JPH02294084A - Gas laser oscillating equipment - Google Patents

Gas laser oscillating equipment

Info

Publication number
JPH02294084A
JPH02294084A JP11413189A JP11413189A JPH02294084A JP H02294084 A JPH02294084 A JP H02294084A JP 11413189 A JP11413189 A JP 11413189A JP 11413189 A JP11413189 A JP 11413189A JP H02294084 A JPH02294084 A JP H02294084A
Authority
JP
Japan
Prior art keywords
discharge
gas
gas flow
opening angle
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11413189A
Other languages
Japanese (ja)
Inventor
Takaaki Murata
隆昭 村田
Hideyuki Shinonaga
篠永 秀之
Toshiaki Miyazaki
宮崎 俊秋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11413189A priority Critical patent/JPH02294084A/en
Publication of JPH02294084A publication Critical patent/JPH02294084A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0975Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser using inductive or capacitive excitation

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

PURPOSE:To output high quality laser light excellent in symmetric properties by installing discharge electrodes in the manner in which the opening angle becomes smaller along gas flow as it goes down-stream. CONSTITUTION:On both sides of a discharge tube 1 filled with gas being laser medium, a pair of discharge electrodes 2a, 2b are arranged so as to put the discharge tube 1 between them With respect to the axis of the discharge tube 1, the opening angle thetad at the lower part of gas flow is set smaller than the opening angle thetau at the upper part of the gas flow. The opening angle is made gradually small as the gas flow goes down-stream. The opening angle thetad at the lower part of gas flow, where the temperature rise of gas becomes remarkable, is made small, thereby increasing the distance between end-portion of electrodes and preventing the discharge concentration at the end-portions of electrodes. Hence spatially uniform discharge in the whole part of the discharge tube 1 is realized, and laser excellent in symmetric properties can be obtained.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、気体レーザ発振装置に係り、特に、均一な放
電を得る放電電極構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Object of the Invention] (Industrial Application Field) The present invention relates to a gas laser oscillation device, and particularly to a discharge electrode structure for obtaining uniform discharge.

(従来の技術) 一般に、レーザ装置は、誘電体を有し、レーザ媒質であ
る気体を充填した放電管の周方向の両側に対向して放電
電極を配置し、この放電電極に電圧を印加することによ
り、レーザ媒質である気体を励起し、放電させ、レーザ
発振を行う。
(Prior Art) In general, a laser device has discharge electrodes disposed opposite to each other in the circumferential direction of a discharge tube having a dielectric material and filled with gas as a laser medium, and a voltage is applied to the discharge electrodes. By doing so, the gas that is the laser medium is excited and discharged, and laser oscillation is performed.

近年、レーザ技術開発の進歩により、小型で大出力の気
体レーザ発振装置が実用化されるに至ったが、このよう
な気体レーザ発振装置では、放電管内で発生した放電に
より、加熱されたレーザ媒質である気体を冷却するため
、気体を外部から強制的に供給,!X出し、循環させる
ようにしている。
In recent years, advances in laser technology development have led to the practical use of compact, high-output gas laser oscillation devices.In such gas laser oscillation devices, the heated laser medium is In order to cool the gas that is, the gas is forcibly supplied from the outside,! I'm trying to put out X and circulate it.

このような気体レーザ発振装置の放電管及び放電電極構
造を第3図に示す。第3図において、レーザ媒質である
気体を充填された放電管1の両側には、一対の放電電極
2a,2bが放電管1を挾み、対向して配置されている
。この放電電極2a,2bは、外部の高周波?IS源3
に接続されており、高周波電源3より、高周波電圧が放
電電極2a,2b間に印加されると、放電管1内のレー
ザ媒質である気体が高周波放電を生ずるようになってい
る。
FIG. 3 shows the discharge tube and discharge electrode structure of such a gas laser oscillation device. In FIG. 3, a pair of discharge electrodes 2a and 2b are placed on both sides of a discharge tube 1 filled with gas as a laser medium, facing each other with the discharge tube 1 in between. These discharge electrodes 2a, 2b are connected to an external high frequency? IS source 3
When a high frequency voltage is applied between the discharge electrodes 2a and 2b from the high frequency power source 3, the gas serving as the laser medium within the discharge tube 1 generates a high frequency discharge.

