JPH02294394A - Lubricant agent for electric contact - Google Patents

Lubricant agent for electric contact

Info

Publication number
JPH02294394A
JPH02294394A JP11468389A JP11468389A JPH02294394A JP H02294394 A JPH02294394 A JP H02294394A JP 11468389 A JP11468389 A JP 11468389A JP 11468389 A JP11468389 A JP 11468389A JP H02294394 A JPH02294394 A JP H02294394A
Authority
JP
Japan
Prior art keywords
contact
lubricant
contacts
voltage drop
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11468389A
Other languages
Japanese (ja)
Other versions
JP2804509B2 (en
Inventor
Katsuzo Okada
岡田 勝蔵
Makoto Yoshida
誠 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OOPACK KK
Original Assignee
OOPACK KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OOPACK KK filed Critical OOPACK KK
Priority to JP1114683A priority Critical patent/JP2804509B2/en
Publication of JPH02294394A publication Critical patent/JPH02294394A/en
Application granted granted Critical
Publication of JP2804509B2 publication Critical patent/JP2804509B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lubricants (AREA)

Abstract

PURPOSE:To obtain a lubricant to be applied to contacts built in electrical parts of automobile, microcomputer, variable resistance, etc., reducing electrical contact resistance by dispersing electrically conductive ultrafine powder into a lubricant. CONSTITUTION:(B) Electrically conductive ultrafine powder comprising Ag, Pd, Cu, Au, Pt, Ag-Pd (10-30%), Cu-Ag (0-100%), Au-Ag (0-100%), Pt-Cu (0-100%) is dispersed into (B) a lubricant comprising a mixed agent of synthetic oil such a silicon oil and vaseline or petrolatum or a mixed agent of a mineral oil such as white oil and vaseline or petrolatum.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、自動車電装部品・マイクロモータ・可変抵抗
器などに内蔵された電気接点に塗布して使用する潤滑剤
に関する. 〔従来の技術〕 上記の電気接点は、金属または複合材(金属と非鉄金属
とから成る)を接点材料として用いている.従って、こ
れらを用いた電気接点は一般に乾燥状態で使用されるこ
とが多いが、接点の摩耗を防ぐためグリース・油等の潤
滑荊をその電気接点に塗布する場合がある. 〔発明が解決しようとする課題〕 しかし、上記従来の潤滑剤は鉱物系または合成油系グリ
ースであり、これを静止状態の電気接点に使用した場合
の電気接触抵抗は20mΩ以上、摺動状態の場合は1Ω
以上とかなり大きな値を示すため、使用しにくいという
問題がある.そこで、本発明者は以下の分析を行った。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a lubricant that is applied to electrical contacts built into automobile electrical components, micromotors, variable resistors, etc. [Prior Art] The above electrical contacts use metal or a composite material (consisting of metal and non-ferrous metal) as the contact material. Therefore, electrical contacts using these materials are generally used in a dry state, but in order to prevent contact wear, a lubricant such as grease or oil may be applied to the electrical contacts. [Problems to be Solved by the Invention] However, the conventional lubricants mentioned above are mineral-based or synthetic oil-based greases, and when used for electrical contacts in a stationary state, the electrical contact resistance is 20 mΩ or more, and the electrical contact resistance in a sliding state is 20 mΩ or more. 1Ω if
The problem is that it is difficult to use because it shows a fairly large value. Therefore, the present inventor conducted the following analysis.

