JPH02295669A - Suction casting method - Google Patents

Suction casting method

Info

Publication number
JPH02295669A
JPH02295669A JP11665089A JP11665089A JPH02295669A JP H02295669 A JPH02295669 A JP H02295669A JP 11665089 A JP11665089 A JP 11665089A JP 11665089 A JP11665089 A JP 11665089A JP H02295669 A JPH02295669 A JP H02295669A
Authority
JP
Japan
Prior art keywords
suction
shell mold
suction box
vacuum
molten metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11665089A
Other languages
Japanese (ja)
Inventor
Kiyoyuki Ijima
井嶋 清幸
Masayuki Tsutsumi
堤 正之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP11665089A priority Critical patent/JPH02295669A/en
Publication of JPH02295669A publication Critical patent/JPH02295669A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent the degradation in quality by oxidation by injecting a molten metal formed by vacuum melting into a shell mold from the sprue thereof, communicating a suction box and a hollow vessel and sucking the inside of a suction case to a reduced pressure. CONSTITUTION:A solenoid valve 5a of a suction pipe 5 is actuated to close the communication between the suction box 3 and a hollow case 4. Gaseous Ar is then fed from a gas supply tank 10 into a hermetic chamber 7. The molten metal in a high-frequency melting furnace 8 is in succession poured through the sprue 2 into the casting space of the shell mold 1, simultaneously with which the solenoid valve 5a is opened to suck the gaseous Ar in the suction box 3 into the hollow case 4 of a low pressure. The molten metal poured therein is pressurized from the sprue 2 part side into the casting mold by the internal pressure difference between the hollow case 4 and the hermetic chamber 7 and is simultaneously sucked into the casting space in the shell mold 1 subjected to the suction to the reduced pressure; therefore, the good run is obtd. and the sure and uniform packing is executed.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、真空溶解された金属溶湯を不活性ガス雰囲気
下にて精密鋳造する吸引鋳造方法に関し、特には、Ni
基超合金等の活性な金属材料を原材料とする薄肉で複雑
形状の部品を、ロストヮックス造型法等によるセラミ?
クシェル鋳型を用いて鋳造成形するに好適な吸引鋳造方
法に関する.〔従来の技術〕 ロストワックス(インベスメント)鋳造法に代表される
精密鋳造法は、他の鋳造方法では難しい薄肉で複雑形状
の製品を得ることができることより、近来、広い範囲に
適用されている.通常、ロストワックス鋳造法では、セ
ラミックシェル鋳型を高温に加熱しておき、その中に溶
融金属を注入する方法が採られているが、対象品の形状
、大きさ、肉厚等により、溶湯の鋳型内での湯回りが影
響を受け、所期の形状・寸法の品物が得られない場合が
ある.そこで、完全な湯回りを得るために、溶融金属の
注入の際に鋳型内を減圧させる吸引鋳造法が適用される
. 一方、Ni基紹合金材料等の活性な金属材料は、大気中
で溶解すると酸化されて、所期の特性を有するものが得
難くなることより、真空下で溶解され、その鋳造は、一
般的に真空下で行われる.しかし、これら活性な金属材
料原材料とする薄肉で複雑形状の部品を、セラミックシ
ェル鋳型等を用いて精密鋳造するに、吸引鋳造法を適用
せんとする場合、その鋳造を真空下で行うことが実用上
不能となる.これは、吸引鋳造法においては、通気性を
有すシェル鋳型の周囲部を減圧し、この鋳型内の圧力を
、溶湯を注入する湯口側の圧力より比較的に大きな圧力
差をもって低くすることが必須であるが、真空下では、
必要とする圧力差を生じさせることが困難となるからで
ある.そこで、例えば、第5図に示すように、吸引ボッ
クス(51)内に、通気性を有すシェル鋳型(52)を
セットし、真空下で溶解された金属溶湯を、このシェル
鋳型(52)の湯口から注入すると共に、その注入にあ
わせて吸引ボックス(51)内を真空吸引して、シェル
鋳型(52)内の脱気を同時進行させることで、注入さ
れた金属溶湯を真空下に近い雰囲気下におくと共に、シ
ェル鋳型(52)内での湯回良くして、Ni基超合金材
料等からなる薄肉で複雑形状の部品を精密鋳造する吸引
鋳造方法が提案されている.(特開昭55−15365
8号公報)〔発明が解決しようとする課題〕 しかし、上記従来の吸引鋳造方法では、金属溶湯の注入
と、吸引ボックス(51)の真空吸引の開始とのタイミ
ングにおいて、その真空吸引が早すぎると、シェル鋳型
(52)内に空気が吸引されて金属熔湯に酸化が生じ、
また、真空吸引が遅すぎると、金属溶湯の凝固が先行し
て実質的な吸引効果を失し、いずれも得られる鋳造製品
の品質を損なうので、これら双方のタイミングを微妙に
禰整するを要するという、操業上の煩雑さと困難性があ
り、更に、金属溶湯をシェル鋳型(52)の湯口に注入
する過程おける空気との接触で、金属溶湯に不可避的に
酸化が生じて、その品質を低下させるという問題がある
.加えて、吸引ボックス(51)内を真空吸引するため
の専用の真空ポンプ設ける必要があり、設備が高騰する
という問題がある.本発明は、上記の問題点に鑑み、金
属溶湯を不活性ガス雰囲気下にてシェル鋳型に吸引鋳造
し得て、金属溶湯の酸化による品質低下を防止すること
ができ、かつ、シェル鋳型の湯口側の圧力と、吸引ボッ
クス内の圧力との圧力差を容易に調整し得て、その吸引
効果を確保して金属溶湯のシェル鋳型内での湯回りを安
定して良くすることができ、加えて、吸引ボックスに専
用の真空ポンプ設けることを不要とし得る吸引鋳造方法
の提供を目的とするものである. 〔課題を解決するための手段〕 上記の目的を達成するために、本発明に係る吸引鋳造方
法は、通気性を有すシェル鋳型を、その湯口の開口部を
除いて吸引ボックス内に気密に組み込み、かつ、この吸
引ボックスに開閉可能に連通させた中空容器を設ける一
方、シェル鋳型の湯口の開口部を.、溶解炉を内に有す
る気密チャンバ内に向かって開口させて配置しておき、
その溶解炉による原料の真空溶解に際し、シェル鋳型と
吸引ケースを介して気密チャンバと中空容器とを連通さ
せて、この中空容器内を真空に減圧し、次いで、吸引ボ
ックスと中空容器との間の連通を閉塞すると共に、気密
チャンバ内に不活性ガスを送給して、この気密チャンバ
および吸引ボックス内を増圧させた後に、前記溶解炉に
て真空熔解された金属溶湯を、シェル鋳型の湯口より注
入すると共に、吸引ボックスと中空容器との間を連通さ
せて吸引ケース内を減圧吸引するものである.〔作用〕 本発明においては、通気性を有すシェル鋳型を、その湯
口の開口部を除いて吸引ボックス内に気密に組み込み、
かつ、この吸引ボックスに開閉可能に連通させた中空容
器を設ける一方、シェル鋳型の湯口の開口部を、溶解炉
を内に有する気密チャンバ内に向かうで開口させて配置
して、前記中空容器を、シェル鋳型と吸引ケースとを介
して気密チャンバとを連通させるので、その溶解炉によ
る原料の真空溶解に際する気密チャンバ内の真空引きに
て、この中空容器内を真空に減圧し得る.次いで、吸引
ボックスと中空容器との間の連通を閉塞して、この中空
容器と気密チャンバとの連通を絶つと共に、気密チャン
バ内に不活性ガスを送給して、この気密チャンバおよび
吸引ボックス内を増圧させることで、中空容器の内圧を
、気密チャンバの内圧より格段に低圧にし得る.次いで
、前記溶解炉にて真空溶解された金属溶湯を、シェル鋳
型の湯口より注入すると共に、吸引ボックスと中空容器
との間を連通させることで、吸引ケース内の不活性ガス
を低圧なる中空容器内へ吸引して、この吸引ケース内お
