JPH0229613Y2 - - Google Patents

Info

Publication number
JPH0229613Y2
JPH0229613Y2 JP1983149334U JP14933483U JPH0229613Y2 JP H0229613 Y2 JPH0229613 Y2 JP H0229613Y2 JP 1983149334 U JP1983149334 U JP 1983149334U JP 14933483 U JP14933483 U JP 14933483U JP H0229613 Y2 JPH0229613 Y2 JP H0229613Y2
Authority
JP
Japan
Prior art keywords
conductor layer
bare
sheath
copper wires
stainless steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983149334U
Other languages
Japanese (ja)
Other versions
JPS6057014U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP14933483U priority Critical patent/JPS6057014U/en
Publication of JPS6057014U publication Critical patent/JPS6057014U/en
Application granted granted Critical
Publication of JPH0229613Y2 publication Critical patent/JPH0229613Y2/ja
Granted legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed explanation of the idea]

本考案は、導体上に設けられた絶縁体、金属シ
ースおよび防食層等を有し、当該金属シースとし
てステンレスを含んだ電力ケーブルに関する。 第1図は、OFケーブル等の電力ケーブルの従
来例を示している。同図に示された電力ケーブル
は、導体1、この導体1上に設けられた絶縁体
2、アルミニウムや鉛等の金属シース3aおよび
防食層4等から構成されており、金属シース3a
は、油の密封および電力ケーブルの保護と作業者
の安全とを確保している。 このように構成された電力ケーブルでは、金属
シース3aの電気抵抗が低くなつてくると、隣接
する電力ケーブルに流れる電流によつて生じる渦
電流損が過大となり、送電電流を低減させる。 かかる渦電流損を低減させるため、金属シース
3aの材料として、電気抵抗率の大きいステンレ
スを単独で用いるという案があるが、ステンレス
単独で用いると渦電流損は低減できるものの、ス
テンレスは電気抵抗率が大きいので、地絡時には
金属シース3aを過度に温度上昇させ、電力ケー
ブルを焼損させてしまう。 本考案は上記した従来技術の問題点に鑑みてな
されたもので、送電時における渦電流損が少なく
而も地絡時の電流容量が大きい金属シースを有す
る電力ケーブルを提供することに目的がある。 すなわち、本考案の電力ケーブルは、金属シー
スが、絶縁体の外周に多数本の裸銅線を並べた状
態でスパイラル状に巻回して設けられた裸導体層
と、この裸導体層の外周であつて該層における多
数本の裸銅線の何れにも接触した状態で設けられ
たステンレスシースとで形成されたことを特徴と
するものである。 上記本考案の構成を得る過程においては、分流
線として、絶縁被覆を有する導体を用いることも
検討された。 すなわち、裸銅線の多数本を並べて絶縁体上に
設けた場合には、隣り合う銅線間が電気的に接触
しあつて、絶縁体上に銅管を設けたのと同様に考
えられ、そのような銅管では渦電流損が顕著とな
るとみられたからである。そして、各銅線につい
て絶縁被覆を与えることによつて、並び合う線間
を電気的に隔絶し、もつて渦電流損の低減を図ろ
うとしたものである。 ところが、上記にような各銅線につき絶縁被覆
を与えると、地絡時の分流がし難くなるという、
新たな問題が生じた。すなわち、導体と1本の銅
線との間で地絡した場合を考えると、地絡した当
該1本の銅線とそれに隣接する他の多数の銅線は
電気的に隔絶され、而もそれらはステンレスシー
スとの間でも電気的に隔絶された状態となり、そ
の結果、地絡電流が当該1本の銅線に集中して流
れることとなり、他の多数の銅線に分流し難くな
るからである。 上記のように地絡電流が1本の銅線に集中して
流れると、地絡時の金属シースの温度上昇を著し
いものとし、その結果地絡時の電力ケーブルのダ
メージを広範囲に及ぼすという問題が生じる。 なおまた、絶縁被覆を与えることにより、製造
コストが嵩む問題もある。 考案者等が鋭意研究した結果、本考案の構成つ
まり、多数の裸銅線を並べて設けたとしても、渦
電流損の増加は微々たるもので実質無視できるこ
とが判明した。この理由は、多数本の裸銅線が並
び合う状態では、隣接する銅線間において不可避
的な接触抵抗を有し、該接触抵抗はそれらに接触
する金属テープ巻きの外部導体層との間において
も同様に生じており、接触抵抗の存在によつて銅
線相互間及び銅線と外部導体層との間の電流の行
き来を抑制するとみられるからである。 そして、かかる接触抵抗は、絶縁被覆材料より
も十分に低いため、地絡下においては各銅線間の
地絡電流の流れを妨害するものとはならず、かつ
また各銅線の何れも外部導体層に内装することで
等電位状態となつて各銅線全体にわたる地絡電流
の均一な分流を可能にするものである。 本考案は、以上の知見に基づいて上述した構成
つまり、多数本の裸銅線を並べた状態で絶縁体上
にスパイラル状に巻回し、その上に当該各裸銅線
に接触するような金属テープ巻きの外部導体層を
設け、そしてその上にステンレスシースを設けた
ものである。 また、かかる分流用導体をステンレスシースの
外側に設けることを検討されたが、導体からの地
絡電流の分流が電気抵抗率の大きなステンレスシ
ースを介して行われるので、必ずしも満足すべき
結果が得られず、また当該ステンレスシースが波
付加工されることによつて、その上への分流導体
の巻回を困難にして分流導体自身における電気的
導通を難しくし、製造上においても望ましいもの
とはならなかつた。従つて、本考案は、分流用と
しての裸導体層を絶縁体上に設け而も金属テープ
巻きの外部導体層で抑えるようにし、さらにその
外側からステンレスシースの外装によつて、当該
外部導体層と裸導体層との接触を確実にすること
としたものである。 以下、本考案の実施例を示す第2図に基づいて
説明する。 第2図において、従来例の第1図と同じ部品に
は同じ符号を付した。 改良のポイントとなる金属シース3bは、絶縁
体2の外周に設けた裸導体層3cと、この裸導体
層3cの表面に設置した外部導体層3dと、この
外部導体層3dの外周に設けたステンレスシース
3eとで形成した。 かかる裸導体層3cは、多数本の裸銅線(表面
に絶縁層を設けていない銅線)を用いてこれを並
べた状態で絶縁体2の外周にスパイラル状に巻回
形成したものであり、また、外部導体層3dはか
かる裸導体層の表面に金属テープを巻回形成する
ことで、裸導体層3cの各銅線に外装する抑え巻
状態としたものである。 このようにしたことによつて、地絡時には導体
1側に近く導電性の良好な裸銅線の撚合せによる
裸導体層に分流し、而も外部導体層を介して裸導
体層を構成する各銅線に均一に分流させることが
できるため、金属シース3bにおける地絡時の温
度上昇が抑制される。 そして、隣接する電力ケーブルに流れる電流に
よつて生ずる渦電流損は防食層4側つまり外側と
なり電気抵抗率の大きなステンレスシース3dに
より抑制される。また、各裸銅線は互いに並んで
隣接部間並びに金属テープ巻きの外部導体層を介
して接し得るが、それら線間並びに銅線と外部導
体層との間には不可避的な接触抵抗が存在するこ
とにより、線間に跨がつて渦電流が流れるのを抑
制している。 従つて、通電時における金属シース3bの渦電
流損を少なくし且つ地絡時の金属シース3bの地
絡容量を大きくするという、いわば相反する要求
を同時に満足させることができる。 なお、本実施例では、裸銅線として横断面円形
の丸形銅線を用いる例を示しているが、それに限
らず平角形の裸銅線も使用し得る。 なおまた、裸導体層3cの裸銅線の全断面積
は、地絡電流よる裸導体層3cの温度が許容値以
下になるような大きさにすることが望ましい。 以上の実施例に関して、その特性を検討した結
果を表1に示した。この検討は、金属シースとし
てアルミニウムを採用した従来品と、ステンレス
シースと裸導体層(銅線)及び外部導体層(金属
テープ)とを採用した本考案品とについて、渦電
流損率、温度上昇を測定したものである。
The present invention relates to a power cable that has an insulator, a metal sheath, an anticorrosion layer, etc. provided on a conductor, and the metal sheath includes stainless steel. FIG. 1 shows a conventional example of a power cable such as an OF cable. The power cable shown in the figure is composed of a conductor 1, an insulator 2 provided on the conductor 1, a metal sheath 3a made of aluminum, lead, etc., and a corrosion protection layer 4.
