第3
(A)図は、本発明により電荷除去手段を具備したX線
マスクの構造を示す。同図において、参照番号10は、
透過性基板20を保持するためのフレームであって、耐
久性及び方向的安定度が高く、さらにリング形状の物質
、例えばSi及び硝子から構成される。参照番号20は
、フレーム10上に形成され、後に形成されるX線吸収
層40のパターンを維持するのに必要な透過性基板であ
り、さらに、これはX線透過率が良い。X線吸収層40
とフレーム10において物理的な特性、例えば熱膨張率
が類似な薄型のSiC或いはSiNx等から構成される
。実際的に、透過性基板20は、ソフ)X線を最小限5
0%以上を透過しなければならない。
The present invention will be explained in detail with reference to embodiments shown in the drawings. Third
(A) shows the structure of an X-ray mask equipped with charge removal means according to the invention. In the figure, reference number 10 is
The frame is for holding the transparent substrate 20, has high durability and directional stability, and is made of a ring-shaped material such as Si and glass. Reference numeral 20 is a transparent substrate formed on the frame 10 and necessary to maintain the pattern of the X-ray absorbing layer 40 formed later, and furthermore, it has good X-ray transmittance. X-ray absorption layer 40
The frame 10 is made of thin SiC, SiNx, etc., which have similar physical properties, such as a coefficient of thermal expansion. Practically speaking, the transparent substrate 20 is capable of transmitting at least 5
Must transmit 0% or more.

そして、前記透過性基板20上に所定の厚さで形成され
ている電荷伝導膜30は、後に形成されるX線吸収層4
0に比べてX線の吸収層が極めて小さく、さらにこの膜
の金属物質、例えばアルミニウムから構成され、その厚
さは、X線吸収層40のほぼ1/100(約、005 
tt m)程度である。
The charge conductive film 30 formed to a predetermined thickness on the transparent substrate 20 is connected to an X-ray absorbing layer 4 that will be formed later.
The X-ray absorbing layer is extremely small compared to X-ray absorbing layer 40, and furthermore, this film is made of a metal material such as aluminum, and its thickness is approximately 1/100 of the X-ray absorbing layer 40 (approximately 0.05 mm).
ttm).

ここで、特に重要な一つの事項として、X線吸収層40
にライディングされた電荷の中で、再結合によって消滅
された電荷を除外した残りの電荷が、継続的にライディ
ングされた電子線に対して静電気妨害を起こさないよう
に電荷伝導膜30を接地するようにしたものである。
Here, one particularly important matter is that the X-ray absorption layer 40
The charge conductive film 30 is grounded so that the remaining charges, excluding the charges erased by recombination, do not cause electrostatic interference to the continuously riding electron beam. This is what I did.

最後に、前記電荷伝導膜30上にストライブ形状に配列
されたX線吸収層40は、X線吸収率が良く、原子量も
大きく、かつ厚さも(約0.5μm)の金属物質から構
成されて、さらにこれは、X線を遮断するマスクのパタ
ーンの役目を果たす。即ち 第1図におけるX線ターゲ
ット13がら放出されたソフトX線15の一部は、この
X線の吸収層40の部位で吸収され、その残りは、電荷
伝導膜30と透過性基板40とを通じて透過されること
によって感光膜17に塗布されたウェハ18の上にマス
クのパターンがそのまま再現されるものである。
Finally, the X-ray absorption layer 40 arranged in a stripe shape on the charge conductive film 30 is made of a metal material with good X-ray absorption rate, large atomic weight, and thickness (approximately 0.5 μm). Furthermore, this serves as a mask pattern that blocks X-rays. That is, a part of the soft X-rays 15 emitted from the X-ray target 13 in FIG. By transmitting the light, the pattern of the mask is reproduced as it is on the wafer 18 coated on the photoresist film 17.

第3(B)図は、第3(A)図におけるX線マスクが電
子顕微鏡を利用して検査を受ける過程を概略的に図示し
たものである。電子顕微鏡がら走査された照射電子線5
0によってマスクパターンの線幅の寸法及び欠陥等を検
査する。
FIG. 3(B) schematically illustrates a process in which the X-ray mask in FIG. 3(A) is inspected using an electron microscope. Irradiated electron beam 5 scanned by an electron microscope
0 to inspect the line width dimension and defects of the mask pattern.

この時、照射電子線50によってX線吸収層40の周囲
に発生ずる電荷は、蓄積される前に電荷伝導膜30と再
結合によって消滅され、さらに過剰な電荷は、接地され
る。従って、照射電子線50は、何の妨害なしに走査部
位を正確に検査することができる。一方、電荷除去手段
を具備した本発明のX線マスクの場合に、マスクの厚み
の増加による透過率の減少は無視することができない。
At this time, the charges generated around the X-ray absorption layer 40 by the irradiated electron beam 50 are recombined with the charge conductive film 30 and eliminated before being accumulated, and the excess charges are grounded. Therefore, the irradiating electron beam 50 can accurately inspect the scanned region without any interference. On the other hand, in the case of the X-ray mask of the present invention equipped with charge removal means, the decrease in transmittance due to the increase in mask thickness cannot be ignored.