また、各放電電極2a,2bは、放電管1の軸に対し、
一定の開き角θの幅寸法をHするように設けられている
。放電の点灯領域を広げるには、前述の開き角θは大き
い方が良く、θ−120゜では、高周波放電は、放電管
1全体中の約9496点灯することが実験結果により判
明している。
In addition, each discharge electrode 2a, 2b is connected to the axis of the discharge tube 1.
It is provided so that the width dimension of a constant opening angle θ is H. In order to widen the discharge lighting area, it is better to have the above-mentioned opening angle θ larger, and it has been found from experimental results that at θ-120°, about 9,496 high-frequency discharges in the entire discharge tube 1 are lit.

(発明が解決しようとする課題) ところで、レーザ媒質である気体は、第3図に示すよう
に、放電管1の一端から気体流入4を行い、他端から気
体排出5を行うことにより放電管1内で発生した高周波
放電により、加熱されたレーザ媒質である気体を冷却す
るため強制的に循環させているが、放電管1内において
は、下流に向かうに従って、気体の温度上昇が顕著とな
って膨張するという事情がある。従って、気体密度が下
流に向かうに従って稀薄となり、これに伴って、放電抵
抗が小さくなると共に、放電の不安定性を招来する。
(Problem to be Solved by the Invention) By the way, as shown in FIG. 3, gas, which is a laser medium, is supplied to the discharge tube by injecting the gas 4 from one end of the discharge tube 1 and discharging the gas 5 from the other end. Due to the high-frequency discharge generated in the discharge tube 1, the heated laser medium gas is forced to circulate in order to cool it down. There is a reason why it expands. Therefore, the gas density becomes thinner as it goes downstream, and as a result, the discharge resistance becomes smaller and the discharge becomes unstable.

第4図に、高周波放電の発光の様子を示す。FIG. 4 shows how the high-frequency discharge emits light.

ここでは、放電電極の開き角は約120°の場合である
。図中(a)は、気体流の上流から下流までの全体の発
光の様子であり、(l))は、気体流の上流,(C)は
気体流の下流である。高周波放電の発光強度の強い部位
は、電離の進行した部位であるため、レーザ上準泣に励
起されるレーザ媒質である気体分子数も多く、その部位
を通過し、増111され、レーザが強くなる。従って、
hk電の強度分布に不均一を生ずると、得られるレーザ
光のの質が良くないことになる。つまり、換言すれば、
より均一な放電を得れば、良質のレーザ光を得ることが
可能となる。
Here, the opening angle of the discharge electrodes is about 120°. In the figure, (a) shows the overall light emission from upstream to downstream of the gas flow, (l) shows the upstream of the gas flow, and (C) shows the downstream of the gas flow. The region where the emission intensity of the high-frequency discharge is strong is the region where ionization has progressed, so the number of gas molecules that are the laser medium that are excited by the laser upper quasi-depletion is large, and the number of gas molecules passing through that region is increased and the laser becomes stronger. Become. Therefore,
If the intensity distribution of hk electricity is non-uniform, the quality of the obtained laser light will be poor. In other words,
If a more uniform discharge is obtained, it becomes possible to obtain high quality laser light.

さて、気体流上流では、高周波放電は、第4図(b)の
ように、放電γヒ極2a,2b近傍でhk電がやや強く
、また、電極間距離が近く、局所的インピーダンスの低
い相対する電極端部間の放電もやや強いが、概ね放電管
軸について、対称に近い放電が得られる。これは、前述
のように、放電電極2a,2bの開き角を120’近い
値と大きくとっているためである。
Now, in the upstream of the gas flow, as shown in Figure 4(b), in the high-frequency discharge, the hk current is somewhat strong near the discharge γ hypopoles 2a and 2b, and the distance between the electrodes is short and the local impedance is low. The discharge between the electrode ends is also somewhat strong, but the discharge is generally symmetrical about the discharge tube axis. This is because, as mentioned above, the opening angle of the discharge electrodes 2a, 2b is set to a large value of nearly 120'.

