JPH0229610B2 - RYUANNOSEIZOHO - Google Patents

RYUANNOSEIZOHO

Info

Publication number
JPH0229610B2
JPH0229610B2 JP18914182A JP18914182A JPH0229610B2 JP H0229610 B2 JPH0229610 B2 JP H0229610B2 JP 18914182 A JP18914182 A JP 18914182A JP 18914182 A JP18914182 A JP 18914182A JP H0229610 B2 JPH0229610 B2 JP H0229610B2
Authority
JP
Japan
Prior art keywords
ammonium sulfate
slurry
crystals
crystallizer
crystal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP18914182A
Other languages
Japanese (ja)
Other versions
JPS5978924A (en
Inventor
Taizo Nakamura
Kenji Yamashita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP18914182A priority Critical patent/JPH0229610B2/en
Publication of JPS5978924A publication Critical patent/JPS5978924A/en
Publication of JPH0229610B2 publication Critical patent/JPH0229610B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 この発明は、硫安の製造法に係り、特にコーク
ス炉ガスに硫酸含有液を接触させた後生成したス
ラリーの母液を振切つて得られた硫安粉末から肥
料用として最適な粒度を有する硫安を製造する方
法に関する。 肥料用として使用される硫安は、施肥の際に均
一に散布することができ、風による飛散が少く、
また、葉や茎への付着がないこと等が要求される
ほか、リン酸肥料やカリ肥料と混合して施肥され
る場合には均一に混合するためにリン酸肥料やカ
リ肥料の粒度と略同じ粒度に揃える必要があり、
このため6〜18メツシユ程度の粒度分布であるこ
とが望ましい。 しかしながら、コークス炉ガス中に含有されて
いるアンモニアを原料にして硫安を製造した場
合、大きい結晶の硫安を得ることは困難であつ
た。そこで、この問題を解決するための多くの方
法が検討され、例えば、第二鉄イオンの影響を除
くためにピリジン回収母液の処理量を多くした
り、アンモニア飽和器とは別に結晶槽を設けて滞
留時間を長くしたり、さらに遊離酸濃度とスラリ
ー濃度とを所定の範囲内に制御したりすることが
提案されている。しかし、この方法においても、
18メツシユ篩上の歩留は10重量%程度にすぎず、
工業的見地からして粒度の大きい製品歩留の向上
を図ることが重要な課題になつていた。 本発明者等は、かかる観点に鑑み、粒度が大き
くして外観が良好であり、しかも歩留がよい硫安
の製造法について鋭意研究を重ねた結果、コーク
ス炉ガスに硫酸含有液を接触させた後生成したス
ラリーの母液を振切つて粗硫安粉末を得、この粗
硫安粉末を水に再溶解してPH4〜7に調整し、得
られた硫安溶液を結晶缶に装入して撹拌下に濃縮
することにより硫安結晶を析出せしめ、結晶缶の
下部からは所定粒度以上の硫安結晶を主体とする
下部スラリーを抜き出すと共に結晶缶の上部から
は所定粒度以下の硫安結晶を主体とする上部スラ
リーを抜き出し、下部スラリーについてはその母
液を振切つて硫安結晶を取出すと共に上記母液を
結晶缶に戻し、また、上部スラリーについては加
熱及び上記硫安溶液を混合することにより微細結
晶の少くとも一部を再溶解して結晶缶に循環さ
せ、かつ、上記硫安溶液及び上記下部スラリーの
母液のいずれか一方又は双方を脱色処理すること
により結晶缶内で析出する硫安結晶の粒度の向上
と着色防止とが達成できることを見い出し、本発
明に到達したものである。 本発明において、粗硫安粉末の製造は従来公知
の方法、例えば、アンモニアを含有するコークス
炉ガスをアンモニア飽和器に導入し、このアンモ
ニア飽和器内でコークス炉ガスを硫酸水溶液等の
硫酸含有液に接触させてコークス炉ガス中のアン
モニアを硫安として捕集し、次いで生成したスラ
リーを遠心分離機等にかけてその母液を振切るこ
とにより得られる。また、アンモニア飽和器内に
は硫安を含有するピリジン母液、脱安母液、脱硫
母液等をも装入することもある。このアンモニア
飽和器での遊離酸濃度は硫酸に換算して通常2〜
8重量%で、スラリー濃度は通常30〜50重量%で
ある。また、飽和器の他に結晶槽を付設すること
もできる。飽和器又は結晶槽から抜き出されたス
ラリーの母液を振切つて得られた粗硫安粉末は、
一般にその粒度が小さく、通常その85〜95重量%
が20〜100メツシユ程度であり、また、この粗硫
安粉末を水に溶解して得られた硫安濃度40重量%
の硫安溶液は、PH2〜3程度である。 このようにして得られた粗硫安粉末は、溶解槽
内に導入され、水で再溶解してPH4〜7、好まし
くはPH6〜7に調整される。PHが4より低いと硫
安結晶の成長が不充分であつて製品歩留が低下
し、また、PHが7より高くなるとアンモニアが遊
離したり着色が起つて製品の品質を低下させる原
因になる。 粗硫安粉末を溶解するための溶解水は、後述す
る結晶缶のスチームエジエクターからのドレンや
この結晶缶から出た蒸発水、あるいはPH調整に使
用される安水等を使用することが有利である。ま
た、粗硫安粉末を溶解するときの条件は、特に限
定されるものではないが、好ましくは撹拌下にで
きるだけ高温で行うのがよく、通常40℃以上、好
ましくは50℃以上で行う。従つて、上記各溶解水
は、保温等の処理をすることにより温度低下の少
い状態で溶解槽に導入するのが好ましい。 この溶解槽で得られる硫安溶液は、その移送工
程で結晶が析出しないように不飽和溶液である必
要があり、硫安濃度については通常35〜45重量
%、好ましくは38〜42重量%である。硫安濃度が
35重量%より低いと結晶缶での負荷が大きくなり
すぎ、また、45重量%より高くなると移送工程で
温度低下が生じた場合等に結晶が析出する虞れが
ある。また、この硫安溶液の鉄イオン濃度は、通
常100ppm以下、好ましくは10ppm以下にする。 次に、硫安溶液は、結晶缶に装入して撹拌下に
濃縮し、硫安結晶を析出させる。この結晶缶とし
ては、連続式混合析型のものが使用され、特に、
結晶缶内にドラフト、チユーブ、撹拌翼等を内蔵
し、チユーブで仕切られた撹拌域と静置域とを有
し、この静置域で析出した結晶を所定の粒度で沈
降分離し、結晶缶の下部からは所定粒度以上の結
晶を主体とする下部スラリーを抜き出すと共に、
結晶缶の上部からは所定粒度以下の結晶を主体と
する上部スラリーを抜き出してこれを再び結晶缶
内に循環させるタイプのものが好ましい。 この結晶缶は、スラリーの缶内滞留時間3〜10
時間好ましくは5〜8時間、缶内スラリー濃度25
〜50重量%好ましくは35〜45重量%、缶内温度50
℃以上の条件で減圧下に運転される。また、結晶
缶の上部から抜き出された上部スラリーは再び結
晶缶内に循環するが、この上部スラリーの循環量
は硫安溶液のフイード量に対して通常7〜25倍、
好ましくは10〜20倍である。 結晶缶に循環される上部スラリーは、その循環
ラインに設けられた加熱器で加熱され、そして不
飽和溶液として供給されるフイードの硫安溶液を