よび湯口部を溶湯で閉塞されたシェル鋳型内の鋳造空間
を減圧吸引し得る. このとき、シェル鋳型内に注入された金属溶湯は、中空
容器と気密チャンバとの内圧差にて、湯口部側から鋳型
内に向けて加圧されると同時に、減圧された鋳型内の鋳
造空間へ吸引されるので、薄肉に形成された鋳造空間に
おいても良好な湯回りが得られる. また、この真空溶解された金属溶湯は、不活性ガスを送
給された気密チャンバ内で、真空に減圧された中空容器
により減圧吸引されるシェル鋳型内に注入されので、そ
の鋳造成形の過程において、酸化による品質低下を被る
懸念が一切ない.なお、上に述べた減圧吸引のための中
空容器と気密チャンバとの内圧差は、適用されるシェル
鋳型および金属溶湯の特性や、鋳造成形される製品肉厚
等に基づいて設定され、その内圧差の付与は主として気
密チャンバ内に送給される不活性ガスの圧力で調整され
る.また、中空容器の内容積は、適用されるシェル鋳型
および吸引ケースの大きさや内容積にに対応するものと
される.〔実施例〕 以下に、本発明の実施例を図面を参照して説明する. まず、製品と略同一形状のワックス模型に湯道および湯
口を接合してツリーを作成する.続いて、このツリーを
、ジルコンフラワー、粘結剤としてのコロイダルシリカ
および表面活性剤などからなるスラリー中に浸漬して、
その表面に均一な被覆層を形成させた後、直ちに、耐火
物粉末としてのジルコンサンド粉末を、その全面に均一
にふりかけて乾燥し、これを数次に繰り返して、ツリー
の全面に耐火物の層を厚く成形させる.これを十分に自
然乾燥させた後に加圧蒸気で加熱して内部のワックスを
流出させ、第2図に示すように、その内部に製品と略同
一形状の鋳造空間を有し、かつ通気性のあるセラミック
シェル鋳型(1)を得る.また、このシェル鋳型(1)
の湯口(2)部の上面には、平坦なシール面部(2a)
を設けておく.本実施例においては、厚さ1mmの羽根
を備える薄肉インベラを対象製品とするシェル鋳型(1
)を製作した. 次いで、このシェル鋳型(1)を1050℃以上に予熱
した後に、第3図に示すように、吸引ボックス(3)内
に組み込む.このとき、シェル鋳型(1)の湯口(2)
部のシール面部(2a)を、吸引ボックス(3)の上開
口(3a)部に周設されたシール材(3b)に当接させ
る.ここで、この吸引ボックス(3)は、その内下部に
上下動可能な鋳型支持台(3c)を縦設すると共に、こ
の鋳型支持台(3c)の上方の内周壁に、シェル鋳型(
1)を加熱するためのヒータ(3d)を周設したもので
ある.また、この吸引ボックス(3)の下方には、中空
ケース(4)が一体的に設けられてあり、この中空ケー
ス(4)と吸引ボックス(3)とは、電磁弁(5a)を
備えた吸引管(5)にて連通されてある.また、この吸
引管(5)の電磁弁(5a)より吸引ボックス(3)寄
りの部位には、分岐管(5b)が設けられてある.続い
て、予熱されたシェル鋳型(1)を組み込んだ吸引ボッ
クス(3)を、中空ケース(4)と共に、第1図に示す
ように、真空溶解設@ (6)の気密チャンバ(7)内
に装入・配置する. ここで、この真空溶解設備(6)は、その気密チャンバ
(7)内に高周波溶解炉(8)を備えると共に、気密チ
ャンバ(7)内を真空引きする真空ポンプ(9)と、気
密チャンバ(7)内に不活性ガスを送給するガス供給タ
ンク00とを備えたものである. 続いて、吸引管(5)の分岐管(5b)に、ガス供給タ
ンク0[I)と連通し、かつその中途に弁(Ila)を
備えた背圧管00を接続させる一方、吸引ボックス(3
)のヒータ(3d)を、ここでは図示を省略した、外部
の通電手段に接続・連通させる. しかる後に、気密チャンバ(7)内を所定の真空度まで
減圧し.て、高周波溶解炉(8)に装填された原材料の
真空溶解が開始されるが、これに平行して、吸引ボック
ス(3)のヒータ(3d)に通電させて、シェル鋳型(
+)をl050゜C以上の温度に加熱・保持することと
、シェル鋳型(1)および吸引ボックス(3)内を脱気
させること、および、吸引管(5)の[磁弁(5a)を
開に作動させて、中空ケース(4)内を真空に減圧させ
ることとが同時に行われる.このとき、背圧管(l1)
の弁(lla)は閉に作動させておく.上記のように行
われる本実施例の真空溶解においては、Ni基鰯合金(
Inconel 713C)用の原材料を、高周波溶解
炉(8)に装填する一方、気密チャンバ《7)内をQ,
 l torr以下の真空度に減圧して、この原材料を
急速溶解した. 次に、この真空熔解の完了時点で、吸引管(5)の電磁
弁(5a)を閉に作動させて、吸引ボックス(3)と中
空ケース(4)との連通を閉塞させると共に、ガス供給
タンク00)からArガスを気密チャンバ(7)内に送
給して、この気密チャンバ(7)内を内圧400tor
rの計雰囲気とする.このとき、シェル鋳型(1)およ
び吸引ボックス(3)内も気密チャンバ(7)内と同圧
のAr雰囲気となるが、この吸引ボックス(3)との連
通を閉塞された中空ケース(4)内は、ほぼ0. 1 
torrの真空度のままである. 続いて、高周波溶解炉(8)内のNi基超合金の溶湯を
、その湯口(2)を介してシェル鋳型(1)の鋳造空間
に注入するが、この溶湯の注入開始と同時に、吸引管(
5)の電磁弁(5a)を開に作動させて、吸引ボックス
(3)内のArガスを、低圧な中空ケース(4)内に吸
引させる.このとき、この吸引の開始タイミングが多少
早めにずれても、シェル鋳型(1)の湯口(2)部が注
入される溶湯で早期に閉塞されるので、このシェル鋳型
(1)内の鋳造空間も減圧吸引される.そして、注入さ
れた溶湯は、中空ケース(4)と気密チャンバ(7)と
の内圧差にて、湯口(2)部側から鋳型内に向けて加圧
されると同時に、減圧吸引されるシェル鋳型(1)内の
鋳造空間へ吸引されるので、その鋳造空間において良好
な湯回りが得られ、厚さ1++nと掻く薄肉なインペラ
の羽根部先端まで確実かつ均一に充填させることができ
る.なお、溶湯がシェル鋳型(1)内に行き渡り、その
鋳造空間を完全に充填した後にも、中空ケース(4)と
気密チャンバ(7)との間に内圧差をもたせてお《と、
溶湯の熱を受けて強度低下したシェル鋳型(1)が破損
して、湯漏れや鋳造成形品の変形等を引き起こす懸念が
あるので、本実施例においては、シェル鋳型(1)内の
鋳造空間を完全に充填するに足る量の溶湯を注入した時
点で、ガス供給タンク0ωと連通した背圧管00の弁(
lla)を開き、Arガスを吸引ボックス(3)内に送
給して、中空ケース(4)と気密チャンバ(7)との内
圧差を解消させた.以上のようにして行われた本実施例
の吸引鋳造方法により得られたインペラは、所期の精密
な寸法・形状のものであり、また、得られたインペラの
羽根部表面および機械加工後のボス部表面を精査したと
ころ、その溶解および鋳造成形の全過程において大気と
の接触がないことより、酸化による品質低下は一切認め
られなかった. なお、本実施例においては、その内容積が比較的に大き
な中空ケース(4)を設け、溶湯の注入完了時点で、こ
の中空ケース(4)内にArガスを送給して背圧を付与
するものとしたが、これは、対象とされる製品形状およ
びシェル鋳型(1)の特性等に対応させ、吸引ボックス
(3)内の初!lIN減圧に必要十分な内容積のものと
しても良く、また、溶湯の注入完了時点で、吸引ボック
ス(3)内にArガスを送給して背圧を付与するに替わ
り、気密チャンバ(7)内を減圧しても良い.更にまた
、通気性が阻害されない限りにおいて、予め、吸引ボッ
クス(3)内のシェル鋳型(1)まわりに、バックアッ
プ用の粒子を充填しておいても良い. また、本実施例において適用したシェル鋳型の造型方法
は一例であって、通気性を有するシェル鋳型が得られる
限り、他の造型方法が適用されても良い. また、真空溶解設備として、単一の気密チャンバを備え
たものを用いたが、これが、溶解気密室と鋳造気密室を
併せ備える場合には、その鋳造気密室内に、シェル鋳型
を組み込んだ吸引ボックスおよび中空ケースを配置して
、溶解気密室で真空溶解された溶湯を、上記と同じよう
にして、その鋳造気密室内でシェル鋳型に注入すれば良
い.一方、真空溶解設備が、単一の比較的に小さな気密
チャンバを備えたもので、その気密チャンバ内に、シェ
ル鋳型を組み込んだ吸引ボックスや中空ケース等を装入
することができない場合には、例えば、本発明の別の実
施例の説明図である第4図に示すように、真空溶解設備
(40)の気密チャンバ(41)の内底部に内外を貫通
し、かつ開閉可能なスライドゲート(41a)を設けて
おき、前述実施例のものと同構成で、その内にシェル鋳
型(1)を組み込んだ吸引ボックス(3)を、その上開
口(3a)をスライドゲート(41a)の開口部に臨ま
せ、かつ、その上開口(3a)の周囲上面を、環伏シー
ル材(42)を介して、スライドゲート(41a)の開
口部の周囲下面に気密に当接させて配置させることで、
比較的に小規模な真空溶解設備においても、前述実施例
と同効果の吸引鋳造を実施することができる.ここで、
この真空溶解設備(40)は、前述実施例のものと同様
に、高周波溶解炉(43)、真空ボンブ(44)、ガス
供給タンク(45)を備えたものである.また、この例
においては、電磁弁(46a)を備えた吸引管(46)
を介して、吸引ボックス(3)に連通される中空ケース
(4)は、前述実施例のように、吸引ボックス(3)の
下方に一体的には設けられず、独立して配設されてある
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a suction casting method for precision casting a vacuum-melted molten metal in an inert gas atmosphere.
Ceramic thin-walled parts with complex shapes made from active metal materials such as base superalloys are produced using the Lost Works molding method.
