JPH02295051A - Ion implanting apparatus - Google Patents

Ion implanting apparatus

Info

Publication number
JPH02295051A
JPH02295051A JP11631489A JP11631489A JPH02295051A JP H02295051 A JPH02295051 A JP H02295051A JP 11631489 A JP11631489 A JP 11631489A JP 11631489 A JP11631489 A JP 11631489A JP H02295051 A JPH02295051 A JP H02295051A
Authority
JP
Japan
Prior art keywords
substrate
ion implantation
amount
light
ellipsometer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11631489A
Other languages
Japanese (ja)
Inventor
Yoshitake Ishihara
石原 良剛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP11631489A priority Critical patent/JPH02295051A/en
Publication of JPH02295051A publication Critical patent/JPH02295051A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make it possible to measure ion implantation amount precisely by radiating deflected and modulated laser light to a substrate and installing an ellipsometer to detect reflected laser light in photo receipt region. CONSTITUTION:An ellipsometer is comprised of a light emitting part 3 consisting of a polarizer 12, a modulator 13 installed in the tip of a He.Ne laser 11 and a photoreciept part 4 consisting of an analyzer 14 to detect reflected light from a substrate 1 and a photo receiptor 15. Light absorption index of the substrate 1 is obtained by computing a detected signal from the photo receiptor 15 by a computer. The difference of the light absorption indexes before and after ion implantation is directly proportional to the amount of injected ions and thus the amount of ions injected into the substrate 1 is calculated by those computing processes. Consequently, ion implantation amount can be measured precisely without effects of the degree of vacuum and current leakage.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はイオン注入装置に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to an ion implanter.

〔従来の技術〕[Conventional technology]

従来のイオン注入装置では、注入量をモニターずる方法
として、ビーム電流をファラデー計測系て測定し、注入
量換算を行っていた。以下第4図を用いて説明する。
In conventional ion implanters, the method of monitoring the implantation amount is to measure the beam current using a Faraday measurement system and convert it into the implantation amount. This will be explained below using FIG.

イオン源7から引き出されたイオンビームは分析管6,
加速管5を通った後、被注入材料である基板1に注入さ
れる。基板1および基板の支持具2でうけたヒーム電流
は、電流増幅器18で増幅,積分され、イオン注入量と
して測定されていた。実際のイオンの注入量制御はビー
ムシャッター17を駆動することにより行われている。
The ion beam extracted from the ion source 7 is passed through the analysis tube 6,
After passing through the acceleration tube 5, it is injected into the substrate 1, which is the material to be injected. The heel current received by the substrate 1 and the substrate support 2 was amplified and integrated by a current amplifier 18, and was measured as the amount of ion implantation. Actual ion implantation amount control is performed by driving the beam shutter 17.

ビームシャッター17を立てた状態で所定の調整実施後
、ビームシャッター17を倒して基板1にイオン注入を
開始する。この操作によりイオンビームが基板1に達す
る。前述の計測手段で得られた注入量が目標の注入量に
達した時、ビームシャッター1−7を立ててイオンビー
ムが基板]に到達しないようにする。この一連の動作で
注入量の制御をしていた。
After performing a predetermined adjustment with the beam shutter 17 upright, the beam shutter 17 is brought down and ion implantation into the substrate 1 is started. This operation causes the ion beam to reach the substrate 1. When the implantation amount obtained by the aforementioned measurement means reaches the target implantation amount, the beam shutter 1-7 is raised to prevent the ion beam from reaching the substrate. This series of operations controlled the injection amount.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

一般にイオン注入を行う真空チャンバーの真空度が通常
より悪くなった場合、イオンは中性化する割合がふえる
。中性化したイオンは、基板に打ちこまれているのにか
かわらずビーム電流として測定されないので、イオン注
入量として測定されない。逆に、ヒーム電流測定系にイ
オン源やザプレッサーからのリーク電流が流れ込むと、
基板にはイオンが打ちこまれていないのにかかわらずリ
ーク電流をイオン注入量として測定してしまう。
Generally, when the degree of vacuum in a vacuum chamber in which ions are implanted becomes worse than usual, the proportion of ions that become neutral increases. Neutralized ions are not measured as a beam current even though they are implanted into the substrate, so they are not measured as an ion implantation amount. Conversely, if leakage current from the ion source or the presser flows into the heem current measurement system,
Even though no ions are implanted into the substrate, the leakage current is measured as the ion implantation amount.

このように従来のイオン注入装置での、ヒーム電流測定
によるイオン注入量モニターでは誤差が大きくなるとい
う欠点があった。
As described above, monitoring the amount of ion implantation by measuring the heel current in the conventional ion implantation apparatus has the drawback of large errors.

〔課題を解決するための手段〕[Means to solve the problem]

本発明のイオン注入装置は、イオン源からのイオンを分
離・加速し、真空チャンバー内に保持された基板に注入
するイオン注入装置において、発光部がレーザと偏光子
と変調器からなり、偏光変調されたレーザ光を基板に照
射し、反射しなレーザ光を検光子と受光器からなる受光
部にて検出するように構成されたエリプソメータを備え
たものてある。
The ion implanter of the present invention separates and accelerates ions from an ion source and implants them into a substrate held in a vacuum chamber. The device is equipped with an ellipsometer configured to irradiate the substrate with the laser beam and detect the unreflected laser beam with a light receiving section consisting of an analyzer and a light receiver.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図は本発明の第1の実施例の平面図である。FIG. 1 is a plan view of a first embodiment of the invention.

イオン源7から引き出されたイオンビームは、分析管6
と加速管5を通った後、真空チャンバー9内の保持具2
に保持された基板1に垂直に注入される。そして、この
基板1に斜方よりレーザー光線を照射する発光部3と、
基板1からの反射光を受光する受光部4とからなるエリ
プソメータが設けられている。
The ion beam extracted from the ion source 7 is passed through the analysis tube 6
After passing through the acceleration tube 5, the holder 2 in the vacuum chamber 9
The substrate 1 is injected perpendicularly to the substrate 1, which is held at an angle. and a light emitting unit 3 that irradiates the substrate 1 with a laser beam obliquely;
An ellipsometer including a light receiving section 4 that receives reflected light from the substrate 1 is provided.

このエリプソメータは第2図に示すように、He−Ne
レーザー11の先に偏光子12,変調器13を設け、偏
光・変調されたレーザー光線を基板1に照射する発光部
3と、基板1からの反射光を検出するための検光子14
と受光器15とからなる受光部4とから構成されている
As shown in Figure 2, this ellipsometer is a He-Ne
A polarizer 12 and a modulator 13 are provided at the tip of the laser 11, and there is a light emitting unit 3 that irradiates the substrate 1 with a polarized and modulated laser beam, and an analyzer 14 that detects the reflected light from the substrate 1.
and a light receiving section 4 consisting of a light receiver 15 and a light receiver 15.

受光器15からの検出信号を電算器16で処理し、基板
1の光吸収係数を求める。イオン注入前後の光吸収係数
の差は、注入されたイオン量に比例するので、これらの
操作により基板1に注入されたイオン量を求めることが
できる。つまりエリプソメータによる光吸収係数の測定
を、イオン注入中の基板1に対して行うことで、即時に
正碑なイオン注入量が判明する。
The detection signal from the light receiver 15 is processed by a computer 16 to determine the light absorption coefficient of the substrate 1. Since the difference in optical absorption coefficient before and after ion implantation is proportional to the amount of ions implanted, the amount of ions implanted into the substrate 1 can be determined by these operations. In other words, by measuring the optical absorption coefficient with an ellipsometer on the substrate 1 during ion implantation, the true amount of ions to be implanted can be immediately determined.

実際の注入量制御は、 ビームシャッター17をエアシ
リンダー(図省略)により立てたり倒したりして行う。
Actual injection amount control is performed by raising and lowering the beam shutter 17 using an air cylinder (not shown).

注入開始時ビームシャッター17を倒すことで基板1に
イオンが注入される。エリプソメータによる光吸収係数
の測定で得られた注入量が目標の注入量に到達したら、
電算器16は注入終了信号を発しビームシャッター 1
7を立てる。基板1の出し入れは、予備真空室8を通し
て行う。
Ions are implanted into the substrate 1 by closing down the beam shutter 17 at the start of implantation. When the injection volume obtained by measuring the optical absorption coefficient with an ellipsometer reaches the target injection volume,
The computer 16 issues an injection end signal and the beam shutter 1
Put up 7. The substrate 1 is taken in and taken out through the preliminary vacuum chamber 8.

また本第1の実施例は、ビームラインに対し基板]の表
面が垂直になる例であるが、任意の注入角度になるよう
に基板1を傾けた場合、レーザ受光部4の位置を基板1
からの反射光を受光できる位置に設置すれば問題ない。
Furthermore, in the first embodiment, the surface of the substrate is perpendicular to the beam line, but if the substrate 1 is tilted to an arbitrary injection angle, the position of the laser receiving part 4 may be
There is no problem if you install it in a position where it can receive the reflected light.

第3図は、本発明の第2の実施例の平面図である。FIG. 3 is a plan view of a second embodiment of the invention.

イオン源、7分析管6,加速管5.発光部3受光部4は
、第1の実施例と同し楕造である。この第2の実施例で
はさらに基板1及び保持具2に受けるヒーム電流を、電
流増幅器18で測定するようにする。この電流増幅器1
8で測定したイオン注入量と、エリプソメータで測定し
た注入量とを比較する比較器19を設け、比較器19に
より差が生じた時は、警報を出すようアラームブザー2
0が設けてある。
Ion source, 7 analysis tube 6, acceleration tube 5. The light emitting part 3 and the light receiving part 4 have the same oval shape as in the first embodiment. In this second embodiment, the heel current applied to the substrate 1 and the holder 2 is further measured by a current amplifier 18. This current amplifier 1
A comparator 19 is provided to compare the ion implantation amount measured in step 8 with the implantation amount measured by the ellipsometer, and an alarm buzzer 2 is provided to issue an alarm when a difference is detected by the comparator 19.
0 is set.

このように構成された第2の実施例によれば、真空チャ
ンバーのリーク等、装置のトラブルを早期に発見できる
という利点がある。
According to the second embodiment configured in this manner, there is an advantage that troubles in the apparatus, such as leaks in the vacuum chamber, can be discovered at an early stage.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、イオン注入を行う真空チ
ャンバー中の基板に対し、偏光・変調されたレーザー光
線を照射し、反射したレーザ光線を受光するエリプソメ
ータを備えることにより、真空度やリーク電流に影響さ
れることなく、正確なイオン注入量を測定できる効果か
ある。
As explained above, the present invention irradiates a substrate in a vacuum chamber where ions are implanted with a polarized and modulated laser beam, and is equipped with an ellipsometer that receives the reflected laser beam, thereby adjusting the degree of vacuum and leakage current. This has the effect of being able to accurately measure the amount of ion implantation without being influenced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第コの実施例の平面図、第2図は第1
図のエリプソメータの拡大図、第3図は本発明の第2の
実施例の平面図、第4図は従来のイオン注入装置の平面
図である。
FIG. 1 is a plan view of the first embodiment of the present invention, and FIG. 2 is a plan view of the first embodiment of the present invention.
FIG. 3 is a plan view of a second embodiment of the present invention, and FIG. 4 is a plan view of a conventional ion implantation apparatus.

Claims (1)

【特許請求の範囲】[Claims] イオン源からのイオンを分離・加速し、真空チャンバー
内に保持された基板に注入するイオン注入装置において
、発光部がレーザと偏光子と変調器からなり、偏光・変
調されたレーザ光を基板に照射し、反射したレーザ光を
検光子と受光器からなる受光部にて検出するように構成
されたエリプソメータを備えたことを特徴とするイオン
注入装置。
In an ion implantation device that separates and accelerates ions from an ion source and implants them into a substrate held in a vacuum chamber, the light emitting part consists of a laser, a polarizer, and a modulator, and the laser beam that has been polarized and modulated is directed into the substrate. An ion implantation device comprising an ellipsometer configured to detect emitted and reflected laser light with a light receiving section consisting of an analyzer and a light receiver.
JP11631489A 1989-05-09 1989-05-09 Ion implanting apparatus Pending JPH02295051A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11631489A JPH02295051A (en) 1989-05-09 1989-05-09 Ion implanting apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11631489A JPH02295051A (en) 1989-05-09 1989-05-09 Ion implanting apparatus

Publications (1)

Publication Number Publication Date
JPH02295051A true JPH02295051A (en) 1990-12-05

Family

ID=14683928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11631489A Pending JPH02295051A (en) 1989-05-09 1989-05-09 Ion implanting apparatus

Country Status (1)

Country Link
JP (1) JPH02295051A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005091342A3 (en) * 2004-03-18 2005-11-17 Axcelis Tech Inc In-situ monitoring on a spinning-disk ion implanter
JP2006179875A (en) * 2004-11-29 2006-07-06 Semiconductor Energy Lab Co Ltd Laser processing apparatus, laser processing method, and method of manufacturing semiconductor device
KR100764696B1 (en) * 2004-12-31 2007-10-08 한양대학교 산학협력단 Vacuum ultraviolet spectroscopic ellipsometer with protected beam path
US8188402B2 (en) 2004-11-29 2012-05-29 Semiconductor Energy Laboratory Co., Ltd. Laser treatment apparatus, laser treatment method, and manufacturing method of semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005091342A3 (en) * 2004-03-18 2005-11-17 Axcelis Tech Inc In-situ monitoring on a spinning-disk ion implanter
JP2006179875A (en) * 2004-11-29 2006-07-06 Semiconductor Energy Lab Co Ltd Laser processing apparatus, laser processing method, and method of manufacturing semiconductor device
US8188402B2 (en) 2004-11-29 2012-05-29 Semiconductor Energy Laboratory Co., Ltd. Laser treatment apparatus, laser treatment method, and manufacturing method of semiconductor device
KR100764696B1 (en) * 2004-12-31 2007-10-08 한양대학교 산학협력단 Vacuum ultraviolet spectroscopic ellipsometer with protected beam path

Similar Documents

Publication Publication Date Title
US5512747A (en) Auto focusing apparatus of scanning electron microscopes
JPS61271739A (en) Method and appatatus for improving accuracy of ion dose
JPH02295051A (en) Ion implanting apparatus
WO1997006430A1 (en) Method and apparatus for total reflection x-ray fluorescence spectroscopy
CN108054122B (en) Remediation method for lost ion implanted wafer record
US7660686B1 (en) Ion implant metrology system with fault detection and identification
US6927077B2 (en) Method and apparatus for measuring contamination of a semiconductor substrate
JP3093215B2 (en) Developing method and developing device
KR20210014947A (en) Device and method for measuring thichkness
JP2005005151A (en) Charged particle beam device
KR100532364B1 (en) Acceleration energy real time monitoring device of semiconductor ion implanter
US5834364A (en) Method of implementing of a reference sample for use in a device for characterizing implanted doses
KR890017790A (en) Method and apparatus for measuring ion implantation amount
KR20020048120A (en) Apparatus for detecting breakage at the outside and edge of a wafer
JPS63152844A (en) Ion beam scan control device
JPH01184825A (en) Electron beam patterning device
KR20050008222A (en) Apparatus for measuring ion dose of a wafer
TWI220154B (en) Apparatus and method for detecting deviations of incident angles of ion beam
JP2000111313A (en) Device and method for detecting etching starting point, and plasma etching processor
JPH08298275A (en) Scale correction method and device in cross-sectional observation by fib
TW516089B (en) Ion implanter capable of detecting ion beam implantation angle deviation and its detecting method
JP2001351554A (en) Device and method for inspecting dose uniformity in ion implantation
JPH04110709A (en) Method and device for measuring length by electron beam
KR20010090372A (en) device for measuring amount of gas from photoresist for ion implantation process and method for controlling ion implantation process using the same
JP2002047586A (en) Method and apparatus for detecting end point of etching and dry etching system provided with the same apparatus