混合され、微細結晶の少くとも一部好ましくは全
部若しくはその大部分が溶解した状態で結晶缶内
に装入される。また、結晶缶内の温度は下部スラ
リーの循環ラインに設けられた加熱器からの熱に
より維持され、この結晶缶内の減圧は、例えばス
チームエジエクター等により行なわれる。 また、この結晶缶には、その中間位置にスラリ
ー抜出口を設けると共に、硫安溶液のフイードラ
インに結晶溶解槽を設置し、結晶缶から抜き出さ
れる下部スラリー中の硫安結晶の粒度が所望の粒
度以下になつた際に上記スラリー抜出口から所定
粒度以下の硫安結晶を主体とする中間部スラリー
を抜き出し、結晶溶解槽に装入してフイードの硫
安溶液で再溶解することが望ましい。 上記結晶缶の下部から抜き出され、所定粒度以
上の硫安結晶を主体とする下部スラリーは、例え
ば遠心分離機にかけられて固液分離され、取出さ
れた硫安結晶は乾燥機で乾燥されてから所定の粒
度分布を持つ種々の製品に篩分けされる。また、
この母液は結晶缶に戻される。この母液を結晶缶
に戻す方法としては、好ましくは上部スラリーの
循環ラインに装入し、この上部スラリーと共に加
熱器で加熱してからフイードの不飽和硫安溶液に
混合して結晶缶に装入する。 上記溶解槽から供給される硫安溶液のフイード
ライン及び/又は上記下部スラリーの母液を結晶
缶に戻すフイードバツクラインには脱色槽を設
け、溶解槽で硫安溶液のPH調整を行つた際に沈降
した鉄分等を連続的又は間欠的に取り除く。この
除去効果はPH4以上好ましくは5〜7のときに優
れている。脱色槽は沈降した鉄分等を過又は吸
着より分離除去できるものであれば如何なるタイ
プのものであつてもよいが、過と同時に吸着も
行う活性炭使用の脱色槽が好ましい。この脱色槽
の使用により、結晶缶内の鉄イオン濃度を通常
50ppm以下に維持する。 次に、本発明の実施の一例を示すフローシート
に基づいて本発明を具体的に説明する。 コークス炉ガスは、ライン1よりアンモニア飽
和器2内に入り、ライン3から入る硫酸含有液と
接触してアンモニアが捕集され、ライン4から排
出される。アンモニア飽和器2内で生成した硫安
はスラリーとなつてライン5から抜き出され、遠
心分離機6で固定分離されて粗硫安粉末となる。 この粗硫安粉末は、ライン7から溶解槽8内に
装入され、ライン9及び10から装入される溶解
水によつて再溶解され、また、ライン11から装
入される安水によつてPH4〜7に調整される。 溶解槽8でPH調整された硫安溶液は、そのフイ
ードライン12に設けられた脱色槽13を連続的
又は間欠的に通過し、また、このフイードライン
12に設けられた結晶溶解槽14を通過して結晶
缶15に装入される。 この結晶缶15には、その上部に所定粒度以下
の硫安結晶を主体とする上部スラリーを抜き出
し、この上部スラリーを硫安溶液のフイードライ
ン12に混合して再び結晶缶15に循環させるた
めの循環ライン16が設けられており、この循環
ライン16に設けられた熱交換型の加熱器17に
より上部スラリーを加熱し所要熱量の実質的全部
を供給できるようになつている。また、結晶缶1
5の下部には、所定粒度以上の硫安結晶を主体と
する下部スラリーを抜き出すための結晶抜出ライ
ン18が設けられており、この結晶抜出ライン1
8から抜き出された下部スラリーが遠心分離機1
9で固液分離され、ライン20から硫安結晶を取
出すと共にこの下部スラリーの母液はライン21
から液槽22に集められるようになつている。 上記液槽22に集められた下部スラリーの母
液は、この液槽22から抜き出され、フイード
バツクライン23を経て加熱器17に入る循環ラ
イン16に装入され、この循環ライン16を流れ
る下部スラリーと共に再度結晶缶15に戻される
ようになつている。 また、結晶缶15には、その中間部分に下部ス
ラリー中の硫安結晶の粒度が所望の粒度以下にな
つた際に中間部スラリーを抜き出すためのライン
24が設けられており、このライン24から中間
部スラリーを抜き出すことにより下部スラリーの
硫安結晶を所定粒度以上に整えると共に、この抜
き出した中間部スラリーを硫安溶液のフイードラ
イン12に設けた結晶溶解槽14に装入し、結晶
を溶解して再び結晶缶15に装入するようになつ
ている。 図中、符号25は結晶缶15内を減圧にしてこ
の結晶缶15内に装入される硫安溶液を濃縮する
ためのスチームエジエクターであり、ライン26
からスチームが導入され、ライン27からその凝
縮水が出る。また、結晶缶15内で蒸発した水蒸
気は、ライン28から外部に抜き出され、凝縮器
29で凝縮されて未凝縮蒸気がスチームエジエク
ター25内に導入され、また、凝縮液はライン2
7の凝縮水と合流されるようになつている。この
ライン27に集められた凝縮水は、図示外のライ
ンを経てライン10に導かれ、溶解槽8内に装入
されて粗硫安粉末を溶解するために使用される。
さらに、ライン30は加熱器17にスチームを導
入するためのラインであり、この加熱器17で循
環ライン16を流れる上部スラリーと熱交換して
凝縮した凝縮水はライン9から溶解槽8に装入さ
れ、粗硫安粉末を溶解するために使用される。 このフローシートにおいては、結晶缶15が1
基だけ描かれているが、硫安結晶のフイードライ
ン12を2本以上設けたりあるいは枝分れさせ、
2基あるいはそれ以上の結晶缶を並設することが
有利であり、この場合に各結晶缶の缶内温度に温
度差を設け、高温側の結晶缶から抜き出される水
蒸気のライン(図中符号28に相当)を低温側の
結晶缶に設けられた循環ラインの加熱器に導入
し、熱源として利用することが望ましい。 また、このフローシートにおいては、脱色槽1
3が硫安溶液のフイードライン12に設けられて
いるが、図中一点鎖線で示すように、これに代え
てあるいはこれとは別に、下部スラリーの母液を
結晶缶15に戻すフイードバツクライン23に設
け、第二鉄分を過又は吸着して脱色するように
してもよい。 本発明によれば、粒度の大きい硫安結晶を効率
良く製造できるほか、着色を防止することがで
き、その製品価値を向上することができる。 なお、本発明において、硫安溶液中にリンゴ
酸、クエン酸、カプロラクタム、オキシム等の媒
晶剤を共存させ、これらの媒晶剤の媒晶効果によ
り硫安媒晶をより大きく成長させることもでき
る。また、下部スラリーの母液を振切つて得られ
た硫安結晶の乾燥工程や篩分け工程で回収される
硫安結晶の微粉末については、これを再度溶解槽
に装入して硫安結晶の製造系に戻すこともでき
る。 以下、本発明方法を実施例に基づいて説明す
る。 実施例 アンモニア飽和器でコークス炉ガスを硫酸含有
液と接触させて得られたスラリーから表に示す粒
度分布の粗硫安粉末を得た。この粗硫安粉末を溶
解槽で再溶解し、安水でPH調整をして得られたPH
6、硫安濃度41重量%の硫安溶液を結晶缶に装入
し、結晶の滞留時間5〜8時間、缶内スラリー濃
度35〜45重量%、缶内PH3〜4.6、缶内温度55〜
58℃、スラリー循環量と硫安溶液フイード量との
比14という条件でこの結晶缶を運転し、硫安結晶
を製造した。得られた硫安結晶の粒度分布は表に
示す通りであつた。 【表】
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing ammonium sulfate, and in particular, it is suitable for use in fertilizers from ammonium sulfate powder obtained by shaking off the mother liquor of slurry produced after bringing a sulfuric acid-containing liquid into contact with coke oven gas. The present invention relates to a method for producing ammonium sulfate having a particle size. Ammonium sulfate, which is used as a fertilizer, can be spread evenly during fertilization and is less likely to be blown away by the wind.