This article relates to a suction casting method suitable for casting using a Kuschel mold. [Prior art] Precision casting methods, typified by lost wax (investment) casting methods, have recently been widely applied because they can produce products with thin walls and complex shapes that are difficult to produce with other casting methods. .. Normally, the lost wax casting method involves heating a ceramic shell mold to a high temperature and injecting molten metal into it. However, depending on the shape, size, wall thickness, etc. of the target product, This may affect the flow of the hot water in the mold, making it impossible to obtain a product with the desired shape and dimensions. Therefore, in order to obtain a perfect flow, a suction casting method is used that reduces the pressure inside the mold when pouring molten metal. On the other hand, active metal materials such as Ni-based alloy materials are oxidized when melted in the atmosphere, making it difficult to obtain materials with the desired properties. This is done under vacuum. However, when applying the suction casting method to precision casting thin-walled, complex-shaped parts using ceramic shell molds, etc., which are made from these active metal raw materials, it is practical to perform the casting under vacuum. It becomes impossible to move. This is because in the suction casting method, the pressure is reduced around the breathable shell mold, and the pressure inside the mold is lowered by a relatively large pressure difference than the pressure on the sprue side where molten metal is injected. Although it is essential, under vacuum,
This is because it becomes difficult to generate the required pressure difference. Therefore, for example, as shown in FIG. 5, a breathable shell mold (52) is set in a suction box (51), and the molten metal melted under vacuum is poured into this shell mold (52). The injected molten metal is injected from the sprue, and the inside of the suction box (51) is vacuumed at the same time as the injection, and the inside of the shell mold (52) is degassed at the same time. A suction casting method has been proposed in which thin-walled and complex-shaped parts made of Ni-based superalloy materials are precisely cast by placing the parts in an atmosphere and improving the flow of hot water within the shell mold (52). (Unexamined Japanese Patent Publication No. 55-15365
(Publication No. 8) [Problem to be Solved by the Invention] However, in the above-mentioned conventional suction casting method, the vacuum suction is performed too early between the injection of the molten metal and the start of the vacuum suction of the suction box (51). Then, air is sucked into the shell mold (52) and oxidation occurs in the molten metal.
Additionally, if the vacuum suction is too slow, the molten metal will solidify in advance and the suction effect will be lost, both of which will impair the quality of the resulting cast product, so the timing of both needs to be carefully adjusted. In addition, during the process of pouring the molten metal into the sprue of the shell mold (52), oxidation inevitably occurs in the molten metal due to contact with air, reducing its quality. There is a problem of letting In addition, it is necessary to provide a dedicated vacuum pump to vacuum the inside of the suction box (51), which raises the problem of increased equipment costs. In view of the above problems, the present invention is capable of suction casting a molten metal into a shell mold in an inert gas atmosphere, prevents deterioration in quality due to oxidation of the molten metal, and has a sprue of the shell mold. The pressure difference between the side pressure and the pressure inside the suction box can be easily adjusted, and the suction effect can be ensured to ensure stable and good circulation of molten metal in the shell mold. The purpose of this invention is to provide a suction casting method that makes it unnecessary to install a dedicated vacuum pump in the suction box. [Means for Solving the Problems] In order to achieve the above object, the suction casting method according to the present invention includes an air-permeable shell mold that is airtightly placed in a suction box except for the sprue opening. A hollow container is built in and connected to the suction box so that it can be opened and closed, while the opening of the sprue of the shell mold is installed. , the melting furnace is arranged to open toward the inside of the airtight chamber having the melting furnace therein;