ここで、電極上の放電管1近傍の放電がやや強いのは、
放電管1へのイオン衝突により生じた二次電子が放電管
1近くのイオンーシースで加速され、更なる電離を生じ
ているものである。(文献=rD.He  et  a
l,,J,Appl.Phys..55 (11),1
984J参照)ところで、気体流下流では、第4図(c
)に示すように、放電電極2a,2bの相対する両端部
間で集中しやすくなる。これは、前述のように、気体流
下流で気体の温度上昇が顕著となり、気体膨張のため、
気体密度が下流に向かうに従い稀薄となり、これに伴な
って、放電抵抗が小さくなるため、下流に向かう程、放
電電流が大きくなりやすい。これに加えて電極間距離が
近く、局所的インピーダンスの低い電極端部の放電電流
が大きく放電が集中してしまう。
Here, the reason why the discharge near the discharge tube 1 on the electrode is somewhat strong is because
Secondary electrons generated by ion collision with the discharge tube 1 are accelerated by the ion sheath near the discharge tube 1, causing further ionization. (Literature=rD.He et a
l,,J,Appl. Phys. .. 55 (11), 1
984J) By the way, in the downstream of the gas flow, as shown in Fig. 4 (c
), it is easy to concentrate between the opposing ends of the discharge electrodes 2a and 2b. This is because, as mentioned above, the temperature of the gas increases significantly downstream of the gas flow, and the gas expands.
The gas density becomes thinner as it goes downstream, and the discharge resistance decreases accordingly, so the discharge current tends to increase as it goes downstream. In addition, the distance between the electrodes is short and the discharge current is large at the end of the electrode where the local impedance is low and the discharge is concentrated.

気体流の上流から下流まで全体を通して見ると、第4図
(a)に示すようになり、気体流下流の射対する両ff
3極端部間の放電集中が大きく、放電の不均一を生じて
しまう。
If you look at the entire gas flow from upstream to downstream, it will look as shown in Figure 4(a), and both ffs facing each other downstream of the gas flow
The concentration of discharge between the three extreme parts is large, resulting in non-uniform discharge.

このため、上述の放電管と電極構造を備えたガスレーザ
発振装置から出力されるレーザは軸対称性が悪くなると
いう問題があった。
For this reason, there is a problem in that the laser output from the gas laser oscillation device having the above-described discharge tube and electrode structure has poor axial symmetry.

従って、本発明は、上記課題を鑑み、放7u管全体にお
ける空間的に均一な放電を可能とし、対称性の良いレー
ザを得られる電極構造を有するガスレーザ発振装置を提
供することを11的とする。
Therefore, in view of the above-mentioned problems, an eleventh object of the present invention is to provide a gas laser oscillation device having an electrode structure that enables spatially uniform discharge in the entire discharge tube and obtains a laser beam with good symmetry. .

[発明の横成] (課題を解決するための手段) 上記目的を達成するために、本発明は、誘電体より成る
外殻を有し、内部にレーザ媒質が満たされる放電管と、
この放電管の周方向の両側にχ・1向して設けられた放
電電極と、この放電電極間に接続された高周波電源と、
前記放電管内のレーザ媒質を一定方向に流す循環手段と
を61えたガスレーザ発振装置において、前記放電電極
の開き角か前記レーザ媒質の流れに対し、下流に向うに
従って小さくなるように前記放電7i極を設けたガスレ
ーザ発振装置を提洪する。
[Details of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides a discharge tube having an outer shell made of a dielectric material, and the inside of which is filled with a laser medium;
A discharge electrode provided in the χ·1 direction on both sides of the discharge tube in the circumferential direction, a high frequency power source connected between the discharge electrodes,
In the gas laser oscillator device 61, which includes a circulating means for causing the laser medium in the discharge tube to flow in a fixed direction, the discharge electrode 7i is arranged such that the opening angle of the discharge electrode becomes smaller toward the downstream side with respect to the flow of the laser medium. Deliver the installed gas laser oscillation device.