ensures oil sealing and power cable protection and worker safety. In the power cable configured in this way, when the electrical resistance of the metal sheath 3a becomes low, the eddy current loss caused by the current flowing in the adjacent power cable becomes excessive, reducing the power transmission current. In order to reduce such eddy current loss, there is a proposal to use stainless steel, which has a high electrical resistivity, alone as the material for the metal sheath 3a, but although using stainless steel alone can reduce eddy current loss, stainless steel has a high electrical resistivity. Since this is large, in the event of a ground fault, the temperature of the metal sheath 3a will rise excessively, resulting in burnout of the power cable. The present invention was devised in view of the problems of the prior art described above, and its purpose is to provide a power cable having a metal sheath with low eddy current loss during power transmission and high current capacity in the event of a ground fault. . In other words, the power cable of the present invention has a metal sheath, a bare conductor layer formed by winding a large number of bare copper wires arranged in a spiral shape around the outer circumference of an insulator, and a metal sheath formed around the outer circumference of the bare conductor layer. It is characterized in that it is formed with a stainless steel sheath that is provided in contact with any of the many bare copper wires in the layer. In the process of obtaining the configuration of the present invention, it was also considered to use a conductor with an insulating coating as the shunt line. In other words, if a large number of bare copper wires are arranged side by side and placed on an insulator, the adjacent copper wires will come into electrical contact with each other, similar to when a copper tube is placed on an insulator. This is because eddy current loss appears to be significant in such copper tubes. By applying an insulating coating to each copper wire, it was attempted to electrically isolate the adjacent wires, thereby reducing eddy current loss. However, if each copper wire is coated with insulation as described above, it will be difficult to shunt the current in the event of a ground fault.
A new problem arose. In other words, if we consider a case where a ground fault occurs between a conductor and one copper wire, the one copper wire that has a ground fault and the many other copper wires adjacent to it will be electrically isolated; This is because the wire is electrically isolated from the stainless steel sheath, and as a result, the ground fault current will concentrate on that one copper wire, making it difficult to distribute it to many other copper wires. be. As mentioned above, if the ground fault current flows in a concentrated manner in one copper wire, the temperature of the metal sheath will rise significantly in the event of a ground fault, resulting in widespread damage to the power cable in the event of a ground fault. occurs. Furthermore, there is also the problem that providing an insulating coating increases manufacturing costs. As a result of intensive research by the inventors, it was found that even with the configuration of the present invention, that is, a large number of bare copper wires arranged side by side, the increase in eddy current loss is so small that it can be practically ignored. The reason for this is that when a large number of bare copper wires are lined up, there is unavoidable contact resistance between the adjacent copper wires, and this contact resistance is caused by the contact resistance between the adjacent copper wires and the outer conductor layer wrapped in metal tape. This is because the presence of contact resistance appears to suppress the flow of current between the copper wires and between the copper wires and the outer conductor layer. Since such contact resistance is sufficiently lower than that of the insulating coating material, it will not interfere with the flow of earth fault current between the copper wires under a ground fault, and none of the copper wires will be exposed to the outside. By incorporating it into the conductor layer, an equipotential state is created, which enables uniform branching of the ground fault current throughout each copper wire. Based on the above knowledge, the present invention has the above-mentioned