When melting raw materials in a vacuum using the melting furnace, the airtight chamber and the hollow container are communicated through the shell mold and the suction case to reduce the pressure inside the hollow container to a vacuum, and then the pressure between the suction box and the hollow container is reduced to a vacuum. After closing the communication and supplying an inert gas into the airtight chamber to increase the pressure inside the airtight chamber and the suction box, the molten metal vacuum-melted in the melting furnace is transferred to the sprue of the shell mold. At the same time, the suction box and hollow container are communicated with each other to vacuum the inside of the suction case. [Function] In the present invention, an air-permeable shell mold is airtightly assembled into a suction box except for the sprue opening,
In addition, a hollow container is provided which communicates with the suction box in an openable and closable manner, and the opening of the sprue of the shell mold is arranged to open toward an airtight chamber having a melting furnace therein, so that the hollow container is opened and closed. Since the shell mold and the airtight chamber are communicated through the suction case, the pressure inside the hollow container can be reduced to a vacuum by drawing a vacuum in the airtight chamber during vacuum melting of raw materials in the melting furnace. Next, the communication between the suction box and the hollow container is closed to cut off the communication between the hollow container and the airtight chamber, and an inert gas is supplied into the airtight chamber so that the airtight chamber and the suction box are closed. By increasing the pressure, the internal pressure of the hollow container can be made much lower than the internal pressure of the airtight chamber. Next, the molten metal vacuum-melted in the melting furnace is injected from the sprue of the shell mold, and the suction box and the hollow container are communicated with each other, so that the inert gas in the suction case is released into the hollow container at a low pressure. It is possible to vacuum the inside of this suction case and the casting space in the shell mold whose sprue is closed with molten metal. At this time, the molten metal injected into the shell mold is pressurized from the sprue side into the mold due to the internal pressure difference between the hollow container and the airtight chamber, and at the same time, the casting space inside the mold is depressurized. Since the hot water is sucked into the mold, good water circulation can be obtained even in thin casting spaces. In addition, this vacuum-melted molten metal is injected into a shell mold that is sucked under reduced pressure by a hollow container that is evacuated to vacuum in an airtight chamber that is supplied with inert gas, so that during the casting process. There is no concern that quality will deteriorate due to oxidation. The internal pressure difference between the hollow container and the airtight chamber for vacuum suction mentioned above is set based on the characteristics of the applied shell mold and molten metal, the thickness of the product to be cast, etc. The difference is mainly adjusted by the pressure of the inert gas fed into the airtight chamber. Furthermore, the internal volume of the hollow container shall correspond to the size and internal volume of the applied shell mold and suction case. [Examples] Examples of the present invention will be described below with reference to the drawings. First, a tree is created by joining a runner and sprue to a wax model that has approximately the same shape as the product. The tree is then soaked in a slurry consisting of zircon flour, colloidal silica as a binder, and a surfactant.
After forming a uniform coating layer on the surface, immediately sprinkle zircon sand powder as refractory powder evenly over the entire surface and dry. Repeat this several times to coat the entire surface of the tree with refractory powder. Form a thick layer. After sufficiently air-drying it, it is heated with pressurized steam to cause the wax inside to flow out, and as shown in Figure 2, it has a casting space inside that has approximately the same shape as the product and is breathable. Obtain a certain ceramic shell mold (1). Also, this shell mold (1)