即ち、電気接点に生ずる電気接触抵抗は固有抵抗・集中
抵抗・皮膜抵抗の和として表すことができる.固有抵抗
は接点の物質により定まった値を示すが、集中抵抗は接
点どうしの真実接触面(以下、a−スポットという.)
の直径に逆比例し、また、皮膜抵抗はa−スポットの直
径の2乗に逆比例するものである.従って、a−スポッ
トの直径を増大するか、またはa−スポット数を増やせ
ば集中抵抗・皮膜抵抗が小さくなって電気接触抵抗は減
少することとなる. 他方、量子力学の立場からすれば、金属表面では電子が
数人まではみ出していると考えられるから、金属どうし
が電界下においてローの桁に近づくと非接触であっても
トンネル電流と呼ばれる電流が金属間に流れる.従って
金属超微粉末が均一分敗した空間にこの原理を応用すれ
ば、互いに離れた2つの金属間においても、nmの間隙
で分布する多数の金属超微粉末を介して電流が流れると
考えられる. 本発明は上記に鑑みて提案されたもので、従来の潤滑剤
がもつ問題点を解決することを目的とする. 〔課題を解決するための手段〕 本発明は、潤滑剤に導電性超微粉末が分散されているこ
とを特徴とする電気接点用潤滑剤である。
In other words, the electrical contact resistance that occurs at an electrical contact can be expressed as the sum of specific resistance, lumped resistance, and film resistance. Specific resistance shows a value determined by the material of the contact, but lumped resistance shows the true contact surface between contacts (hereinafter referred to as the a-spot).
The film resistance is inversely proportional to the square of the diameter of the a-spot. Therefore, if the diameter of the a-spot is increased or the number of a-spots is increased, the lumped resistance and film resistance become smaller, and the electrical contact resistance decreases. On the other hand, from the standpoint of quantum mechanics, it is thought that up to a few electrons protrude from the surface of a metal, so when two metals approach the low order of magnitude under an electric field, a current called tunneling current occurs even though they are not in contact with each other. Flows between metals. Therefore, if this principle is applied to a space in which ultrafine metal powder is uniformly separated, it is thought that even between two metals separated from each other, a current will flow through a large number of ultrafine metal powders distributed with nanometer gaps. .. The present invention was proposed in view of the above, and aims to solve the problems associated with conventional lubricants. [Means for Solving the Problems] The present invention is a lubricant for electrical contacts, characterized in that the lubricant contains conductive ultrafine powder dispersed therein.

〔作 用〕[For production]

電気接点に導電性超微粉末が分散されている潤滑剤を塗
布すると、電流は潤滑剤内の導電性超微粉末を次々と伝
わっていくことにより、一方の接点から他方の接点へと
流れる. 従って、電気接点が接触している場合はa−スポットが
見掛け上増大することになり、非接触の場合は導電性超
微粉末を介して、接点間をt流が流れる. 〔実施例〕 以下、本発明の潤滑剤を、(1)非接触状態にある電気
接点(以下、非接触接点という。)に使用した場合、(
2)接触状態にある電気接点(以下、接触接点という。
When a lubricant in which conductive ultrafine powder is dispersed is applied to electrical contacts, current flows from one contact to the other by successively passing through the conductive ultrafine powder in the lubricant. Therefore, when the electrical contacts are in contact, the a-spot increases in appearance, and when they are not in contact, a t-flow flows between the contacts via the conductive ultrafine powder. [Example] Hereinafter, when the lubricant of the present invention is used for (1) electrical contacts in a non-contact state (hereinafter referred to as non-contact contacts), (
2) Electrical contacts in contact (hereinafter referred to as contact contacts).

)に使用した場合について図面を参照しながら説明する
. 第1図・第4図は、それぞれ非接触接点1・2、接触接
点11・12に本発明の電気接点用潤滑剤3を使用した
場合の原理図である.4は潤滑剤、5は導電性超微粉末
である。
) will be explained with reference to the drawings. Figures 1 and 4 are diagrams of the principle when the electrical contact lubricant 3 of the present invention is used for non-contact contacts 1 and 2 and contact contacts 11 and 12, respectively. 4 is a lubricant, and 5 is a conductive ultrafine powder.

上記の潤滑剤4はシリコンオイルなどの合成油とワセリ
ンあるいはペトロラタムの混合剤、ホワイトオイルなど
の鉱油とワセリンあるいはペトロラタムの混合剤、合成
油あるいは鉱油と石けんの混合剤等があり、グリース状
あるいは液体状を問わない. また、導電性超微粉末5は、Ag, Pd, Cu, 
Au、PtSAg−Pd(10 〜30χ)、Cu−八
g(0〜IOOX)、゛Au−Ag(θ〜100χ)、
Pt−Cu ((1−100χ)等があり、金属、非金
属または合金であってもよい。
The above lubricant 4 includes a mixture of synthetic oil such as silicone oil and petrolatum or petrolatum, a mixture of mineral oil such as white oil and petrolatum or petrolatum, a mixture of synthetic oil or mineral oil and soap, etc., and is in the form of a grease or liquid. Regardless of the situation. Further, the conductive ultrafine powder 5 includes Ag, Pd, Cu,
Au, PtSAg-Pd (10~30χ), Cu-8g (0~IOOX), ゛Au-Ag (θ~100χ),
Pt-Cu ((1-100χ), etc., and may be a metal, a nonmetal, or an alloy.