In addition, in addition to requirements such as not adhering to leaves or stems, when fertilizing is mixed with phosphate fertilizer or potassium fertilizer, the particle size is approximately the same as the particle size of phosphate fertilizer or potassium fertilizer in order to mix uniformly. It is necessary to align the
For this reason, a particle size distribution of about 6 to 18 meshes is desirable. However, when ammonium sulfate was produced using ammonia contained in coke oven gas as a raw material, it was difficult to obtain ammonium sulfate with large crystals. Therefore, many methods have been considered to solve this problem, such as increasing the amount of pyridine recovered mother liquor treated to eliminate the influence of ferric ions, and installing a crystallization tank separate from the ammonia saturator. It has been proposed to lengthen the residence time and further control the free acid concentration and slurry concentration within predetermined ranges. However, even with this method,
The yield on the 18 mesh sieve is only about 10% by weight,
From an industrial standpoint, improving the yield of products with large particle sizes has become an important issue. In view of this, the inventors of the present invention have conducted intensive research on a method for producing ammonium sulfate that has large particle size, good appearance, and high yield, and as a result, they have developed a method for producing ammonium sulfate in which coke oven gas is brought into contact with a sulfuric acid-containing liquid. After that, the mother liquor of the slurry produced was shaken off to obtain crude ammonium sulfate powder, and this crude ammonium sulfate powder was redissolved in water to adjust the pH to 4 to 7. The obtained ammonium sulfate solution was charged into a crystallizer and stirred. By concentrating, ammonium sulfate crystals are precipitated, and from the lower part of the crystallizer, a lower slurry mainly consisting of ammonium sulfate crystals with a predetermined particle size or more is extracted, and an upper slurry mainly containing ammonium sulfate crystals with a predetermined particle size or less is extracted from the upper part of the crystallizer. The mother liquor in the lower slurry is shaken off to remove the ammonium sulfate crystals, and the mother liquor is returned to the crystallizer, and the upper slurry is heated and mixed with the ammonium sulfate solution to regenerate at least a portion of the fine crystals. By dissolving and circulating the ammonium sulfate solution in the crystallizer and decolorizing either or both of the ammonium sulfate solution and the mother liquor of the lower slurry, the particle size of the ammonium sulfate crystals precipitated in the crystallizer can be improved and coloration can be prevented. This is what we discovered and arrived at the present invention. In the present invention, crude ammonium sulfate powder is produced using a conventionally known method, for example, introducing coke oven gas containing ammonia into an ammonia saturator, and converting the coke oven gas into a sulfuric acid-containing liquid such as an aqueous