JPH0229614Y2 - - Google Patents

Info

Publication number
JPH0229614Y2
JPH0229614Y2 JP1983149335U JP14933583U JPH0229614Y2 JP H0229614 Y2 JPH0229614 Y2 JP H0229614Y2 JP 1983149335 U JP1983149335 U JP 1983149335U JP 14933583 U JP14933583 U JP 14933583U JP H0229614 Y2 JPH0229614 Y2 JP H0229614Y2
Authority
JP
Japan
Prior art keywords
stainless steel
bare
sheath
copper wires
power cable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983149335U
Other languages
Japanese (ja)
Other versions
JPS6057015U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14933583U priority Critical patent/JPS6057015U/en
Publication of JPS6057015U publication Critical patent/JPS6057015U/en
Application granted granted Critical
Publication of JPH0229614Y2 publication Critical patent/JPH0229614Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Insulated Conductors (AREA)

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は、導体上に設けられた絶縁体、金属シ
ースおよび防食層等を有し、当該金属シースとし
てステンレスを含んだ電力ケーブルに関する。 第1図は、OFケーブル等の電力ケーブルの従
来例を示している。同図に示された電力ケーブル
は、導体1、この導体1上に設けられた絶縁体
2、アルミニウムや鉛等の金属シース3aおよび
防食層4等から構成されている。 このように構成された電力ケーブルでは、金属
シース3aの電気抵抗が低くなつてくると、隣接
する電力ケーブルに流れる電流によつて生じる渦
電流損が過大となり、送電電流を低減させる。 かかる渦電流損を低減させるため、金属シース
3aの材料として、電気抵抗率の大きいステンレ
スを単独で用いるという案があるが、ステンレス
単独で用いると渦電流損は低減できるものの、ス
テンレスは電気抵抗率が大きいので、地絡時には
金属シース3aを過度に温度上昇させ、電力ケー
ブルを焼損させてしまう。 本考案は上記した従来技術の問題点に鑑みてな
されたもので、送電時における渦電流損が少なく
而も地絡時の電流容量が大きい金属シースを有す
る電力ケーブルを提供することに目的がある。 すなわち、本考案の電力ケーブルは、金属シー
スが、絶縁体の外周に多数本の裸銅線を並べた状
態でスパイラル状に巻回して設けられた分流用裸
導体層と、この分流用裸導体層の外周であつて該
層における多数本の裸銅線の何れにも接触した状
態で設けられたステンレスシースとで形成された
ことを特徴とするものである。 上記本考案の構成を得る過程においては、分流
線として、絶縁被覆を有する導体を用いることも
検討された。 すなわち、裸銅線の多数本を並べて絶縁体上に
設けた場合には、隣り合う銅線間が電気的に接触
しあつて、絶縁体上に銅管を設けたのと同様に考
えられ、そのような銅管では渦電流損が顕著とな
るとみられたからである。そして、各銅線につい
て絶縁被覆を与えることによつて、並び合う線間
を電気的に隔絶し、もつて渦電流損の低減を図ろ
うとしたものである。 ところが、上記のように各銅線につき絶縁被覆
を与えると、地絡時の分流がし難くなるという、
新たな問題が生じた。すなわち、導体と1本の銅
線との間で地絡した場合を考えると、地絡した当
該1本の銅線とそれに隣接する他の多数の銅線は
電気的に隔絶され、而もそれらはステンレスシー
スとの間でも電気的に隔絶された状態となり、そ
の結果、地絡電流が当該1本の銅線に集中して流
れることとなり、他の多数の銅線に分流し難くな
るからである。 上記のように地絡電流が1本の銅線に集中して
流れると、地絡時の金属シースの温度上昇を著し
いものとし、その結果地絡時の電力ケーブルのダ
メージを広範囲に及ぼすという問題が生じる。 なおまた、絶縁被覆を与えることにより、製造
コストが嵩む問題もある。 考案者等が鋭意研究した結果、本考案の構成つ
まり、多数の裸銅線を並べて設けたとしても、渦
電流損の増加は微々たるもので実質無視できるこ
とが判明した。この理由は、多数本の裸銅線が並
び合う状態では、隣接する銅線間において不可避
的な接触抵抗を有し、該接触抵抗はそれらに接触
するステンレスシースとの間においても同様に生
じており、接触抵抗の存在によつて銅線相互間及
び銅線とステンレスシースとの間の電流の行き来
を抑制するとみられるからである。 そして、かかる接触抵抗は、絶縁被覆材料より
も十分に低いため、地絡下においては各銅線間の
地絡電流の流れを妨害するものとはならず、かつ
また各銅線の何れもステンレスシースに内装する
ことで等電位状態となつて各銅線全体にわたる地
絡電流の分流を可能にするものである。 本考案は、以上の知見に基づいて上述した構成
つまり、多数本の裸銅線を並べた状態で絶縁体上
にスパイラル状に巻回し、その上にステンレスシ
ースを各銅線に接触するように設けたものであ
る。 また、かかる分流用導体をステンレスシースの
外側に設けることを検討されたが、地絡電流の分
流が電気抵抗率の大きなステンレスシースを介し
て行われるので、必ずしも満足すべき結果が得ら
れず、また当該ステンレスシースが波付加工され
ることによつて、その上への分流導体の巻回を困
難にし、製造上においても望ましいものとはなら
なかつた。従つて、本考案は、分流用裸導体層を
ステンレスシースの内側に設けることとしたもの
である。 以下、本考案の実施例を示す第2図に基づいて
説明する。 第2図において、従来例の第1図と同じ部品に
は同じ符号を付した。 改良のポイントとなる金属シース3bは、絶縁
体2の外周に設けた分流用裸導体層3cと、この
分流用裸導体層3cの外周に設けたステンレスシ
ース3dとで形成した。 かかる分流用裸導体層3cは、多数本の裸銅線
(表面に絶縁層を設けていない銅線)を用いてこ
れを並でた状態で絶縁体2の外周にスパイラル状
に巻回形成したものであり、その外側に設けられ
るステンレスシース3dに対して何れの裸銅線も
内接する状態とされている。 このようにしたことによつて、地絡時には導体
1側に近く導電性の良好な裸銅線の撚合せによる
分流裸導体層に分流するため、金属シース3bに
おける地絡時の温度上昇が抑制される。 そして、隣接する電力ケーブルに流れる電流に
よつて生ずる渦電流損は防食層4側つまり外側と
なり電気抵抗率の大きなステンレスシース3dに
より抑制される。また、各裸銅線は互いに並んで
隣接部間並びにステンレスシースを介して接し得
るが、それら線間並びに銅線とステンレスシース
との間には不可避的な接触抵抗が存在することに
より、線間に跨がつて渦電流が流れるのを抑制し
ている。 従つて、通電時における金属シース3bの渦電
流損を少なくし且つ地絡時の金属シース3bの地
絡容量を大きくするという、いわば相反する要求
を同時に満足させることができる。 なお、本実施例では、裸銅線として横断面円形
の丸形銅線を用いる例を示しているが、それに限
らず平角形の裸銅線も使用し得る。 なおまた、分流用裸導体層3cの裸銅線の全断
面積は、地絡電流よる分流用裸導体層3cの温度
が許容値以下になるような大きさにすることが望
ましい。 以上の実施例に関して、その特性を検討した結
果を下表に示した。この検討は、金属シースとし
てアルミニウムを採用した従来品と、ステンレス
シースと分流用裸導体層(多数本の銅線)とを採
用した本考案品とについて、渦電流損率、温度上
昇を測定したものである。