(作用) 上記のように構成されたものにおいては、高周波7d源
によって高周波電圧が放電7は極に印加され、レーザ媒
質である気体中で高周波放電を生じ、気体は、温度上昇
を生ずる。このとき、レーザ媒質である気体は、循環手
段により放電管内を一方向に流れる関係から、気体の流
れの下流に向かうに従って、その温度上昇が顕著となる
。気体が温度上昇することにより、高周波放電のインピ
ーダンスは低下し、特に、電極間距離が近く、局所的イ
ンピーダンスの低い電極端部で放電が集中しやすいが、
放電電極の開き角を上流と下流で変え、下流の開き角を
小さくすることにより、電極間端部間の距離を離すこと
ができるため、電極端部の放電集中を防止することがで
きる。但し、全体に電極の開き角を小さくするだけでは
、放電の点灯領域が小さくなってしまい放電の均一性が
妨げられるが、放電集中しにくい気体流上流での電極の
開き角を大きく残すことにより、気体流上流では、電極
近傍と、相対する電極端部間の放7ヒがやや強く、総じ
て、高周波放電は、放電管内に均一に発生されることが
できる。
(Function) In the device configured as described above, a high frequency voltage is applied to the pole of the discharge 7 by the high frequency source 7d, a high frequency discharge is generated in the gas which is the laser medium, and the temperature of the gas is increased. At this time, since the gas serving as the laser medium flows in one direction within the discharge tube due to the circulation means, the temperature thereof increases more significantly as it moves downstream in the gas flow. As the temperature of the gas increases, the impedance of high-frequency discharge decreases, and the discharge tends to concentrate especially at the electrode ends where the distance between the electrodes is short and the local impedance is low.
By changing the opening angle of the discharge electrodes upstream and downstream and making the downstream opening angle smaller, the distance between the ends of the electrodes can be increased, so that concentration of discharge at the ends of the electrodes can be prevented. However, simply reducing the opening angle of the electrodes overall will reduce the discharge lighting area and impede the uniformity of the discharge, but by leaving a large opening angle of the electrodes upstream of the gas flow where it is difficult to concentrate the discharge. In the upstream part of the gas flow, the discharge near the electrodes and between the opposite ends of the electrodes is somewhat strong, and as a whole, high-frequency discharge can be uniformly generated within the discharge tube.

(実施例) 以ド、本発明の一実施例について第1図を用いて説明す
る。なお、前述した従来技術と同一部分には同一符号を
付す。
(Example) Hereinafter, an example of the present invention will be described with reference to FIG. Note that the same parts as those in the prior art described above are given the same reference numerals.

第1図において、hk電管1の内部には、レーザ媒質で
ある気体が充填されている。放電管1の両側にはーλ・
1の放電t−L極2a,2bが放電盾1を挾み込むよう
に対向して配置されている。このbシi’a電極2a,
2bには、高周波電源゛3が接続され、高周波電源3に
より、hk電電極2a,2b間に1ヒ,周波電圧が印加
されると、放電管1内のレーザ媒質てある気体が高周波
放電を生ずるようになっている。
In FIG. 1, the inside of an hk electric tube 1 is filled with gas, which is a laser medium. -λ・ on both sides of discharge tube 1
1 discharge t-L poles 2a and 2b are arranged facing each other so as to sandwich the discharge shield 1. This b-i'a electrode 2a,
A high frequency power source 3 is connected to 2b, and when a high frequency voltage is applied between the hk electrodes 2a and 2b by the high frequency power source 3, the gas that is the laser medium in the discharge tube 1 generates a high frequency discharge. It's starting to happen.

そして、6放電電極2a,2bは、それぞれhk電管1
の軸に対し、ある開き角をもっているが、気体流上流の
開き角θUと、下流の開き角θdとが設定されており、
下流の開き角θdは、上流の開き角θUより、小さく設
定されている。
The 6 discharge electrodes 2a and 2b are respectively connected to the hk electric tube 1.
has a certain opening angle with respect to the axis of the gas flow, but the opening angle θU upstream of the gas flow and the opening angle θd downstream are set,
The downstream opening angle θd is set smaller than the upstream opening angle θU.

なお、本実施例では、気体流の上流から下流に向かうに
従い、徐々にその開き角を小さくするように放電電極2
a,2bを設けた例である。
In this embodiment, the discharge electrode 2 is arranged so that the opening angle thereof gradually decreases as the gas flow moves from upstream to downstream.
This is an example in which a and 2b are provided.

以上のような構成を有する本実施例の作用は次のとおり
である。
The operation of this embodiment having the above configuration is as follows.

第2図に、高周波放電の発生の様子を示す。同図中(a
)は、気体流の上流から下流までの全体の発生の様子で
あり、(b)気体流の上流,(C)は下流である。
FIG. 2 shows how high-frequency discharge occurs. In the same figure (a
) shows the overall occurrence of the gas flow from upstream to downstream; (b) is the upstream gas flow, and (C) is the downstream.