まず、非接触接点の場合を第1図〜第3図について説明
する.第1図において、接点l・2が静止の状態にある
場合は静止接点であり、接点1・2が相対運動をする場
合は摺動接点である.静止接点の場合、接点1と導電性
趨微粉末5との距離、導電性超微粉末5・5間の距離、
また導電性超微粉末5と接点2との距離がそれぞれナノ
メートル(nm)以内であれば、電流iは第1図に示す
ように超微粉末5から超微粉末5へと次々と流れる(以
下、橋渡リするという。)ことにより、接点lから接点
2へと流れる。
First, the case of non-contact contacts will be explained with reference to FIGS. 1 to 3. In Fig. 1, when contacts 1 and 2 are stationary, they are stationary contacts, and when contacts 1 and 2 move relative to each other, they are sliding contacts. In the case of a stationary contact, the distance between the contact 1 and the conductive ultrafine powder 5, the distance between the conductive ultrafine powders 5 and 5,
Furthermore, if the distance between the conductive ultrafine powder 5 and the contact point 2 is within nanometers (nm), the current i flows from one ultrafine powder to another in sequence as shown in FIG. (hereinafter referred to as bridging), the current flows from contact 1 to contact 2.

摺動接点の場合、一般に摺動速度は電流の流れる速度に
比べると極めて小さいから無視できる。
In the case of sliding contacts, the sliding speed is generally extremely small compared to the current flow speed and can therefore be ignored.

従って、摺動接点の通電状況も上述の静止接点に対応し
て考えることができる. 第2図は、第1図の場合における静止(A)  ・摺勤
(B)の各接点について接触電圧降下と電流との関係を
示したグラフである.ここで、電気接点として銅平板と
鋼球とを用い、接点間隔は0.Ol1である.潤滑剤に
はシリコンオイル(10cc)とワセリン(1g)に平
均粒径100 nmの八g−10χPd超微粉末(lm
g)を混入分敵させたものを使用した.摺動接点の場合
の摺動速度はIONI1/秒である。
Therefore, the energization status of sliding contacts can be considered corresponding to the above-mentioned stationary contacts. Figure 2 is a graph showing the relationship between contact voltage drop and current for each of the static (A) and sliding (B) contacts in the case of Figure 1. Here, a copper flat plate and a steel ball are used as electrical contacts, and the contact spacing is 0. It is Ol1. The lubricant was silicone oil (10cc), petrolatum (1g), and 8g-10χ Pd ultrafine powder (lm) with an average particle size of 100 nm.
A mixture of g) was used. The sliding speed for sliding contacts is IONI 1/sec.

静止接点の場合(A)、接触電圧降下は0.5Aで約0
.2Vであるが電流の減少に伴って急激に減少し、0.
05A以下では0、言いかえれば、接触抵抗Oの金属内
通電状態に対応した様相を呈する。
In the case of stationary contacts (A), the contact voltage drop is approximately 0 at 0.5A.
.. 2V, but as the current decreases, it rapidly decreases to 0.
Below 05 A, the contact resistance is 0, in other words, it exhibits an aspect corresponding to the state of conduction in the metal with a contact resistance of O.

摺動接点の場合(B)、接触電圧降下は0.5Aで約0
.6■であり、電流の減少に伴って小さくなり、0.O
IAで0.4■となる。接触電圧降下はいずれの電流に
おいても静止状態より大きい.電流の増加に伴って接触
電圧降下が増大する理由として次のことが考えられる. 一般にnsの桁で離れた金属粉末間に流れるトンネル電
流iは、粉末間の電圧降下■、粉末間隙Ziとすれば次
式で表すことができる。
In the case of sliding contacts (B), the contact voltage drop is approximately 0 at 0.5A.
.. 6■, which decreases as the current decreases and becomes 0. O
IA is 0.4 ■. The contact voltage drop is larger than the static state at any current. The following are possible reasons why the contact voltage drop increases as the current increases. In general, the tunnel current i that flows between metal powders separated by an order of ns can be expressed by the following equation, assuming that the voltage drop between the powders is {circle around (2)} and the powder gap is Zi.