sulfuric acid solution within the ammonia saturator. It is obtained by contacting coke oven gas to collect ammonia as ammonium sulfate, and then applying the resulting slurry to a centrifuge or the like to shake off the mother liquor. In addition, pyridine mother liquor, desulfurization mother liquor, desulfurization mother liquor, etc. containing ammonium sulfate may also be charged into the ammonia saturator. The free acid concentration in this ammonia saturator is usually 2 to 2 when converted to sulfuric acid.
8% by weight, and the slurry concentration is typically 30-50% by weight. In addition to the saturator, a crystallization tank can also be attached. The crude ammonium sulfate powder obtained by shaking the slurry mother liquor extracted from the saturator or crystallizer is
Generally its particle size is small, usually 85-95% by weight
is about 20 to 100 mesh, and the ammonium sulfate concentration obtained by dissolving this crude ammonium sulfate powder in water is 40% by weight.
The ammonium sulfate solution has a pH of about 2 to 3. The crude ammonium sulfate powder thus obtained is introduced into a dissolution tank and redissolved with water to adjust the pH to 4 to 7, preferably 6 to 7. If the pH is lower than 4, the growth of ammonium sulfate crystals will be insufficient and the product yield will be reduced, and if the pH is higher than 7, ammonia will be liberated and coloration will occur, leading to a decrease in product quality. As the dissolving water for dissolving the crude ammonium sulfate powder, it is advantageous to use the drain from the steam ejector of the crystallizer, the evaporated water from the crystallizer, or the ammonium water used for pH adjustment, which will be described later. be. Further, the conditions for dissolving the crude ammonium sulfate powder are not particularly limited, but it is preferably carried out at as high a temperature as possible while stirring, usually at 40°C or higher, preferably at 50°C or higher. Therefore, it is preferable that each of the above-mentioned dissolving waters is introduced into the dissolving tank in a state where the temperature decrease is small by performing a treatment such as heat insulation. The ammonium sulfate solution obtained in this dissolution tank needs to be an unsaturated solution so that crystals do not precipitate during the transfer process, and the ammonium sulfate concentration is usually 35 to 45% by weight, preferably 38 to 42% by weight. Ammonium sulfate concentration
If it is less than 35% by weight, the load on the crystal can becomes too large, and if it is more than 45% by weight, there is a risk that crystals will precipitate when the temperature drops during the transfer process. Further, the iron ion concentration of this ammonium sulfate solution is usually 100 ppm or less, preferably 10 ppm or less. Next, the ammonium sulfate solution is charged into a crystallizer and concentrated while stirring to precipitate ammonium sulfate crystals. As this crystallizer, a continuous mixing type is used, and in particular,
A draft, a tube, a stirring blade, etc. are built into the crystal can, and there is a stirring area and a standing area separated by a tube, and the crystals precipitated in this standing area are sedimented and separated to a predetermined particle size, and the crystals are separated into a crystal can. A lower slurry consisting mainly of crystals with a predetermined particle size or more is extracted from the lower part of the