さて、気体流上流では、高周波放電は第2図(b)に示
すように、上述した従来例と同様に、放電電極近傍と、
電極間距離が近く局所的インピーダンスの低い相対する
電極端部間で、放電がやや強いが、放電管軸について対
称に近い放電が得られる。
Now, upstream of the gas flow, as shown in FIG. 2(b), the high-frequency discharge occurs near the discharge electrode, as in the conventional example described above.
Although the discharge is somewhat strong between opposing electrode ends where the distance between the electrodes is short and the local impedance is low, the discharge is nearly symmetrical about the discharge tube axis.

次に、気体流下流では、第2図(c)に示すように、放
?li極のはさみ角を小さくしたことにより、気体温度
が上昇し放電の集中しやすい放電電極の相対する両端部
間の距離が離れたため、上述した従来例とは異なり、電
極端部での放電集中を抑えることができ、放電は放電電
極間の中央部に点灯する。
Next, in the downstream of the gas flow, as shown in FIG. 2(c), is the gas released? By reducing the scissor angle of the Li electrode, the distance between the opposing ends of the discharge electrodes, where the gas temperature rises and discharge tends to concentrate, has increased, unlike the conventional example described above, the discharge concentrates at the electrode ends. can be suppressed, and the discharge lights up in the center between the discharge electrodes.

気体流の上流から下流まで、全体を通して見ると、第2
図(a)に示すようになり、放電電極両端部は気体流上
流が強く、中央部も気体流下流が強くなり、総じて放電
管一杯に均一な放電をi[;られる。
If you look at the entire gas flow from upstream to downstream, the second
As shown in Figure (a), the gas flow is strong upstream at both ends of the discharge electrode, and the gas flow downstream is strong at the center, so that a uniform discharge can be produced throughout the discharge tube.

以上のように、実施例においては、放電電極のはさみ角
を一定としたときに比べ、放電の均一性を大11』に向
上できるため、対称性の良い高品質のレーザ光を出力で
きる。
As described above, in the example, the uniformity of discharge can be improved by a factor of 11'' compared to when the scissor angle of the discharge electrodes is constant, so that high-quality laser light with good symmetry can be output.

なお、本発明は、上記実施例に限定されるものではなく
、例えば放電電極の開き角を徐々に変化させず、不連続
に変化させるものであっても良い。
It should be noted that the present invention is not limited to the above-mentioned embodiments; for example, the opening angle of the discharge electrode may not be changed gradually, but may be changed discontinuously.

また、放電電極の開き角を気体流の上流から下流に向か
うに従い、徐々に大きくし、更に小さくするような手段
であっても、気体流下流部の放電電極の開き角が上流よ
り小さければ同様の効果を得られる。
Furthermore, even if the opening angle of the discharge electrode is gradually increased from upstream to downstream of the gas flow, and then further reduced, the same result will occur if the opening angle of the discharge electrode downstream of the gas flow is smaller than that upstream. You can get the effect of

さらに、放電電極の開き角を気体流の下流程小さくすれ
ば、放電全体をらせん形状にした場合においても、同様
の効果を奏し、本発明は十分に適用できる。
Furthermore, if the opening angle of the discharge electrode is made smaller toward the downstream side of the gas flow, the same effect can be achieved even when the entire discharge has a spiral shape, and the present invention can be fully applied.