.  V lミα汀exρ(一βZi) α、βは定数 従って、Elが種々のZiで分布する多数の金属粉末間
を流れる場合、接触電圧降下は電流の増大に伴って大き
くなる.潤滑剤が金属の摺動に伴って動くから、潤滑剤
内部に分散する金属超微粉末の間隔も時々刻々変化する
。このため、摺動時の電流の橋渡り現象は静止時に比べ
て不安定であり、摺動時の接触抵抗は静止時に比べて大
きくなるものと考えられる. 第3図は、導電性超微粉末として平均粒径40ナノメー
トル(ns+)の銅超微粉末を使用した潤滑剤の例であ
り、他の条件は第2図の場合と同じである。
.. V lmiα汀exρ(-βZi) α,β are constants Therefore, when El flows between a large number of metal powders distributed with various Zi, the contact voltage drop increases as the current increases. Since the lubricant moves as the metal slides, the distance between the ultrafine metal powders dispersed inside the lubricant also changes from time to time. For this reason, the current bridging phenomenon during sliding is less stable than when it is stationary, and the contact resistance during sliding is thought to be greater than when it is stationary. FIG. 3 is an example of a lubricant using ultrafine copper powder with an average particle size of 40 nanometers (ns+) as the conductive ultrafine powder, and other conditions are the same as in FIG. 2.

次に、接触接点の場合を第4図〜第7図について説明す
る。第4図において、接点1l・接点12が静止してい
る場合は静止接点、摺動している場合は摺動接点である
。接点11と接点12のaスポノトの直径をdゆとする
Next, the case of contact points will be explained with reference to FIGS. 4 to 7. In FIG. 4, when the contacts 1l and 12 are stationary, they are stationary contacts, and when they are sliding, they are sliding contacts. Let d be the diameter of the a-points of contacts 11 and 12.

本発明の潤滑剤3を使用した場合、電VJLiはa一ス
ポットのみを流れるばかりでなく導電性超微粉末5を橋
渡リすることも考慮てきるから、見掛け上のa−スポッ
トの直径はd (>d. )であると考えられる.従っ
て、潤滑剤3内の導電性超微粉末5は接触抵抗を減少さ
せるために著しく寄与する. 第5図・第6図は静止接点に、第7図は摺動接点に、■
潤滑剤を使用しない場合(D)、■シリコンオイル(l
occ)とワセリン(1g)を混合した潤滑剤を使用し
た場合(E)、■シリコンオイル(10cC)とワセリ
ン(1g)にAg−10XPd超微粉末(lmg)を混
入させた本発明の潤滑剤を使用した場合CF)、の3通
りについて実験した結果を示す.なお接点1lは鋼球を
接点12は銅板を用いた.第5図は、上記の状態におけ
る接触電圧降下と接触荷重との関係について示したグラ
フである。
When the lubricant 3 of the present invention is used, it is considered that the electric current VJLi not only flows through the a spot but also bridges the conductive ultrafine powder 5, so the apparent diameter of the a spot is d. (>d.). Therefore, the conductive ultrafine powder 5 in the lubricant 3 significantly contributes to reducing contact resistance. Figures 5 and 6 are for stationary contacts, Figure 7 is for sliding contacts,
When not using lubricant (D), ■ Silicone oil (l
When a lubricant containing a mixture of occ) and petrolatum (1 g) is used (E), ■ A lubricant of the present invention in which silicone oil (10 cC) and petrolatum (1 g) are mixed with Ag-10XPd ultrafine powder (lmg). We show the results of experiments for three cases: CF). Note that the contact 1l was a steel ball, and the contact 12 was a copper plate. FIG. 5 is a graph showing the relationship between contact voltage drop and contact load in the above state.