The present invention relates to a power cable that has an insulator, a metal sheath, an anti-corrosion layer, etc. provided on a conductor, and the metal sheath includes stainless steel. FIG. 1 shows a conventional example of a power cable such as an OF cable. The power cable shown in the figure is composed of a conductor 1, an insulator 2 provided on the conductor 1, a metal sheath 3a made of aluminum, lead, etc., a corrosion protection layer 4, and the like. In the power cable configured in this way, when the electrical resistance of the metal sheath 3a becomes low, the eddy current loss caused by the current flowing in the adjacent power cable becomes excessive, reducing the power transmission current. In order to reduce such eddy current loss, there is a proposal to use stainless steel, which has a high electrical resistivity, alone as the material for the metal sheath 3a, but although the eddy current loss can be reduced if stainless steel is used alone, stainless steel has a high electrical resistivity. Since this is large, in the event of a ground fault, the temperature of the metal sheath 3a will rise excessively, resulting in burnout of the power cable. The present invention was devised in view of the problems of the prior art described above, and its purpose is to provide a power cable with a metal sheath that has low eddy current loss during power transmission and high current capacity in the event of a ground fault. . That is, the power cable of the present invention includes a metal sheath, a diversion bare conductor layer provided by winding a large number of bare copper wires arranged in a spiral around the outer periphery of an insulator, and this diversion bare conductor layer. It is characterized by being formed with a stainless steel sheath provided around the outer periphery of the layer and in contact with any of the many bare copper wires in the layer. In the process of obtaining the configuration of the present invention, it was also considered to use a conductor with an insulating coating as the shunt line. In other words, if a large number of bare copper wires are arranged side by side and placed on an insulator, the adjacent copper wires will come into electrical contact with each other, similar to when a copper tube is placed on an insulator. This is because eddy current loss appears to be significant in such copper tubes. By providing an insulating coating to each copper wire, the adjacent wires are electrically isolated, thereby reducing eddy current loss. However, if each copper wire is coated with insulation as described above, it becomes difficult to shunt the current in the event of a ground fault.
A new problem arose. In other words, if we consider a case where a ground fault occurs between a conductor and one copper wire, the one copper wire with the ground fault and the many other copper wires adjacent to it will be electrically isolated; This is because the wire is electrically isolated from the stainless steel sheath, and as a result, the ground fault current will concentrate on that one copper wire, making it difficult to distribute it to many other copper wires. be. As mentioned above, if the ground fault current flows in a concentrated manner in one copper wire, the temperature of the metal sheath will rise significantly in the event of a ground fault, resulting in widespread damage to the power cable in the event of a ground fault. occurs. Furthermore, there is also the problem that providing an insulating coating increases manufacturing costs. As a result of intensive research by the inventors, it was found that even with the configuration of the present invention, that is, a large number of bare copper wires arranged side by side, the increase in eddy current loss is so small that it can be practically ignored. The reason for this is that when a large number of bare copper wires are lined up, there is unavoidable contact resistance between the adjacent copper wires, and this contact resistance also occurs between the stainless steel sheath that contacts them. This is because the presence of contact resistance seems to suppress the flow of current between the copper wires and between the copper wire and the stainless steel sheath. Since this contact resistance is sufficiently lower than that of the insulating coating