There is a flat sealing surface (2a) on the top of the sprue (2).
Set it up. In this example, a shell mold (1
) was produced. Next, this shell mold (1) is preheated to 1050° C. or higher, and then placed in a suction box (3) as shown in FIG. At this time, the sprue (2) of the shell mold (1)
The sealing surface portion (2a) of the suction box (3) is brought into contact with the sealing material (3b) provided around the upper opening (3a) portion of the suction box (3). Here, this suction box (3) is vertically provided with a vertically movable mold support (3c) in its inner lower part, and a shell mold (3c) on the inner peripheral wall above the mold support (3c).
1) is equipped with a heater (3d) around it. Further, a hollow case (4) is integrally provided below the suction box (3), and the hollow case (4) and the suction box (3) are connected to a solenoid valve (5a). They are connected via a suction tube (5). Further, a branch pipe (5b) is provided in a portion of the suction pipe (5) closer to the suction box (3) than the solenoid valve (5a). Subsequently, the suction box (3) incorporating the preheated shell mold (1) is placed together with the hollow case (4) in the airtight chamber (7) of the vacuum melting setup @ (6) as shown in Figure 1. Charge and place. Here, this vacuum melting equipment (6) is equipped with a high frequency melting furnace (8) in its airtight chamber (7), a vacuum pump (9) that evacuates the airtight chamber (7), and a vacuum pump (9) that evacuates the airtight chamber (7). 7) and a gas supply tank 00 for supplying inert gas. Next, a back pressure pipe 00 communicating with the gas supply tank 0 [I] and equipped with a valve (Ila) in the middle thereof is connected to the branch pipe (5b) of the suction pipe (5), while the suction box (3
) is connected and communicated with an external energizing means (not shown here). After that, the pressure inside the airtight chamber (7) is reduced to a predetermined degree of vacuum. Then, vacuum melting of the raw materials loaded into the high frequency melting furnace (8) is started, but in parallel with this, the heater (3d) of the suction box (3) is energized to melt the shell mold (
+) to a temperature of 1050°C or higher, evacuating the inside of the shell mold (1) and the suction box (3), and turning off the magnetic valve (5a) of the suction pipe (5). At the same time, the hollow case (4) is opened and the pressure inside the hollow case (4) is reduced to a vacuum. At this time, the back pressure pipe (l1)
The valve (lla) is kept closed. In the vacuum melting of this example performed as described above, Ni-based sardine alloy (
While loading the raw materials for Inconel 713C into the high-frequency melting furnace (8), the inside of the airtight chamber (7) was
The raw material was rapidly melted by reducing the pressure to less than 1 torr. Next, when this vacuum melting is completed, the solenoid valve (5a) of the suction pipe (5) is operated to close to block the communication between the suction box (3) and the hollow case (4), and the gas supply Ar gas is fed into the airtight chamber (7) from the tank 00), and the internal pressure in the airtight chamber (7) is set to 400 torr.
Let the atmosphere be r. At this time, the inside of the shell mold (1) and the suction box (3) are also in an Ar atmosphere with the same pressure as the inside of the airtight chamber (7), but the hollow case (4) whose communication with the suction box (3) is blocked is Inside is almost 0. 1
The vacuum level remains at torr. Next, the molten Ni-based superalloy in the high-frequency melting furnace (8) is injected into the casting space of the shell mold (1) through the sprue (2), but at the same time as the injection of this molten metal starts, the suction pipe (