configuration, that is, a large number of bare copper wires are wound in a spiral shape on an insulator, and a metal is placed on top of the insulator to make contact with each of the bare copper wires. A tape-wrapped outer conductor layer is provided, and a stainless steel sheath is provided on top of the outer conductor layer. In addition, it has been considered to provide such a shunting conductor outside the stainless steel sheath, but since the ground fault current from the conductor is shunted through the stainless steel sheath, which has a high electrical resistivity, the result is not necessarily satisfactory. Moreover, since the stainless steel sheath is corrugated, it becomes difficult to wind the shunt conductor thereon, making it difficult to conduct electricity within the shunt conductor itself, which is not desirable in terms of manufacturing. It didn't happen. Therefore, in the present invention, a bare conductor layer for shunting current is provided on an insulator, and it is suppressed by an outer conductor layer wrapped with metal tape, and further, the outer conductor layer is covered with a stainless steel sheath from the outside. This is to ensure reliable contact between the conductor layer and the bare conductor layer. Hereinafter, an explanation will be given based on FIG. 2 showing an embodiment of the present invention. In FIG. 2, the same parts as in FIG. 1 of the conventional example are given the same reference numerals. The metal sheath 3b, which is the key point of improvement, consists of a bare conductor layer 3c provided on the outer periphery of the insulator 2, an outer conductor layer 3d provided on the surface of this bare conductor layer 3c, and a metal sheath 3b provided on the outer periphery of this outer conductor layer 3d. It was formed with a stainless steel sheath 3e. The bare conductor layer 3c is formed by winding a large number of bare copper wires (copper wires without an insulating layer on the surface) in a spiral shape around the outer periphery of the insulator 2. Further, the outer conductor layer 3d is formed by winding a metal tape around the surface of the bare conductor layer, so that it is wrapped in a restrained winding state around each copper wire of the bare conductor layer 3c. By doing this, in the event of a ground fault, the flow is shunted to the bare conductor layer made of twisted bare copper wires close to the conductor 1 side and having good conductivity, and the bare conductor layer is constructed via the outer conductor layer. Since the current can be uniformly divided into each copper wire, a temperature rise in the metal sheath 3b at the time of a ground fault is suppressed. Eddy current loss caused by current flowing in the adjacent power cable is suppressed by the stainless steel sheath 3d having a high electrical resistivity on the corrosion protection layer 4 side, that is, on the outside. In addition, bare copper wires can be lined up and connected to each other through adjacent parts or through an outer conductor layer wrapped with metal tape, but there is unavoidable contact resistance between these wires and between the copper wire and the outer conductor layer. This suppresses eddy currents from flowing across the lines. Therefore, it is possible to simultaneously satisfy the contradictory demands of reducing the eddy current loss of the metal sheath 3b during energization and increasing the ground fault capacity of the metal sheath 3b during a ground fault. In addition, although this embodiment shows an example in which a round copper wire with a circular cross section is used as the bare copper wire, the present invention is not limited thereto, and a rectangular bare copper wire may also be used. Furthermore, it is desirable that the total cross-sectional area of the bare copper wires of the bare conductor layer 3c be set to a size such that the temperature of the bare conductor layer 3c due to ground fault current is below a permissible value. Table 1 shows the results of examining the characteristics of the above examples. This study examined the eddy current loss factor, temperature rise, and temperature rise of a conventional product that uses aluminum as the metal sheath, and the invented product that uses a stainless steel sheath, bare conductor layer (copper wire), and outer conductor layer (metal tape). was measured.