material, it does not interfere with the flow of ground fault current between the copper wires under a ground fault, and all of the copper wires are made of stainless steel. By incorporating it into the sheath, an equipotential state is created, which enables ground fault current to be shunted throughout each copper wire. Based on the above findings, the present invention has the above-mentioned configuration, in which a large number of bare copper wires are arranged in a spiral manner and wound around an insulator, and a stainless steel sheath is placed on top of the wires so that each copper wire is in contact with the other wires. It was established. In addition, it has been considered to provide such a shunting conductor outside the stainless steel sheath, but since the ground fault current is shunted through the stainless steel sheath, which has a high electrical resistivity, satisfactory results cannot necessarily be obtained. In addition, the corrugation of the stainless steel sheath makes it difficult to wind the shunt conductor thereon, making it undesirable in terms of manufacturing. Therefore, in the present invention, a diversion bare conductor layer is provided inside the stainless steel sheath. Hereinafter, an explanation will be given based on FIG. 2 showing an embodiment of the present invention. In FIG. 2, the same parts as in FIG. 1 of the conventional example are given the same reference numerals. The metal sheath 3b, which is the key point of the improvement, is formed by a diversion bare conductor layer 3c provided on the outer periphery of the insulator 2, and a stainless steel sheath 3d provided on the outer periphery of this diversion bare conductor layer 3c. The diversion bare conductor layer 3c is formed by winding a large number of bare copper wires (copper wires without an insulating layer on the surface) in a spiral shape around the outer periphery of the insulator 2. Each bare copper wire is inscribed in a stainless steel sheath 3d provided on the outside thereof. By doing this, in the event of a ground fault, the current is shunted to the shunt bare conductor layer formed by twisting bare copper wires close to the conductor 1 and having good conductivity, thereby suppressing the temperature rise in the metal sheath 3b at the time of a ground fault. be done. Eddy current loss caused by the current flowing in the adjacent power cable is suppressed by the stainless steel sheath 3d having a high electrical resistivity on the corrosion protection layer 4 side, that is, on the outside. In addition, bare copper wires can be lined up and in contact with each other through adjacent parts or through a stainless steel sheath, but due to the unavoidable contact resistance between these wires and between the copper wire and the stainless steel sheath, This suppresses the flow of eddy current across the Therefore, it is possible to simultaneously satisfy the contradictory demands of reducing the eddy current loss of the metal sheath 3b during energization and increasing the ground fault capacity of the metal sheath 3b during a ground fault. Although this embodiment shows an example in which a round copper wire with a circular cross section is used as the bare copper wire, the present invention is not limited thereto, and a rectangular bare copper wire may also be used. Furthermore, it is desirable that the total cross-sectional area of the bare copper wires of the bare conductor layer 3c for diversion be set to a size such that the temperature of the bare conductor layer 3c for diversion due to ground fault current is below a permissible value. The results of examining the characteristics of the above examples are shown in the table below. In this study, we measured the eddy current loss factor and temperature rise of a conventional product that uses aluminum as the metal sheath, and the invented product that uses a stainless steel sheath and a bare conductor layer for diversion (multiple copper wires). It is something.