即ち、マスク全体の透過率Tmは、Tm=e−”  (
u:透過率係数、d:物質の厚さ) であるので、マスクを構成する各部位に対する透過率を
比較すると、次の通りである。
That is, the transmittance Tm of the entire mask is Tm=e-" (
u: transmittance coefficient, d: thickness of material) Therefore, the transmittance of each part of the mask is compared as follows.

透過性基板20の透過率T20は、 Tzo−Re−2(R、常数) 電荷伝導膜30の透過率T3゜は、 T、、o=Re X線吸収層40の透過率T4oは、 T40= R6−+o。The transmittance T20 of the transparent substrate 20 is Tzo-Re-2 (R, constant) The transmittance T3° of the charge conductive film 30 is T,,o=Re The transmittance T4o of the X-ray absorption layer 40 is T40=R6-+o.

である。It is.

なぜなら、各部位に対する透過係数及び厚さの対応比は
、 T2゜の透過係数=1、厚さ=2とすると、73Gの透
過係数:lOO〜200、厚さ=1/100〜1/20
0であり Tooの透過係数:100〜200、厚さ;1〜0. 
5 従って、本発明のマスクの変調伝達関数MTF (Mo
duIat+on Transfer Functro
n)が、従来のマスクの変調伝達関数MTFと比べて劣
らないことが下記の式から分かる。
This is because the corresponding ratio of the transmission coefficient and thickness for each part is, assuming that the transmission coefficient of T2° = 1 and the thickness = 2, the transmission coefficient of 73G: lOO ~ 200, thickness = 1/100 ~ 1/20
0, Too's transmission coefficient: 100-200, thickness: 1-0.
5 Therefore, the modulation transfer function MTF (Mo
duIat+on Transfer Functro
It can be seen from the equation below that the modulation transfer function MTF of the conventional mask is not inferior to the modulation transfer function MTF of the conventional mask.

従って、マスクの変調伝達関数MTFは、上記で述べた
本発明によると、精密度及び微細性の高いマスクのパタ
ーン線幅の寸法或いは=9 欠陥等を正確に検査、判断することにより、究極的に半
導体素子の信頼度及び生産性を高めることが可能である
Therefore, according to the present invention described above, the modulation transfer function MTF of the mask can be determined by accurately inspecting and determining the pattern line width of the mask with high precision and fineness, or = 9. It is possible to improve the reliability and productivity of semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

線マスクの線幅及び欠陥検査過程を概略的に示した図、
第3(A)図は、本発明によるX線マスクの構造を示し
た断面図、第3(B)図は、本発明によるX線マスクの
電子顕微鏡による線幅及び検査過程を概略的に示した図
である。 図中の参照記号 10・・・・・・・・・フレーム、11・・・・・・・
・・電子ソース、12・・・・・・・・・電子ビーム、
 13・・・・・・X線ターゲット、14・・・・・・
透明ウィンドー、15・・・・・・・・・X線、16・
・・・・・・・・X線マスク、 17・・・・・・・・
・感光膜、18・・・・・・・・・ウェハ、   20
・・・・・・・・・透過性基板、30・・・・・・・・
・電荷伝導膜、 40・・・・・・・・・X線吸収層、
50・・・・・・・・・照射電子線 3(A)図
A diagram schematically showing the line width of the line mask and the defect inspection process,
FIG. 3(A) is a sectional view showing the structure of the X-ray mask according to the present invention, and FIG. 3(B) schematically shows the line width and inspection process of the X-ray mask according to the present invention using an electron microscope. This is a diagram. Reference symbols in the figure 10......Frame, 11....
...Electron source, 12......Electron beam,
13...X-ray target, 14...
Transparent window, 15...X-ray, 16.
・・・・・・・・・X-ray mask, 17・・・・・・・・・
・Photoresist film, 18...Wafer, 20
......Transparent substrate, 30...
・Charge conduction film, 40...X-ray absorption layer,
50・・・・・・Irradiation electron beam 3(A) figure

Claims (3)

【特許請求の範囲】[Claims] (1)マイクロ単位で設計された微細画像を半導体基板
の上に再現するためのX線マスクにおいて、 そのパターンの線幅の寸法及び欠陥等を正 確に検査をするために、マスクの透過性基板20とX線
吸収層40との間に薄い電荷伝導膜30を形成して、こ
れを接地することを特徴とするX線マスク。
(1) In an X-ray mask for reproducing fine images designed in micro units on a semiconductor substrate, the transparent substrate of the mask is used to accurately inspect the line width dimensions and defects of the pattern. 20 and an X-ray absorption layer 40, a thin charge conductive film 30 is formed and this is grounded.
(2)前記電荷伝導膜30が、アルミニウムから成るこ
とを特徴とする請求項(1)に記載のX線マスク。
(2) The X-ray mask according to claim 1, wherein the charge conductive film 30 is made of aluminum.
(3)前記透過性基板20、電荷伝導膜30、X線吸収
層40に対応する厚さの比率が2:(0.01〜0.0
05):(1〜0.5)から構成していることを特徴と
する請求項(1)に記載のX線マスク。
(3) The thickness ratio of the transparent substrate 20, the charge conductive film 30, and the X-ray absorption layer 40 is 2:(0.01 to 0.0
05): (1 to 0.5).
JP1142288A 1989-04-20 1989-06-06 X-ray mask Pending JPH02296244A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR89-5232 1989-04-20
KR1019890005232A KR920010065B1 (en) 1989-04-20 1989-04-20 X-ray mask