It is preferable to use a type in which an upper slurry mainly consisting of crystals of a predetermined particle size or less is extracted from the upper part of the crystal can and circulated back into the crystal can. This crystal can has a slurry residence time of 3 to 10
Time preferably 5 to 8 hours, slurry concentration in the can 25
~50% by weight preferably 35-45% by weight, temperature inside the can 50
It is operated under reduced pressure at temperatures above ℃. In addition, the upper slurry extracted from the upper part of the crystallizer is circulated into the crystallizer again, but the circulation amount of this upper slurry is usually 7 to 25 times the feed amount of the ammonium sulfate solution.
Preferably it is 10 to 20 times. The upper slurry circulated to the crystallizer is heated by a heater installed in its circulation line and mixed with a feed ammonium sulfate solution, which is supplied as an unsaturated solution, so that at least some of the fine crystals, preferably all or Most of it is charged into the crystallizer in a molten state. Further, the temperature inside the crystal can is maintained by heat from a heater provided in the circulation line of the lower slurry, and the pressure inside the crystal can is reduced by, for example, a steam evacuator. In addition, this crystallization can is provided with a slurry outlet in the middle position, and a crystal dissolution tank is installed in the ammonium sulfate solution feed line to ensure that the particle size of ammonium sulfate crystals in the lower slurry extracted from the crystallization can is below the desired particle size. When the slurry reaches a certain point, it is desirable to extract the intermediate slurry mainly composed of ammonium sulfate crystals with a predetermined particle size or less from the slurry extraction port, charge it into a crystal dissolution tank, and redissolve it in the feed ammonium sulfate solution. The lower slurry, which is extracted from the lower part of the crystallizer and mainly consists of ammonium sulfate crystals with a predetermined particle size or more, is separated into solid and liquid by, for example, being centrifuged. It is sieved into various products with a particle size distribution of . Also,
This mother liquor is returned to the crystallizer. The method for returning this mother liquor to the crystallizer is preferably to charge it into the upper slurry circulation line, heat it together with the upper slurry in a heater, mix it with the feed unsaturated ammonium sulfate solution, and charge it into the crystallizer. . A decolorizing tank is installed in the feed line for the ammonium sulfate solution supplied from the dissolving tank and/or the feed back line for returning the mother liquor of the lower slurry to the crystallization tank, and when the pH of the ammonium sulfate solution is adjusted in the dissolving tank, sedimentation occurs. Remove iron etc. continuously or intermittently. This removal effect is excellent when the pH is 4 or higher, preferably 5 to 7. The decolorization tank may be of any type as long as it can separate and remove precipitated iron and the like by filtration or adsorption, but a decolorization tank using activated carbon that adsorbs at the same time as filtration is preferred. By using this decolorization tank, the iron ion concentration in the crystal tank can be reduced to normal.