【表】 上表の測定結果から明らかなように、本考案の
電力ケーブルでは、渦電流損率が、金属シースに
アルミニウムを採用した従来の電力ケーブルより
も約1桁低下し、地絡時の金属シースの温度上昇
が、ステンレスシースだけの場合の値よりも低下
し、17℃であつた。 このように、本考案品の渦電流損率、温度上昇
がともに低下したのは、金属シースが、ステンレ
スシースとその内側に接する多数の裸銅線のスパ
イラル巻による分流用裸導体層とで形成されたた
めで、導体に近い分流用裸導体層によつて地絡電
流が分流され、ステンレスシースによつて渦電流
損が低減されたためである。 以上の説明から明らかなように、本考案の電力
ケーブルによれば、金属シースが、絶縁体上に多
数本の裸銅線を並べた状態でスパイラル状に巻回
して設けられた分流用裸導体層と、その外周であ
つて該層における多数本の裸銅線の何れにも接触
する状態で設けられたステンレスシースとで形成
されたものであるから、送電時における渦電流損
が少なく而も地絡時の電流容量が大きい金属シー
スを有する電力ケーブルを提供するという所期の
目的は十分に達成される。
[Table] As is clear from the measurement results in the above table, the eddy current loss factor of the power cable of the present invention is approximately one order of magnitude lower than that of conventional power cables that use aluminum for the metal sheath, and The temperature rise of the metal sheath was 17°C, lower than the value for the stainless steel sheath alone. In this way, the reason why both the eddy current loss factor and the temperature rise of the invented product are reduced is that the metal sheath is formed by a stainless steel sheath and a diversion bare conductor layer made of a large number of spirally wound bare copper wires that are in contact with the inside of the stainless steel sheath. This is because the ground fault current was shunted by the diversion bare conductor layer close to the conductor, and the eddy current loss was reduced by the stainless steel sheath. As is clear from the above description, according to the power cable of the present invention, the metal sheath is a shunt bare conductor provided by winding a large number of bare copper wires arranged in a spiral shape on an insulator. Since it is formed of a layer and a stainless steel sheath provided on the outer periphery of the layer in contact with any of the many bare copper wires in the layer, eddy current loss during power transmission is small. The intended objective of providing a power cable with a metal sheath having a high current carrying capacity during a ground fault is fully achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電力ケーブルの横断面説明図、
第2図は本考案にかかる電力ケーブルの一実施例
を示す横断面説明図である。 符号において、1は導体、2は絶縁体、3bは
金属シース、3cは分流用裸導体層、3dはステ
ンレスシース、4は防食層である。
Figure 1 is a cross-sectional diagram of a conventional power cable.
FIG. 2 is an explanatory cross-sectional view showing one embodiment of the power cable according to the present invention. In the symbols, 1 is a conductor, 2 is an insulator, 3b is a metal sheath, 3c is a diversion bare conductor layer, 3d is a stainless steel sheath, and 4 is an anticorrosive layer.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 導体上に設けられた絶縁体、金属シースおよび
防食層を有する電力ケーブルにおいて、前記金属
シースが、前記絶縁体の外周に多数本の裸銅線を
並べた状態でスパイラル状に巻回して設けられた
分流用裸導体層と、この分流裸導体層の外周であ
つて該層における多数本の裸銅線の何れにも接触
した状態で設けられたステンレスシースとで形成
されたことを特徴とする電力ケーブル。
In a power cable having an insulator provided on a conductor, a metal sheath, and an anti-corrosion layer, the metal sheath is provided by winding a large number of bare copper wires in a spiral shape around the outer periphery of the insulator. and a stainless steel sheath provided around the outer periphery of the diversion bare conductor layer and in contact with any of the many bare copper wires in the layer. power cable.
JP14933583U 1983-09-27 1983-09-27 power cable Granted JPS6057015U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14933583U JPS6057015U (en) 1983-09-27 1983-09-27 power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14933583U JPS6057015U (en) 1983-09-27 1983-09-27 power cable