5) Open the solenoid valve (5a) to suck the Ar gas in the suction box (3) into the low-pressure hollow case (4). At this time, even if the start timing of this suction is shifted a little earlier, the sprue (2) of the shell mold (1) is quickly blocked by the injected molten metal, so the casting space inside the shell mold (1) is is also suctioned under reduced pressure. Then, the injected molten metal is pressurized from the sprue (2) side into the mold due to the internal pressure difference between the hollow case (4) and the airtight chamber (7), and at the same time, the shell is depressurized and suctioned. Since the liquid is sucked into the casting space in the mold (1), good circulation is obtained in the casting space, and it is possible to reliably and uniformly fill the tip of the impeller blade, which is thin with a thickness of 1++n. Note that even after the molten metal has spread into the shell mold (1) and completely filled the casting space, an internal pressure difference is maintained between the hollow case (4) and the airtight chamber (7).
There is a risk that the shell mold (1), whose strength has decreased due to the heat of the molten metal, may be damaged and cause leakage or deformation of the cast product, so in this example, the casting space in the shell mold (1) is When enough molten metal is injected to completely fill the tank, the valve (
lla) was opened and Ar gas was supplied into the suction box (3) to eliminate the internal pressure difference between the hollow case (4) and the airtight chamber (7). The impeller obtained by the suction casting method of this example performed as described above has the desired precise dimensions and shape. Upon close inspection of the surface of the boss, no quality deterioration due to oxidation was observed as there was no contact with the atmosphere during the entire process of melting and casting. In this example, a hollow case (4) with a relatively large internal volume is provided, and when the injection of molten metal is completed, Ar gas is fed into this hollow case (4) to apply back pressure. However, this was done in accordance with the target product shape and the characteristics of the shell mold (1), and the first one in the suction box (3). The inner volume may be sufficient for lIN pressure reduction, and when the injection of molten metal is completed, instead of supplying Ar gas into the suction box (3) to apply back pressure, an airtight chamber (7) may be used. You can reduce the pressure inside. Furthermore, backup particles may be filled in advance around the shell mold (1) in the suction box (3) as long as air permeability is not hindered. Furthermore, the shell mold manufacturing method applied in this example is just one example, and other molding methods may be applied as long as a shell mold with air permeability can be obtained. In addition, we used vacuum melting equipment equipped with a single airtight chamber, but if this is equipped with both a melting airtight chamber and a casting airtight chamber, a suction box incorporating a shell mold inside the casting airtight chamber. Then, the molten metal vacuum-melted in the melting airtight chamber is injected into the shell mold in the casting airtight chamber in the same manner as described above. On the other hand, if the vacuum melting equipment is equipped with a single, relatively small airtight chamber, and it is not possible to insert a suction box or hollow case incorporating a shell mold into the airtight chamber, For example, as shown in FIG. 4, which is an explanatory diagram of another embodiment of the present invention, a slide gate (a sliding gate that penetrates the inside and outside of the airtight chamber (41) of the vacuum melting equipment (40) and that can be opened and closed) ( 41a) is provided, and a suction box (3) having the same structure as that of the above-mentioned embodiment and in which the shell mold (1) is incorporated is provided, and the upper opening (3a) is connected to the opening of the slide gate (41a). and the upper surface of the upper opening (3a) is placed in airtight contact with the lower surface of the periphery of the opening of the slide gate (41a) via the enclosing sealing material (42). ,
Even in a relatively small-scale vacuum melting facility, suction casting with the same effect as the above embodiment can be performed. here,
This vacuum melting equipment (40) is equipped with a high frequency melting furnace (43), a vacuum bomb (44), and a gas supply tank (45), as in the previous embodiment. Additionally, in this example, a suction pipe (46) equipped with a solenoid valve (46a)
The hollow case (4), which is communicated with the suction box (3) through the suction box (3), is not provided integrally below the suction box (3) as in the previous embodiment, but is provided independently. be.