【表】 上表の測定結果から明らかなように、本考案の
電力ケーブルでは、渦電流損率が、金属シースに
アルミニウムを採用した従来の電力ケーブルより
も約1桁低下し、地絡時の金属シースの温度上昇
が、ステンレスシースだけの場合の値よりも低下
し、17℃であつた。 このように、本考案品の渦電流損率、温度上昇
がともに低下したのは、金属シースが、ステンレ
スシースとその内側に設けた多数の裸銅線のスパ
イラル巻による裸導体層および金属テープ巻の外
部導体層とで形成されたためで、導体に近い裸導
体層および外部導体層によつて地絡電流が分流さ
れ、ステンレスシースによつて渦電流損が低減さ
れたためである。 以上の説明から明らかなように、本考案の電力
ケーブルによれば、金属シースが、ステンレスシ
ースとその内側の絶縁体上に多数本の裸銅線を並
べた状態でスパイラル状に巻回して設けられた裸
導体層と、その外周であつて該層における多数本
の裸銅線の何れにも接触する状態で設けられた金
属テープ巻による外部導体層で形成されたもので
あるから、送電時における渦電流損が少なく而も
地絡時の電流容量が大きい金属シースを有する電
力ケーブルを提供するという所期の目的は十分に
達成される。
[Table] As is clear from the measurement results in the above table, the eddy current loss factor of the power cable of the present invention is approximately one order of magnitude lower than that of conventional power cables that use aluminum for the metal sheath, and The temperature rise of the metal sheath was 17°C, lower than the value for the stainless steel sheath alone. In this way, the eddy current loss factor and temperature rise of the present product were both reduced because the metal sheath was made of a stainless steel sheath, a bare conductor layer made of spirally wound numerous bare copper wires provided inside the stainless steel sheath, and a metal tape wound. This is because the ground fault current is shunted by the bare conductor layer near the conductor and the outer conductor layer, and the eddy current loss is reduced by the stainless steel sheath. As is clear from the above explanation, according to the power cable of the present invention, a metal sheath is provided by winding a large number of bare copper wires in a spiral shape on a stainless steel sheath and an insulator inside the sheath. It is made up of a bare conductor layer, and an outer conductor layer wrapped with metal tape, which is placed around the outer periphery of the layer and in contact with any of the many bare copper wires in the layer. The intended purpose of providing a power cable having a metal sheath with low eddy current losses and high current carrying capacity in the event of a ground fault is fully achieved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の電力ケーブルの横断面説明図、
第2図は本考案にかかる電力ケーブルの一実施例
を示す横断面説明図である。 符号において、1は導体、2は絶縁体、3bは
金属シース、3cは裸導体層、3dは外部導体
層、3eはステンレスシース、4は防食層であ
る。
Figure 1 is a cross-sectional diagram of a conventional power cable.
FIG. 2 is an explanatory cross-sectional view showing one embodiment of the power cable according to the present invention. In the symbols, 1 is a conductor, 2 is an insulator, 3b is a metal sheath, 3c is a bare conductor layer, 3d is an outer conductor layer, 3e is a stainless steel sheath, and 4 is an anticorrosion layer.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 導体上に設けられた絶縁体、金属シースおよび
防食層を有する電力ケーブルにおいて、前記金属
シースが、前記絶縁体の外周に多数本の裸銅線を
並べた状態でスパイラル状に巻回して設けられた
裸導体層と、この導体層の表面であつて該層にお
ける多数本の裸銅線の何れにも接触した状態で設
けられた金属テープ巻による外部導体層と、この
外部導体層の外周に設けたステンレスシースとで
形成されたことを特徴とする電力ケーブル。
In a power cable having an insulator provided on a conductor, a metal sheath, and an anti-corrosion layer, the metal sheath is provided by winding a large number of bare copper wires in a spiral shape around the outer periphery of the insulator. a bare conductor layer, an outer conductor layer formed by winding a metal tape and provided on the surface of this conductor layer in contact with any of the many bare copper wires in the layer; A power cable characterized by being formed with a stainless steel sheath.
JP14933483U 1983-09-27 1983-09-27 power cable Granted JPS6057014U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14933483U JPS6057014U (en) 1983-09-27 1983-09-27 power cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14933483U JPS6057014U (en) 1983-09-27 1983-09-27 power cable