Publications (1)

Publication Number Publication Date
JPH02296244A true JPH02296244A (en) 1990-12-06

Family

ID=19285513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1142288A Pending JPH02296244A (en) 1989-04-20 1989-06-06 X-ray mask

Country Status (4)

Country Link
JP (1) JPH02296244A (en)
KR (1) KR920010065B1 (en)
GB (1) GB2233117A (en)
NL (1) NL8901516A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57193031A (en) * 1981-05-22 1982-11-27 Toshiba Corp Manufacture of mask substrate for exposing x-ray
JPS592324A (en) * 1982-06-28 1984-01-07 Nec Corp X-ray exposure mask
JPS62282432A (en) * 1986-05-31 1987-12-08 Canon Inc Mask for x-ray exposure and aligner
JPS63299124A (en) * 1987-05-29 1988-12-06 Hitachi Ltd X-ray exposure mask

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2279135A1 (en) * 1974-07-19 1976-02-13 Ibm METHOD OF MANUFACTURING A MASK FOR X-RAY LITHOGRAPHY
US4018938A (en) * 1975-06-30 1977-04-19 International Business Machines Corporation Fabrication of high aspect ratio masks
US4436797A (en) * 1982-06-30 1984-03-13 International Business Machines Corporation X-Ray mask
DE3435178A1 (en) * 1983-09-26 1985-04-04 Canon K.K., Tokio/Tokyo OBJECT WITH MASK STRUCTURE FOR LITHOGRAPHY
DE3338717A1 (en) * 1983-10-25 1985-05-02 Siemens AG, 1000 Berlin und 8000 München METHOD FOR PRODUCING A X-RAY MASK WITH METAL CARRIER FILM

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57193031A (en) * 1981-05-22 1982-11-27 Toshiba Corp Manufacture of mask substrate for exposing x-ray
JPS592324A (en) * 1982-06-28 1984-01-07 Nec Corp X-ray exposure mask
JPS62282432A (en) * 1986-05-31 1987-12-08 Canon Inc Mask for x-ray exposure and aligner
JPS63299124A (en) * 1987-05-29 1988-12-06 Hitachi Ltd X-ray exposure mask

Also Published As

Publication number Publication date
KR920010065B1 (en) 1992-11-13
KR900017098A (en) 1990-11-15
GB2233117A (en) 1991-01-02
NL8901516A (en) 1990-11-16
GB8915049D0 (en) 1989-08-23

Similar Documents

Publication Publication Date Title
US7126231B2 (en) Mask-making member and its production method, mask and its making method, exposure process, and fabrication method of semiconductor device
JPS61287122A (en) Method for inspection of mask
US20060292459A1 (en) EUV reflection mask and method for producing it
JP3412898B2 (en) Method and apparatus for manufacturing reflective mask, exposure apparatus and device manufacturing method using the reflective mask
JPS62296513A (en) Apparatus for inspecting mask for lithography apparatus
US6440619B1 (en) Method of distortion compensation by irradiation of adaptive lithography membrane masks
JPH02296244A (en) X-ray mask
US6404481B1 (en) Adaptive lithography membrane masks
Gordon et al. Pathways in device lithography
US7463336B2 (en) Device manufacturing method and apparatus with applied electric field
JPH02165616A (en) Aligner
JP2911297B2 (en) X-ray exposure method
US6770408B2 (en) Dust particle inspection method for X-ray mask
JP2001068404A (en) Protective member for electron beam transfer mask and electron beam projection aligner
JP2003318093A (en) Method for manufacturing mask and method for manufacturing semiconductor device
JPH04343410A (en) Manufacture of x-ray mask and x-ray aligner using the mask
JP2000049080A (en) Charged particle beam exposure system
JPH07283103A (en) Semiconductor substrate, formation of position detection mark and manufacture of semiconductor device
JPS6076122A (en) Method for inspection of microscopic pinhole deffect
JPH02165040A (en) Pattern measurement for x-ray mask
JPH02247547A (en) Method for inspecting microdefect of mask
JPH0245910A (en) Inspection of reticle
JPH02299219A (en) X-ray lithoglaphy mask
JPS63299124A (en) X-ray exposure mask
JPH03208329A (en) X-ray mask, method of correcting x-ray mask, and x-ray exposure system