Maintain below 50ppm. Next, the present invention will be specifically explained based on a flow sheet showing an example of implementation of the present invention. Coke oven gas enters the ammonia saturator 2 through line 1, contacts the sulfuric acid-containing liquid that enters through line 3, collects ammonia, and is discharged through line 4. The ammonium sulfate produced in the ammonia saturator 2 becomes a slurry and is extracted from a line 5, and is fixed and separated in a centrifuge 6 to become crude ammonium sulfate powder. This crude ammonium sulfate powder is charged into the dissolution tank 8 from line 7, redissolved by the dissolution water charged from lines 9 and 10, and further dissolved by the ammonium water charged from line 11. Adjusted to PH4-7. The ammonium sulfate solution whose pH has been adjusted in the dissolution tank 8 passes continuously or intermittently through the decolorization tank 13 provided in the feed line 12, and also passes through the crystal dissolution tank 14 provided in the feed line 12 to dissolve the crystals. It is charged into a can 15. This crystal can 15 has a circulation line 16 for extracting an upper slurry mainly consisting of ammonium sulfate crystals having a particle size below a predetermined size, mixing this upper slurry with an ammonium sulfate solution feed line 12, and circulating the mixture to the crystal can 15 again. A heat exchange type heater 17 provided in the circulation line 16 can heat the upper slurry and supply substantially all of the required amount of heat. Also, crystal can 1
5 is provided with a crystal extraction line 18 for extracting a lower slurry mainly composed of ammonium sulfate crystals having a predetermined particle size or more.
The lower slurry extracted from 8 is sent to centrifuge 1.
The ammonium sulfate crystals are taken out from the line 20, and the mother liquor of this lower slurry is taken out from the line 21.
The water is collected from the liquid into a liquid tank 22. The mother liquor of the lower slurry collected in the liquid tank 22 is extracted from the liquid tank 22 and charged into the circulation line 16 which enters the heater 17 via the feedback line 23. It is designed to be returned to the crystal can 15 together with the slurry. Further, the crystal can 15 is provided with a line 24 in its middle portion for extracting the middle slurry when the particle size of the ammonium sulfate crystals in the lower slurry becomes less than a desired particle size. By extracting the partial slurry, the ammonium sulfate crystals in the lower slurry are adjusted to a predetermined particle size or higher, and the extracted intermediate slurry is charged into the crystal dissolving tank 14 provided in the ammonium sulfate solution feed line 12 to dissolve the crystals and crystallize again. It is adapted to be charged into a can 15. In the figure, reference numeral 25 is a steam ejector for reducing the pressure inside the crystallizer 15 and concentrating the ammonium sulfate solution charged into the crystallizer 15, and a line 26
Steam is introduced through line 27, and its condensate exits through line 27. Further, the water vapor evaporated in the crystal can 15 is extracted to the outside through a line 28, condensed in a condenser 29, and uncondensed steam is introduced into the steam evaporator 25.