[発明の効果] 以上説明したように、本発明の気体レーザ発振装置によ
れば、放電電極を気体の流れに対し、下流に行くに従っ
て、その開き角が小さくなるように設けたので、放電管
内で概略均一な放電が得られ、対称性の良い高品質のレ
ーザ光を出力でき、極めて釘用である。
[Effects of the Invention] As explained above, according to the gas laser oscillation device of the present invention, the discharge electrode is provided with respect to the gas flow so that its opening angle decreases as it goes downstream. A roughly uniform discharge can be obtained, and a high quality laser beam with good symmetry can be output, making it extremely suitable for nails.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明の一実施例である気体レーザ発振装置
の概要構成図、第2図は、第1図に示した気体レーザ発
振装置の高周波放電の様子を示す図、第3図は、従来の
気体レーザ発振装置を示す概要構成図、第4図は、第3
図に示した気体レーザ発振装置の高周波放電の様子を示
す図である。 なお、第2図及び第4図中において、(a)は気体流上
流から下流までの全体の放電を示す図、(b)は、気体
流上流部における放電を示す図、(c)は、気体流下流
における放電を示す図である。 l・・・放7u管,   2a,2b・・・放電7は極
,3・・・高周波電源,  θU・・・上流の開き角,
θd・・・下流の開き角,  4・・・気体流入.5・
・・・気体υ[出
FIG. 1 is a schematic configuration diagram of a gas laser oscillation device that is an embodiment of the present invention, FIG. 2 is a diagram showing the state of high-frequency discharge of the gas laser oscillation device shown in FIG. 1, and FIG. , a schematic configuration diagram showing a conventional gas laser oscillation device, FIG.
FIG. 2 is a diagram showing a state of high-frequency discharge of the gas laser oscillation device shown in the figure. In FIGS. 2 and 4, (a) is a diagram showing the entire discharge from upstream to downstream of the gas flow, (b) is a diagram showing the discharge in the upstream part of the gas flow, and (c) is a diagram showing the discharge in the upstream part of the gas flow. It is a figure which shows the electric discharge downstream of a gas flow. l...discharge 7u tube, 2a, 2b...discharge 7 is pole, 3...high frequency power supply, θU...upstream opening angle,
θd...Downstream opening angle, 4...Gas inflow. 5.
...gas υ [out

Claims (1)

【特許請求の範囲】[Claims] 誘電体より成る外殻を有し、内部にレーザ媒質が満たさ
れる放電管と、この放電管の周方向の両側に対向して設
けられた放電電極と、この放電電極間に接続された高周
波電源と、前記放電管内に一定方向に前記レーザ媒質を
流す循環手段とを備えた気体レーザ発振装置において、
前記放電電極の開き角が前記レーザ媒質の流れに対し、
下流に向うに従って小さくなるように前記放電電極を設
けたことを特徴とする気体レーザ発振装置。
A discharge tube having an outer shell made of a dielectric material and filled with a laser medium, discharge electrodes provided on opposite sides of the discharge tube in the circumferential direction, and a high-frequency power source connected between the discharge electrodes. and a circulation means for flowing the laser medium in a fixed direction within the discharge tube,
The opening angle of the discharge electrode is relative to the flow of the laser medium,
A gas laser oscillation device characterized in that the discharge electrode is provided so as to become smaller toward the downstream side.
JP11413189A 1989-05-09 1989-05-09 Gas laser oscillating equipment Pending JPH02294084A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11413189A JPH02294084A (en) 1989-05-09 1989-05-09 Gas laser oscillating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11413189A JPH02294084A (en) 1989-05-09 1989-05-09 Gas laser oscillating equipment

Publications (1)

Publication Number Publication Date
JPH02294084A true JPH02294084A (en) 1990-12-05

Family

ID=14629913

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11413189A Pending JPH02294084A (en) 1989-05-09 1989-05-09 Gas laser oscillating equipment

Country Status (1)

Country Link
JP (1) JPH02294084A (en)

Similar Documents

Publication Publication Date Title
US6414978B2 (en) Discharge unit for a high repetition rate excimer or molecular fluorine laser
US4247829A (en) Silent discharge type gas laser device
US6298806B1 (en) Device for exciting a gas by a surface wave plasma
JPH06164042A (en) Gas-laser oscillation apparatus
JP2002502548A (en) Ultrasonic and subsonic lasers with RF discharge excitation
US5268919A (en) Gas laser oscillating device
JPS603170A (en) Silent discharge type gas laser device
JPH02294084A (en) Gas laser oscillating equipment
GB2107512A (en) Apparatus for producing a laser-active state in a fast subsonic flow
US3614657A (en) Cylindrical plasma laser
JP3221347B2 (en) Gas laser oscillation device
JP2001111141A (en) Laser oscillation apparatus
JP2792457B2 (en) Microwave-excited gas laser device
JPH09214032A (en) Laser oscillator
JPH07183599A (en) Gas laser oscillation equipment
JPH03125485A (en) Gas laser
JPH02281671A (en) Gas laser oscillation device
JPS5917871B2 (en) gas laser equipment
JPS625675A (en) Gas laser device
JPH05315688A (en) Gas laser oscillator
JPS6026311B2 (en) gas laser equipment
JPH03246980A (en) Gas laser oscillator
JPH0342886A (en) Gas laser tube
JPS6195588A (en) Gas laser oscillator
JPS5851581A (en) Lateral excitation type gas laser