Publications (2)

Publication Number Publication Date
JPS6057015U JPS6057015U (en) 1985-04-20
JPH0229614Y2 true JPH0229614Y2 (en) 1990-08-09

Family

ID=30331529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14933583U Granted JPS6057015U (en) 1983-09-27 1983-09-27 power cable

Country Status (1)

Country Link
JP (1) JPS6057015U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719906A (en) * 1980-05-30 1982-02-02 Furukawa Electric Co Ltd Power cable

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719906A (en) * 1980-05-30 1982-02-02 Furukawa Electric Co Ltd Power cable

Also Published As

Publication number Publication date
JPS6057015U (en) 1985-04-20

Similar Documents

Publication Publication Date Title
US3316344A (en) Prevention of icing of electrical conductors
US2125869A (en) Electrical conductor
JP3691692B2 (en) Superconducting cable
US4695675A (en) Electric lead device for superconducting electric apparatus
US2066525A (en) Conductor
JPH0229614Y2 (en)
JPH0229613Y2 (en)
CN216311429U (en) Water-blocking buffer layer structure capable of preventing electrochemical corrosion
US3686428A (en) Multiple strand conductor with increased contact resistance
JP3795203B2 (en) DC power coaxial cable
JP2628425B2 (en) Litz wire
JPS631384Y2 (en)
JPH11111071A (en) Submarine power cable
CN215895990U (en) Flexible cable for robot joint
JPS6038804B2 (en) power cable
CN212085235U (en) Horizontal grounding grid device
CN220420292U (en) Termite-proof rat-proof cross-linked polyethylene insulated ultra-high voltage power cable
JPH0326621Y2 (en)
JPS6228013Y2 (en)
JP2003031029A (en) Overhead electric wire
JPS622754Y2 (en)
JPH0210768Y2 (en)
JPH0438426Y2 (en)
JPS6193509A (en) Cable conductor
JPS596573Y2 (en) coaxial power cable