〔発明の効果〕〔Effect of the invention〕

以上に述べたように、本発明に係る吸引鋳造方法によれ
ば、真空溶解された金属溶湯を、不活性ガス雰囲気下に
てシェル鋳型に吸引鋳造し得て、金属溶湯の酸化による
品質低下を防止でき、かつ、吸引鋳造に際するシェル鋳
型の湯口側の圧力と吸引ボックス内の圧力との圧力差を
容易に調整し得て、その吸引効果を確実なものとして金
属溶湯のシェル鋳型内での湯回りを安定して良くするこ
とができ、もって、Ni基超合金等の活性な金属材料か
らなる薄肉で複雑形状の部品を、精密かつ高品質に安定
して鋳造成形することができる.また、吸引ボックスの
減圧は、真空溶解設備に附設される真空引き手段による
ので、専用の真空ポンプを不要とし、その設備費を低く
抑え得る.
As described above, according to the suction casting method of the present invention, vacuum-melted molten metal can be suction-casted into a shell mold in an inert gas atmosphere, thereby preventing quality deterioration due to oxidation of the molten metal. It is possible to easily adjust the pressure difference between the pressure on the sprue side of the shell mold and the pressure in the suction box during suction casting, and to ensure the suction effect in the shell mold of molten metal. As a result, thin-walled, complex-shaped parts made of active metal materials such as Ni-based superalloys can be stably cast with precision and high quality. In addition, since the pressure in the suction box is reduced by the vacuum evacuation means attached to the vacuum melting equipment, a dedicated vacuum pump is not required and equipment costs can be kept low.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の吸引鋳造方法の概念説明図、 第2図および第3図は本発明に係わる説明図、第4図は
本発明の別の実施例の吸引鋳造方法の概念説明図、 第5図は従来の吸引鋳造方法の概念説明図である. (l)一 シェル鋳型、(2)一場口、(3)一吸引ボ
ックス、(4)一中空ケース、(5)一吸引管、(5a
)−電磁弁、(6)一真空溶解設備、(7)一気密チャ
ンバ、(8)一高周波溶解炉、(9)一真空ポンプ、0
0)一ガス供給タンク.特許出願人  株式会社 神戸
製鋼所 代 理 人  弁理士  金丸 章一
FIG. 1 is a conceptual explanatory diagram of a suction casting method according to an embodiment of the present invention, FIGS. 2 and 3 are explanatory diagrams according to the present invention, and FIG. 4 is a conceptual diagram of a suction casting method according to another embodiment of the present invention. Figure 5 is a conceptual diagram of the conventional suction casting method. (l) One shell mold, (2) One outlet, (3) One suction box, (4) One hollow case, (5) One suction pipe, (5a
) - Solenoid valve, (6) one vacuum melting equipment, (7) one airtight chamber, (8) one high frequency melting furnace, (9) one vacuum pump, 0
0) - Gas supply tank. Patent applicant Kobe Steel, Ltd. Agent Patent attorney Shoichi Kanemaru