同図より、(イ)いずれの条件下でも、接触荷重の増大
に伴う接触面積の増加に起因して接触電圧降下が小さく
なること、(口)潤滑方法が接触電圧降下に及ぼす影響
は(D)、(E)、(F)の順に小さいこと、(ハ)特
に本発明の超微$53末含有潤滑における接触電圧降下
はいずれの接触荷重でも無潤滑の場合よりほぼ一桁小さ
いこと、などがわかる. 第6図は、上記の状態において接触荷重を0.5gとし
た場合の接触抵抗と電流との関係について示したグラフ
である.接触抵抗はいずれの電流でも(D)、(E)、
(F)の順に小さくなり、特に本発明の潤滑剤(F)に
おいては接触抵抗が0.2A以下でほぼ0、すなわち金
属内部の導電状態に対応する様相を示すことがわかる. 第7図は、上記の状態において電流を0.5Aとした場
合の接触電圧降下と接触荷重との関係について示したグ
ラフである。この場合、摺動速度は10mm/secで
ある。同図より、(イ)いづれの潤滑剤でも接触電圧降
下は接触荷重の増大に伴って減少すること、(口)いづ
れの接触荷重でもオイルとワセリンの混合潤滑(E)は
無潤滑(D)より小さな接触電圧降下を示すこと、(ハ
)金属超微粉末含有潤滑(F)は、0.5gの接触荷重
では他の2つの潤滑剤より小さな接触電圧降下を示すの
に対し、1.0 g以上の接触荷重では他の2つの潤滑
法より大きな接触電圧降下であることなどがわかる. 上記の(イ)〜(ハ)は次の理由に基づくものと考えら
れる.(イ)は接触荷重に伴い接触面積が増大する.(
口)は潤滑面の表面あらさが無潤滑面の表面あらさより
小さく、これに伴うa−スポy}数の差異に起因する.
(ハ)は金属超微粒の摩耗粉効果に起因する,すなわち
、金属超微粉末は固体接触間にはさまれつつ移動するた
め、表面あらさが見掛け上大きくなった様相に対応する
From the figure, we can see that (a) under any condition, the contact voltage drop decreases due to the increase in the contact area as the contact load increases, and (c) the effect of the lubrication method on the contact voltage drop is (D ), (E), and (F) are smaller in this order; (c) the contact voltage drop, especially in the lubrication containing the ultrafine $53 powder of the present invention, is approximately one order of magnitude smaller than in the case without lubrication at any contact load, etc. I understand. FIG. 6 is a graph showing the relationship between contact resistance and current when the contact load is 0.5 g under the above conditions. Contact resistance is (D), (E),
It can be seen that the contact resistance decreases in the order of (F), and in particular, in the lubricant (F) of the present invention, the contact resistance is almost 0 at 0.2 A or less, that is, it shows an aspect corresponding to the conductive state inside the metal. FIG. 7 is a graph showing the relationship between the contact voltage drop and the contact load when the current is 0.5 A in the above state. In this case, the sliding speed is 10 mm/sec. From the figure, (a) the contact voltage drop decreases as the contact load increases for any lubricant, and (c) for any contact load, mixed lubrication of oil and petrolatum (E) is different from no lubrication (D). (c) The lubricant containing ultrafine metal powder (F) shows a smaller contact voltage drop than the other two lubricants at a contact load of 0.5 g; It can be seen that the contact voltage drop is larger than the other two lubrication methods when the contact load is greater than g. The above (a) to (c) are considered to be based on the following reasons. In (a), the contact area increases with the contact load. (
The reason for this is that the surface roughness of the lubricated surface is smaller than that of the non-lubricated surface, and this is due to the difference in the number of a-spoy}.
(C) is caused by the abrasion powder effect of the ultrafine metal particles; in other words, the ultrafine metal particles move while being sandwiched between solid contacts, resulting in an apparent increase in surface roughness.

