JPH02295153A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH02295153A
JPH02295153A JP11651789A JP11651789A JPH02295153A JP H02295153 A JPH02295153 A JP H02295153A JP 11651789 A JP11651789 A JP 11651789A JP 11651789 A JP11651789 A JP 11651789A JP H02295153 A JPH02295153 A JP H02295153A
Authority
JP
Japan
Prior art keywords
film
substrate
silicon
groove
isolation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11651789A
Other languages
Japanese (ja)
Inventor
Kojiro Yuzuriha
杠 幸二郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11651789A priority Critical patent/JPH02295153A/en
Publication of JPH02295153A publication Critical patent/JPH02295153A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)

Abstract

PURPOSE:To alleviate a stress generated at the time of heat treatment and to prevent a crystal defect from generating by forming a thermal stress alleviating film between a semiconductor substrate and an isolating insulating film. CONSTITUTION:A groove 2 having a desired depth is formed on a region to be isolated of a p-type silicon substrate 1 by photolithography and anisotropic etching. Then, a polycrystalline silicon film 6 is formed as a film for alleviating a thermal stress between the substrate 1 and a silicon oxide film 4 to be buried therefrom by a chemical vapor growing method. After the thin polycrystalline silicon film except those formed at the bottom and sidewall of the groove 2 of the silicon 6 is removed, the film 4 is thickly deposited, and etched back to complete a groove buried isolation. This film 6 alleviates a stress generated due to the difference of thermal expansion coefficients of the substrate 1 and the film 4 in a later heat treating step thereby to prevent the crystal defect of the substrate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、半導体基板に溝を形成し、その溝の中に素
子間又はウエル間を電気的に分離するための絶縁膜を埋
設した構造の半導体装置に関するものである. 〔従来の技術〕 従来のこの種の半導体装置について第3図により説明す
る.ここで示されている分離は、シリコン基板に形成さ
れた溝(トレンチ)内に、化学的気相成長法(.C V
 D法)によるシリコン酸化膜を埋め込むものであり、
BOX法(Buried OXide法)と呼ばれてい
る. また、第3図に示す例では、p型のシリコン基板上に作
成しなnチャネルMOS}ランジスタ素子の分離を示し
ている.すなわち、p型のシリコン基板1上において、
分離を形成しようとする領域にフォトリソグラフィー及
び異方性エッチングにより所望の深さの溝(トレンチ〉
2を形成した後、この溝(トレンチ)2の底部及び側壁
にかけて、隣り合うnチャネルMOSトランジスタ素子
のn+層lOとn+層1lとが分離領域の下でチャネル
を作らないように、チャネルカット用のボロンイオンを
注入してp型不純物層3を形成する.その後、化学的気
相成長法(CVD法)により、前記溝(トレンチ)2内
を含めてシリコン酸化膜4を厚く堆積した後、このシリ
コン酸化膜4をエッチバック法により平坦化して溝埋込
み分M5を完成させる. 〔発明が解決しようとする課題〕 従来の半導体装置、特にBOX法により製作した半導体
装置では、シリコン基板1に設けた溝《トレンチ》2内
に、CVD法によるシリコン酸化膜4を直接埋め込む構
造としたので、分離形成後の熱処理において、シリコン
基板1とシリコン酸化膜4との熱膨張係数の違いによる
応力が発生し、これによりシリコン基板1に結晶欠陥を
誘起し、半導体装置に異常なリーク電流を発生させると
いう問題点があった. この発明は上記のような問題点を解消するためになされ
たもので、半導体基板に結晶欠陥を引き起こさなくて、
かつ装置に異常なリーク電流が発生しない溝埋込み分離
構造の半導体装置を提供することを目的とする. 〔課題を解決するための手段〕 この発明に係る半導体装置は、半導体基板上に形成され
た溝内に分離用絶縁膜が埋め込まれる溝埋込み分離構造
のものであって、前記半導体基板と前記分離用絶縁膜と
の間に熱応力Mfli膜を形成したものである. 〔作用〕 この発明における熱応力緩衝膜は、後の熱処理工程にお
いて半導体基板と分離用絶縁膜の熱膨張係数の違いによ
り生じる応力を緩和させて、半導体基板の結晶欠陥の発
生を防止し、半導体装置に異常なリーク電流が誘起され
ないようにする.〔実施例〕 第1図は、この発明の一実施例による半導体装置の断面
図を示したもので、この例では、シリコン基板と溝(ト
レンチ)内に埋め込まれたシリコン酸化膜との問に、熱
処理によって発生する応力の緩衝用の膜として多結晶シ
リコン膜を形成している.なお、この実施例も従来例と
同様に、p型のシリコン基板に形成したnチャネルMO
S型トランジスタ素子の分離について説明する.すなわ
ち、p型のシリコン基板1において分離を形成しようと
する領域に、フォトリソグラフィー及び異方性エッチン
グにより所望の深さの渭(トレンチ)2を形成する. 次に、シリコン基板1とこれから埋め込もうとするシリ
コン酸化膜4との間の熱応力を緩衝する膜として、多結
晶シリコン膜6を化学的気相成長法(CVD法》により
形成する.そして、前記多結晶シリコン膜6のうぢ溝(
トレンチ)2の底部及び側壁に形成された以外の多結晶
シリコン薄膜を除去した後、シリコン酸化膜4を厚く堆
積させる.その後、このシリコン酸化膜4を工・ノチノ
ク・ソク法により平坦化して溝埋込み分離を完成させる
.なお、チャネルカット用のp型不純物層3は、多結晶
シリコンI[6の中、あるいは多結晶シリコン膜6とシ
リコン基板1の両方にわたって、溝(トレンチ)2内の
底部および側壁部にボロンイオンを注入することにより
形成している. さらに、第1図に示した半導体装〜置の絶縁分離を完全
にするために、熱応力#lI!衝用の多結晶シリコン膜
6の表面付近部分に絶縁膜を形成することを考える. ここでは、第1図に示した半導体装置の表面部分をウェ
ット酸化する.このとき熱応力緩衝用に形成された多結
晶シリコン膜6の方がシリコン基板lと比べて酸化レイ
トが!.5〜3倍程速いため、後に表面部分に形成され
た酸化膜を除去しても多結晶シリコン膜6の表面付近部
分にはシリコン酸化膜7が残った状態となる(第2図参
照》.なお、上記実施例においては、熱応力緩衝膜とし
て多結晶シリコン膜を形成させたが、アモルファスシリ
コン膜を形成させてもよい. また、上記実施例では、p型のシリコン基板のnチャネ
ルMOS型トランジスタ素子の分離について説明したが
、その他の素子間分離あるいはウエル分離に適用できる
. 〔発明の効果〕 以上のように、この発明によれば溝埋込み分離構造にお
いて半導体基板と埋設される分離用絶縁膜との間に熱応
力緩衝膜を設けているので、熱処理時に発生する応力を
緩和させることができ、半導体基板内に結晶欠陥を生じ
させず、リーク電流が流れない信頼性の高い半導体装置
が得られる効果がある.
[Detailed Description of the Invention] [Industrial Application Field] The present invention provides a structure in which a groove is formed in a semiconductor substrate and an insulating film is buried in the groove to electrically isolate between elements or wells. This article relates to semiconductor devices. [Prior Art] A conventional semiconductor device of this type will be explained with reference to FIG. The isolation shown here is achieved by chemical vapor deposition (.CV) in a trench formed in a silicon substrate.
D method) is used to embed a silicon oxide film.
It is called the BOX method (Buried OXide method). Furthermore, the example shown in FIG. 3 shows the isolation of an n-channel MOS transistor element that is not formed on a p-type silicon substrate. That is, on the p-type silicon substrate 1,
A groove (trench) of desired depth is formed in the region where isolation is to be formed by photolithography and anisotropic etching.
After forming the trench 2, a channel cutting layer is formed over the bottom and sidewalls of the trench 2 so that the n+ layer 1O and the n+ layer 1l of adjacent n-channel MOS transistor elements do not form a channel under the isolation region. A p-type impurity layer 3 is formed by implanting boron ions. Thereafter, a silicon oxide film 4 is deposited thickly including the inside of the trench 2 by chemical vapor deposition (CVD), and then this silicon oxide film 4 is planarized by an etch-back method to fill the trench. Complete M5. [Problems to be Solved by the Invention] Conventional semiconductor devices, particularly semiconductor devices manufactured by the BOX method, have a structure in which a silicon oxide film 4 is directly embedded in a trench 2 formed in a silicon substrate 1 by a CVD method. Therefore, during the heat treatment after separation formation, stress is generated due to the difference in thermal expansion coefficient between the silicon substrate 1 and the silicon oxide film 4, which induces crystal defects in the silicon substrate 1 and causes abnormal leakage current in the semiconductor device. There was a problem in that it caused This invention was made to solve the above problems, and it does not cause crystal defects in the semiconductor substrate.
The purpose of this invention is to provide a semiconductor device with a trench-buried isolation structure in which no abnormal leakage current occurs in the device. [Means for Solving the Problems] A semiconductor device according to the present invention has a trench-embedded isolation structure in which an isolation insulating film is embedded in a trench formed on a semiconductor substrate, wherein the semiconductor substrate and the isolation A thermally stressed Mfli film is formed between the insulation film and the insulation film. [Function] The thermal stress buffer film of the present invention alleviates the stress caused by the difference in thermal expansion coefficient between the semiconductor substrate and the isolation insulating film in the subsequent heat treatment process, prevents the occurrence of crystal defects in the semiconductor substrate, and protects the semiconductor substrate. Prevent abnormal leakage current from being induced in the device. [Embodiment] FIG. 1 shows a cross-sectional view of a semiconductor device according to an embodiment of the present invention. , a polycrystalline silicon film is formed as a film to buffer the stress generated by heat treatment. Note that, like the conventional example, this example also uses an n-channel MO formed on a p-type silicon substrate.