It is designed to be combined with the condensed water of 7. The condensed water collected in line 27 is led to line 10 via a line not shown, charged into dissolution tank 8, and used to dissolve crude ammonium sulfate powder.
Furthermore, the line 30 is a line for introducing steam into the heater 17, and the condensed water that is condensed by exchanging heat with the upper slurry flowing through the circulation line 16 in the heater 17 is charged to the melting tank 8 from the line 9. and is used to dissolve crude ammonium sulfate powder. In this flow sheet, the crystal canister 15 is 1
Although only the base is depicted, it is possible to provide two or more ammonium sulfate crystal feed lines 12 or branch them,
It is advantageous to install two or more crystallizers in parallel, and in this case, a temperature difference is created in the internal temperature of each crystallizer, and a water vapor line (reference symbol in the figure) is drawn from the crystallizer on the high temperature side. 28) is preferably introduced into the heater of the circulation line provided in the crystallizer on the low temperature side and used as a heat source. In addition, in this flow sheet, decolorization tank 1
3 is provided in the feed line 12 for the ammonium sulfate solution, but as shown by the dashed line in the figure, instead of this or in addition to this, a feed back line 23 is provided for returning the mother liquor of the lower slurry to the crystallization vessel 15. , ferric iron may be decolorized by absorption or adsorption. According to the present invention, it is possible to efficiently produce ammonium sulfate crystals with large particle size, and also to prevent coloring, thereby improving the product value. In the present invention, it is also possible to coexist a crystal modifier such as malic acid, citric acid, caprolactam, oxime, etc. in the ammonium sulfate solution, and to grow the ammonium sulfate crystal to a larger size due to the modulation effect of these modifiers. In addition, fine powder of ammonium sulfate crystals recovered in the drying process and sieving process of ammonium sulfate crystals obtained by shaking off the mother liquor of the lower slurry is charged again into the dissolution tank and used in the ammonium sulfate crystal manufacturing system. You can also return it. The method of the present invention will be explained below based on examples. Examples Crude ammonium sulfate powder having the particle size distribution shown in the table was obtained from a slurry obtained by contacting coke oven gas with a sulfuric acid-containing liquid in an ammonia saturator. This crude ammonium sulfate powder was redissolved in a dissolution tank, and the pH was adjusted with ammonium water.
6. Charge an ammonium sulfate solution with an ammonium sulfate concentration of 41% by weight into a crystallization can, crystal residence time 5 to 8 hours, slurry concentration in the can 35 to 45% by weight, PH in the can 3 to 4.6, temperature in the can 55 to
Ammonium sulfate crystals were produced by operating this crystallizer under the conditions of 58° C. and a ratio of 14 between the amount of slurry circulation and the amount of ammonium sulfate solution feed. The particle size distribution of the obtained ammonium sulfate crystals was as shown in the table. 【table】

【図面の簡単な説明】[Brief explanation of drawings]

図は本発明方法の一例を示すフローシートであ
る。
The figure is a flow sheet showing an example of the method of the present invention.

Claims (1)

【特許請求の範囲】[Claims] 1 コークス炉ガスに硫酸含有液を接触させた後
生成したスラリーの母液を振切つて粗硫安粉末を
得、この粗硫安粉末を水に再溶解してPH4〜7に
調整し、得られた硫安溶液を結晶缶に装入して撹
拌下に濃縮することにより硫安結晶を析出せし
め、結晶缶の下部からは所定粒度以上の硫安結晶
を主体とする下部スラリーを抜き出すと共に結晶
缶の上部からは所定粒度以下の硫安結晶を主体と
する上部スラリーを抜き出し、下部スラリーにつ
いてはその母液を振切つて硫安結晶を取出すと共
に上記母液を結晶缶に戻し、また、上部スラリー
については加熱及び上記硫安溶液を混合すること
により微細結晶の少くとも一部を再溶解して結晶
缶に循環させ、かつ、上記硫安溶液及び上記下部
スラリーの母液のいずれか一方又は双方を連続的
又は間欠的に脱色処理することを特徴とする硫安
の製造法。
1. After bringing a sulfuric acid-containing liquid into contact with coke oven gas, the slurry mother liquor produced is shaken off to obtain crude ammonium sulfate powder, and this crude ammonium sulfate powder is redissolved in water to adjust the pH to 4 to 7. Ammonium sulfate crystals are precipitated by charging the solution into a crystal can and concentrating it while stirring, and a lower slurry mainly composed of ammonium sulfate crystals with a predetermined particle size or more is extracted from the bottom of the crystal can, and a predetermined The upper slurry, which mainly consists of ammonium sulfate crystals with a particle size or smaller, is extracted, and the lower slurry is shaken off to remove the ammonium sulfate crystals, and the mother liquor is returned to the crystallizer.The upper slurry is heated and mixed with the ammonium sulfate solution. By doing so, at least a portion of the fine crystals are redissolved and circulated through the crystallizer, and either one or both of the ammonium sulfate solution and the mother liquor of the lower slurry are decolorized continuously or intermittently. Characteristic manufacturing method of ammonium sulfate.
JP18914182A 1982-10-29 1982-10-29 RYUANNOSEIZOHO Expired - Lifetime JPH0229610B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18914182A JPH0229610B2 (en) 1982-10-29 1982-10-29 RYUANNOSEIZOHO

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18914182A JPH0229610B2 (en) 1982-10-29 1982-10-29 RYUANNOSEIZOHO

Publications (2)

Publication Number Publication Date
JPS5978924A JPS5978924A (en) 1984-05-08
JPH0229610B2 true JPH0229610B2 (en) 1990-07-02

Family

ID=16236095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18914182A Expired - Lifetime JPH0229610B2 (en) 1982-10-29 1982-10-29 RYUANNOSEIZOHO

Country Status (1)

Country Link
JP (1) JPH0229610B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5247837A (en) * 1991-09-25 1993-09-28 Rosemount Inc. Magnetic flowmeter electrode
EA015963B1 (en) * 2006-07-28 2012-01-30 ДСМ АйПи АССЕТС Б.В. Process for continuous production of large crystal products

Also Published As

Publication number Publication date
JPS5978924A (en) 1984-05-08

Similar Documents

Publication Publication Date Title
CN107434245B (en) A kind of method and system of industrial grade monoammonium phosphate mother liquor production potassium dihydrogen phosphate
US4632813A (en) Process for the production of water soluble ammonium phosphates
US3734773A (en) Process for selectively purifying sugar beet diffusion juice and by-product recovery of valuable organic acids therefrom
JP2021172652A (en) Method and system for preparing high-purity taurine and salts
CN217350773U (en) System for coproduction iron phosphate through nitrophosphate fertilizer device
CN110127761A (en) A kind of ammonium molybdate method for crystallising
US2033389A (en) Process for the production of ammonium phosphate
NO154793B (en) PROCEDURE FOR THE REMOVAL OF POLLUTANTS FROM SODIUM ALUMINATE SOLUTIONS.
US2753242A (en) Process for the separation of sodium sulfate from an intermixture of crystals of sodium sulfate and sodium chloride
JPH0229610B2 (en) RYUANNOSEIZOHO
CN108483463B (en) Method for preparing high-quality ammonium sulfate by using coking desulfurization and decyanation waste liquid
AU5845599A (en) Method of ammonium sulfate purification
CN211920885U (en) Device for preparing ammonium sulfate from desulfurization waste liquid
US4610853A (en) Process for producing purified monoammonium phosphate from wet process phosphoric acid
CN108690049A (en) The method that Amoxicillin is detached from the reaction product that enzyme process prepares Amoxicillin
CN108946767B (en) Method for separating potassium sulfate by using sodium-potassium-sulfur-chlorine quaternary system
NO116160B (en)
CN108726759B (en) Method for treating ammonium salt-containing wastewater
US4610862A (en) Process for producing purified diammonium phosphate from wet process phosphoric acid
CN108726604B (en) Treatment method of catalyst production wastewater
JP2004010408A (en) Method of manufacturing granular ammonium sulfate
JP2004067922A (en) Process for treating de-ammoniacal liquor
CN114380317B (en) Method for recycling hydrochloric acid by recovering calcium sulfate from pickle liquor
US3515534A (en) Recycling ammonium sulfate in nitric phosphate processing
US1849923A (en) Production of ammonium chloride from coke oven gases and the like