Publications (2)

Publication Number Publication Date
JPS6057014U JPS6057014U (en) 1985-04-20
JPH0229613Y2 true JPH0229613Y2 (en) 1990-08-09

Family

ID=30331527

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14933483U Granted JPS6057014U (en) 1983-09-27 1983-09-27 power cable

Country Status (1)

Country Link
JP (1) JPS6057014U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719906A (en) * 1980-05-30 1982-02-02 Furukawa Electric Co Ltd Power cable

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS631384Y2 (en) * 1981-03-24 1988-01-14

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5719906A (en) * 1980-05-30 1982-02-02 Furukawa Electric Co Ltd Power cable

Also Published As

Publication number Publication date
JPS6057014U (en) 1985-04-20

Similar Documents

Publication Publication Date Title
US3594492A (en) Pipe-type cable systems with reduced ac losses
JP3691692B2 (en) Superconducting cable
JPH0229613Y2 (en)
JPH0229614Y2 (en)
JP3795203B2 (en) DC power coaxial cable
JPS631384Y2 (en)
JP6632954B2 (en) Grounding system
JPS58885Y2 (en) power cable
JPH11111071A (en) Submarine power cable
US2711439A (en) Electric cables
CN215895990U (en) Flexible cable for robot joint
CN220420292U (en) Termite-proof rat-proof cross-linked polyethylene insulated ultra-high voltage power cable
JP2585591B2 (en) Optical fiber composite single core power cable
CN217214213U (en) Power supply and temperature sensing composite cable for linear motor
CN217361176U (en) Single core cable of high strength transmission signal
CN216849415U (en) High-voltage cable
JPS6228013Y2 (en)
CN217214188U (en) Special superfine cable for medical equipment
JPH0641290Y2 (en) Submarine cable for single-core AC power
CN212570492U (en) Self-supporting shielding type bundling overhead cable
US1760409A (en) Cable
JPS6038804B2 (en) power cable
US3598899A (en) Conductor for underground transmission of electric power
JPS5924083Y2 (en) Single core lead submerged bottom cable for power use
JPS622754Y2 (en)