その結果、a−スポット数が減少して接触電圧降下が増
大する. 以上の実験結果から、潤滑剤に含有する金属超微粉末が
電気接触抵抗に与える影響は、■橋渡り効果と、■通電
を阻止する摩耗粉効果に依存して変化することがわかる
.前者は電気接触抵抗を小さくするように作用し、後者
は電気接触抵抗を増大させるように作用する。そのため
、摩耗粉効果を押さえる使用条件で金属超微粉末含有潤
滑剤を利用することが必要である。上述した非接触ある
いは微小な接触荷重下での静止接点、摺動接点において
グリース状あるいは液体状潤滑剤に導電性超微粉末を含
有させたものを使用することは、電気接触抵抗の減少に
極めて有効である.第8図は、上記の実験結果に基づい
て実際にビデオテーブレコーダ(VTR)のアース接点
に適用した例を示す図、第9図はその場合の接触電圧降
下と経過時間との関係について示したグラフである.第
8図において、8は回転軸、9はアース線でばね用金属
線を用いている.回転軸8に対するアース線9の押付荷
重はlkg以下、電流は微少量である.その状態におい
て、前記と同様に3通りについて実験した.この場合潤
滑剤3はグリースを用いた. 第9図より、(イ)潤滑剤を使用しない場合(D)は接
触電圧降下の経時変化が著しく大きい、(口)従来の潤
滑グリースを使用した場合(F.)は接触電圧降下の上
昇がlOO時間あたりから認められ、初期においても本
発明の潤滑グリースを使用した場合(F)より一桁大き
な接触電圧降下を示す、(ハ)本発明の潤滑グリースを
使用した場合(F)は接触電圧降下の経時変化がな《、
常にO.lmVと極めて小さな値を示す、ことがわかる
.〔発明の効果〕 本発明の電気接点用潤滑剤は、従来の潤If荊がもつ電
気接触抵抗が大きいという問題を解決した潤滑剤であり
、潤滑剤に導電性超微粉末を分散させるだけで容易に製
造できるという効果がある。
As a result, the number of a-spots decreases and the contact voltage drop increases. From the above experimental results, it can be seen that the influence of the ultrafine metal powder contained in the lubricant on electrical contact resistance changes depending on ① the bridging effect and ③ the wear powder effect that prevents current flow. The former acts to reduce electrical contact resistance, and the latter acts to increase electrical contact resistance. Therefore, it is necessary to use a lubricant containing ultrafine metal powder under usage conditions that suppress the effect of wear particles. The use of grease-like or liquid lubricants containing conductive ultrafine powder in the above-mentioned stationary contacts or sliding contacts under non-contact or minute contact loads is extremely effective in reducing electrical contact resistance. It is valid. Figure 8 is a diagram showing an example where the above experimental results were actually applied to the ground contact of a video table recorder (VTR), and Figure 9 shows the relationship between contact voltage drop and elapsed time in that case. It is a graph. In Fig. 8, 8 is the rotating shaft, and 9 is the ground wire, which uses a metal wire for the spring. The pressing load of the ground wire 9 against the rotating shaft 8 is less than 1 kg, and the current is very small. In this state, we conducted three experiments in the same way as above. In this case, grease was used as lubricant 3. From Figure 9, we can see that (a) the contact voltage drop changes significantly over time when no lubricant is used (D), and (c) the contact voltage drop increases significantly when conventional lubricating grease is used (F.). It was observed from around 100 hours, and even at the initial stage, the contact voltage drop was an order of magnitude larger than that when the lubricating grease of the present invention was used (F). (C) The contact voltage drop when the lubricating grease of the present invention was used (F) There is no change in descent over time《,
Always O. It can be seen that it shows an extremely small value of lmV. [Effects of the Invention] The lubricant for electrical contacts of the present invention is a lubricant that solves the problem of high electrical contact resistance of conventional lubricants, and can be applied simply by dispersing conductive ultrafine powder in the lubricant. It has the advantage of being easy to manufacture.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は非接触接点における本発明の原理図、第2図・
第3図は非接触接点における接触電圧降下と電流との関
係のグラフ、第4図は接触接点における本発明の原理図
、第5図・第6回・第7回・第9図は接触・静止接点に
おける本発明の実施例の特性を示したグラフ、第8図は
ビデオテープレコーダ(VTR)のアース接点に使用し
た例を示す図である. l・2・11・12は電気接点、4は潤滑剤、5は導電
性超微粉末、iは電流. 特許出願人 オーパック株式会社 第1図 第4図 第3図 第2図 t5九(A) 第5図 t シju( A ) 捧舷埼t(9) 第6図 覚 5L(A) 第8図 刹ジ1時間(峙閉》
Figure 1 is a diagram of the principle of the present invention in a non-contact contact, Figure 2.
Fig. 3 is a graph of the relationship between contact voltage drop and current in non-contact contacts, Fig. 4 is a diagram of the principle of the present invention in contact contacts, and Figs. FIG. 8 is a graph showing the characteristics of an embodiment of the present invention in a stationary contact, and is a diagram showing an example of use in a ground contact of a video tape recorder (VTR). 1, 2, 11, and 12 are electrical contacts, 4 is a lubricant, 5 is a conductive ultrafine powder, and i is a current. Patent Applicant O-PAC Co., Ltd. Figure 1 Figure 4 Figure 3 Figure 2 Figure 2 t59 (A) Figure 5 t Shiju (A) Hogensaki t (9) 6th Figure 5L (A) No. 8 1 hour of drawings (closed)