The separation of S-type transistor elements will be explained. That is, in a region of a p-type silicon substrate 1 where isolation is to be formed, a trench 2 of a desired depth is formed by photolithography and anisotropic etching. Next, a polycrystalline silicon film 6 is formed by chemical vapor deposition (CVD) as a film for buffering thermal stress between the silicon substrate 1 and the silicon oxide film 4 to be buried. , the groove of the polycrystalline silicon film 6 (
After removing the polycrystalline silicon thin film other than that formed on the bottom and sidewalls of trench 2, a thick silicon oxide film 4 is deposited. Thereafter, this silicon oxide film 4 is planarized by the etch-nochinoku-soki method to complete trench-filling isolation. Note that the p-type impurity layer 3 for channel cut is formed by injecting boron ions into the bottom and sidewalls of the trench 2 within the polycrystalline silicon I [6 or across both the polycrystalline silicon film 6 and the silicon substrate 1]. It is formed by injecting. Furthermore, in order to perfect the insulation isolation of the semiconductor device shown in FIG. 1, thermal stress #lI! Consider forming an insulating film in the vicinity of the surface of the polycrystalline silicon film 6 for protection. Here, the surface portion of the semiconductor device shown in FIG. 1 is wet oxidized. At this time, the polycrystalline silicon film 6 formed for thermal stress buffering has a higher oxidation rate than the silicon substrate l! .. This is about 5 to 3 times faster, so even if the oxide film formed on the surface is later removed, the silicon oxide film 7 remains near the surface of the polycrystalline silicon film 6 (see FIG. 2). In the above example, a polycrystalline silicon film was formed as a thermal stress buffer film, but an amorphous silicon film may also be formed.Also, in the above example, an n-channel MOS type Although the isolation of transistor elements has been described, it can also be applied to isolation between other elements or well isolation. [Effects of the Invention] As described above, according to the present invention, in the trench-embedded isolation structure, the isolation insulator buried with the semiconductor substrate Since a thermal stress buffer film is provided between the film and the film, the stress generated during heat treatment can be alleviated, resulting in highly reliable semiconductor devices that do not create crystal defects in the semiconductor substrate and do not allow leakage current to flow. There are benefits to be gained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例による半導体装置を示す断
面図、第2図はこの発明の他の実施例による半導体装置
を示す断面図、第3図は従来の半導体装置を示す断面図
である. 図中、1はp型のシリコン基板、2は溝(トレンチ)、
3はp型不純物層、4はCVDシリコン酸化膜、6は多
結晶シリコン膜、7はシリコン酸化膜である。
FIG. 1 is a sectional view showing a semiconductor device according to an embodiment of the present invention, FIG. 2 is a sectional view showing a semiconductor device according to another embodiment of the invention, and FIG. 3 is a sectional view showing a conventional semiconductor device. be. In the figure, 1 is a p-type silicon substrate, 2 is a trench,
3 is a p-type impurity layer, 4 is a CVD silicon oxide film, 6 is a polycrystalline silicon film, and 7 is a silicon oxide film.

Claims (1)

【特許請求の範囲】[Claims] 半導体基板に形成された溝内に分離用絶縁膜が埋め込ま
れた半導体装置において、前記半導体基板と前記分離用
絶縁膜との間に、熱処理により生ずる応力を緩衝するた
めの熱応力緩衝膜を形成したことを特徴とする半導体装
置。
In a semiconductor device in which an isolation insulating film is embedded in a groove formed in a semiconductor substrate, a thermal stress buffer film is formed between the semiconductor substrate and the isolation insulating film for buffering stress caused by heat treatment. A semiconductor device characterized by:
JP11651789A 1989-05-09 1989-05-09 Semiconductor device Pending JPH02295153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11651789A JPH02295153A (en) 1989-05-09 1989-05-09 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11651789A JPH02295153A (en) 1989-05-09 1989-05-09 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH02295153A true JPH02295153A (en) 1990-12-06

Family

ID=14689103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11651789A Pending JPH02295153A (en) 1989-05-09 1989-05-09 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH02295153A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5355991A (en) * 1976-10-30 1978-05-20 Hitachi Ltd Manufacture of dielectric separation substrate
JPS63185040A (en) * 1987-01-27 1988-07-30 Mitsubishi Electric Corp Semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5355991A (en) * 1976-10-30 1978-05-20 Hitachi Ltd Manufacture of dielectric separation substrate
JPS63185040A (en) * 1987-01-27 1988-07-30 Mitsubishi Electric Corp Semiconductor device

Similar Documents

Publication Publication Date Title
KR100445923B1 (en) A METHOD TO FABRICATE A STRAINED Si CMOS STRUCTURE USING SELECTIVE EPITAXIAL DEPOSITION OF Si AFTER DEVICE ISOLATION FORMATION
US5989978A (en) Shallow trench isolation of MOSFETS with reduced corner parasitic currents
US6734082B2 (en) Method of forming a shallow trench isolation structure featuring a group of insulator liner layers located on the surfaces of a shallow trench shape
US10170475B2 (en) Silicon-on-nothing transistor semiconductor structure with channel epitaxial silicon region
US5920108A (en) Late process method and apparatus for trench isolation
US5236861A (en) Manufacturing method of metal-insulator-semiconductor device using trench isolation technique
US20070249129A1 (en) STI stressor integration for minimal phosphoric exposure and divot-free topography
US6306723B1 (en) Method to form shallow trench isolations without a chemical mechanical polish
US9620507B2 (en) Silicon-on-nothing transistor semiconductor structure with channel epitaxial silicon-germanium region
JPS6340337A (en) Method of isolating integrated circuit
US5326715A (en) Method for forming a field oxide film of a semiconductor device
US20070228510A1 (en) SHALLOW TRENCH ISOLATION FILL BY LIQUID PHASE DEPOSITION OF SiO2
KR101120770B1 (en) Method for forming a semiconductor device having isolation regions
JPH09172061A (en) Manufacture of semiconductor device
US7635615B2 (en) Manufacturing processing for an isolated transistor with strained channel
JP3953563B2 (en) Isolation oxide formation method for silicon-on-insulator technology
KR970013188A (en) Device isolation method of semiconductor device
TWI231965B (en) Method for manufacturing a semiconductor device
EP0429404B1 (en) A process for forming a field isolation structure and gate structure in integrated MISFET devices
JPS5898943A (en) Manufacture of semiconductor device
JPH02295153A (en) Semiconductor device
CN100477151C (en) Trench isolation technology and method
US6261966B1 (en) Method for improving trench isolation
JPS6257232A (en) Isolation device and making thereof
KR950003900B1 (en) Semiconductor device manufacturing method for soi structure