Claims (1)

【特許請求の範囲】[Claims] 通気性を有すシェル鋳型を、その湯口の開口部を除いて
吸引ボックス内に気密に組み込み、かつ、この吸引ボッ
クスに開閉可能に連通させた中空容器を設ける一方、シ
ェル鋳型の湯口の開口部を、溶解炉を内に有する気密チ
ャンバ内に向かって開口させて配置しておき、その溶解
炉による原料の真空溶解に際し、シェル鋳型と吸引ケー
スを介して気密チャンバと中空容器とを連通させて、こ
の中空容器内を真空に減圧し、次いで、吸引ボックスと
中空容器との間の連通を閉塞すると共に、気密チャンバ
内に不活性ガスを送給して、この気密チャンバおよび吸
引ボックス内を増圧させた後に、前記溶解炉にて真空溶
解された金属溶湯を、シェル鋳型の湯口より注入すると
共に、吸引ボックスと中空容器との間を連通させて吸引
ケース内を減圧吸引することを特徴とする吸引鋳造方法
A shell mold having air permeability is airtightly assembled in a suction box except for the sprue opening thereof, and a hollow container is provided which communicates with the suction box in an openable and closable manner, while the sprue opening of the shell mold is arranged to open toward the inside of an airtight chamber having a melting furnace therein, and when the melting furnace vacuum melts raw materials, the airtight chamber and the hollow container are communicated through the shell mold and the suction case. , the inside of this hollow container is reduced to a vacuum, and then the communication between the suction box and the hollow container is closed, and an inert gas is supplied into the airtight chamber to increase the inside of this airtight chamber and the suction box. After the molten metal is vacuum-melted in the melting furnace, it is injected through the sprue of the shell mold, and the suction box and the hollow container are communicated with each other to vacuum the inside of the suction case. Suction casting method.
JP11665089A 1989-05-09 1989-05-09 Suction casting method Pending JPH02295669A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11665089A JPH02295669A (en) 1989-05-09 1989-05-09 Suction casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11665089A JPH02295669A (en) 1989-05-09 1989-05-09 Suction casting method

Publications (1)

Publication Number Publication Date
JPH02295669A true JPH02295669A (en) 1990-12-06

Family

ID=14692481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11665089A Pending JPH02295669A (en) 1989-05-09 1989-05-09 Suction casting method

Country Status (1)

Country Link
JP (1) JPH02295669A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102901659A (en) * 2012-09-06 2013-01-30 中国科学院金属研究所 Preparation method for metal alloy test rod
CN104646647A (en) * 2015-01-16 2015-05-27 马旭东 Titanium-based alloy induction melting bottom leakage type vacuum suction casting device and control method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102901659A (en) * 2012-09-06 2013-01-30 中国科学院金属研究所 Preparation method for metal alloy test rod
CN104646647A (en) * 2015-01-16 2015-05-27 马旭东 Titanium-based alloy induction melting bottom leakage type vacuum suction casting device and control method

Similar Documents

Publication Publication Date Title
US5069271A (en) Countergravity casting using particulate supported thin walled investment shell mold
US5168918A (en) Casting of dental metals
RU2039629C1 (en) Method of antigravity casting of molten metal and device for its carrying out
JPS63317246A (en) Sand molding method and device for composite product consisting of light alloy matrix and fibrous insert
US4832105A (en) Investment casting method and apparatus, and cast article produced thereby
CN103302242A (en) Precise casing method of tiles of floating wall of combustion chamber of aeroengine
JPS6211942B2 (en)
JP4891245B2 (en) Method and apparatus for casting molten metal
WO2009053675A1 (en) Casting a metal object
US4512383A (en) Die casting process and apparatus therefor
JPH02295669A (en) Suction casting method
JPH03198969A (en) Metallic mold casting apparatus
US20010002617A1 (en) Apparatus and methods for die casting
JPH11192541A (en) Casting device for aluminum alloy
CN112404389A (en) Die casting process of main body die
EP1101551B1 (en) Investment casting using melt reservoir loop
EP3135399B1 (en) Method of manufactruring precision cast parts for vehicle exhaust systems
US6070644A (en) Investment casting using pressure cap sealable on gas permeable investment mold
JPS603959A (en) Casting method
JPS62220241A (en) Casting mold and vacuum casting method using said casting mold
JP3592196B2 (en) Reduction casting method
JPH06114533A (en) Suction differential pressure casting method
EP1377399B1 (en) Casting apparatus for the production of metal castings by "lost-foam" technology
JPH09314309A (en) Vacuum suction casting method
JPS63235044A (en) Mold for precision casting