Claims (1)

【特許請求の範囲】[Claims] (1)潤滑剤に導電性超微粉末が分散されていることを
特徴とする電気接点用潤滑剤。
(1) A lubricant for electrical contacts, characterized in that the lubricant contains conductive ultrafine powder dispersed therein.
JP1114683A 1989-05-08 1989-05-08 Lubricants for electrical contacts Expired - Fee Related JP2804509B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1114683A JP2804509B2 (en) 1989-05-08 1989-05-08 Lubricants for electrical contacts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1114683A JP2804509B2 (en) 1989-05-08 1989-05-08 Lubricants for electrical contacts

Publications (2)

Publication Number Publication Date
JPH02294394A true JPH02294394A (en) 1990-12-05
JP2804509B2 JP2804509B2 (en) 1998-09-30

Family

ID=14644032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1114683A Expired - Fee Related JP2804509B2 (en) 1989-05-08 1989-05-08 Lubricants for electrical contacts

Country Status (1)

Country Link
JP (1) JP2804509B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006017571A3 (en) * 2004-08-05 2006-04-13 Du Pont Fine particle dispersion compositions and uses thereof
CN111117736A (en) * 2019-11-11 2020-05-08 风帆有限责任公司 Storage battery electrode protection oil and preparation method thereof
CN113583741A (en) * 2021-07-20 2021-11-02 广东月福汽车用品有限公司 Brake anti-occlusion lubricant and preparation method and application thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006017571A3 (en) * 2004-08-05 2006-04-13 Du Pont Fine particle dispersion compositions and uses thereof
CN111117736A (en) * 2019-11-11 2020-05-08 风帆有限责任公司 Storage battery electrode protection oil and preparation method thereof
CN113583741A (en) * 2021-07-20 2021-11-02 广东月福汽车用品有限公司 Brake anti-occlusion lubricant and preparation method and application thereof

Also Published As

Publication number Publication date
JP2804509B2 (en) 1998-09-30

Similar Documents

Publication Publication Date Title
Rapoport et al. High lubricity of re-doped fullerene-like MoS 2 nanoparticles
KR20190119157A (en) Graphene Composites for Sliding Contacts
JPH02294394A (en) Lubricant agent for electric contact
US5682591A (en) Powder metallurgy apparatus and process using electrostatic die wall lubrication
US3127346A (en) Dry lubricant composition and a
EP0632208B1 (en) Compound slide bearing material
DE60038311T2 (en) CONTACT ELEMENT AND CONTACT SYSTEM
JP3138965B2 (en) Material for electrical contacts made of silver with carbon
Qian et al. Effect of electrical current on the tribological behavior of the Cu-WS2-G composites in air and vacuum
Najan et al. Experimental Investigation of tribological properties using nanoparticles as modifiers in lubricating oil
Johnson et al. High current brushes: VIII: Effect of electrical load
De Gee et al. The influence of composition and structure on the sliding wear of copper-tin-lead alloys
Buckley Wear and interfacial transport of material
JP2005213290A (en) Lubricant composition
Ilie et al. Tribological properties of solid lubricant nanocomposite coatings obtained by magnetron sputtered of MoS2/metal (Ti, Mo) nanoparticles
Watanabe Sliding contact characteristics between self-lubricating composite materials and copper
Hirai et al. Combined effects of graphite and sulfide on the tribological properties of bronze under dry conditions
JPS6037180B2 (en) Iron-based or copper-based sintered sliding material containing manganese sulfide
Miremadi et al. A molybdenum disulfide magnetic solid lubricant for ferromagnetic surfaces
JP2000240657A (en) Slide bearing
JPH01207902A (en) Electronic component
DE1022328B (en) Stop arrangement with friction surfaces that prevent bruises for use as a bounce-free electrical contact device
Gang et al. Effect of WS2 addition on electrical sliding wear behaviors of Cu–graphite–WS2 composites
RU2087575C1 (en) Sintered composite material
RU1785806C (en) Copper-base powdered composite material

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees