JPH02293701A - Formation of titanium oxide thin film and material to be deposited by evaporation used therein - Google Patents

Formation of titanium oxide thin film and material to be deposited by evaporation used therein

Info

Publication number
JPH02293701A
JPH02293701A JP1113267A JP11326789A JPH02293701A JP H02293701 A JPH02293701 A JP H02293701A JP 1113267 A JP1113267 A JP 1113267A JP 11326789 A JP11326789 A JP 11326789A JP H02293701 A JPH02293701 A JP H02293701A
Authority
JP
Japan
Prior art keywords
tio
thin film
deposited
titanium oxide
evaporation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1113267A
Other languages
Japanese (ja)
Inventor
Shigeo Matsumaru
松丸 重雄
Minoru Omoto
大本 実
Toru Watanabe
徹 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP1113267A priority Critical patent/JPH02293701A/en
Publication of JPH02293701A publication Critical patent/JPH02293701A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Optical Elements (AREA)

Abstract

PURPOSE:To make efficient and inexpensive formation by using a material which is to be evaporated and contains 15 to 30wt.% TiO in a mixture composed of TiO and TiO2 at the time of forming a thin film deposited by evaporation on the surface of a substrate by a vacuum vapor deposition. CONSTITUTION:Metals, glass, resins, etc., are used as the substrate and are preferably transparent, for which, for example, a polymethyl methacrylate resin, etc., are used. The mixture which is composed of the TiO and TiO2 and in which the content of the TiO therein is 15 to 30wt.%, more preferably 20 to 25wt.% is used as the material to be deposited by evaporation. The generation amt. of O2 is large and the workability is poor as the pretreatment of the material to be deposited by evaporation takes too much time if the content of the TiO is below 15wt.%. On the other hand, the use of the costly TiO increases and the cost of the material to be evaporated increases while the improvement in the effect is not admitted if the amt. exceeds 30wt.%. The titanium oxide thin film which is transparent and good in appearance and is adequate for optical applications is inexpensively formed with the good working efficiency by using the material to be evaporated within the prescribed range.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、酸化チタン薄膜の形成方法およびそれに用い
る蒸着物質に関し、より詳しくは反射防止膜、反射増膜
、熱線遮断膜、波長選択膜などの光学膜等に用いられる
酸化チタン薄膜の基板表面への形成方法およびそれに用
いる蒸着物質に関するものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a method for forming a titanium oxide thin film and a vapor deposition material used therein, and more specifically to an antireflection film, a reflection enhancing film, a heat ray blocking film, a wavelength selective film, etc. The present invention relates to a method for forming a titanium oxide thin film on a substrate surface used for optical films, etc., and a vapor deposition substance used therein.

?従来の技術) レンズ、フィルターなどの光学物品には、反射防止膜な
どの光学膜が形成されている。この光学膜の構成物質と
して、MgF2、Si02、Zr(h、TiO2、In
zOs 、SnOz、TiO 、ZnS % CeOz
、HfOz、Y203、Aβ203、SiO、Mgθな
どの無機誘電体が挙げられる。これらの物質は真空蒸着
法等において、抵抗加熱または電子ビーム加熱により加
熱させ、蒸発、昇華して、さらにイオンプレーテイング
法やI A D (Ion Assisted Dep
osition)法を用いる場合はイオン化して基板表
面に薄膜として形成される。
? 2. Description of the Related Art Optical articles such as lenses and filters are coated with optical films such as antireflection films. The constituent materials of this optical film include MgF2, Si02, Zr(h, TiO2, In
zOs, SnOz, TiO, ZnS% CeOz
, HfOz, Y203, Aβ203, SiO, Mgθ, and other inorganic dielectrics. These substances are heated by resistance heating or electron beam heating in a vacuum evaporation method, evaporated and sublimated, and further processed by an ion plating method or I A D (Ion Assisted Dep).
When using the ionization method, the ions are ionized and formed as a thin film on the surface of the substrate.

これらの無機誘電体のうち、TiO■は昇華性がないた
め、すなわち融点(1640℃)より蒸発温度(180
0〜2200℃)が高いため蒸発中は熔融状態にある。
Among these inorganic dielectrics, TiO■ has no sublimation property, that is, its evaporation temperature (180°C) is lower than its melting point (1640°C).
Since the temperature is high (0 to 2200°C), it remains in a molten state during evaporation.

このため、水で冷却されている銅製の電子ビーム用ハー
スの中に直接、Tie2タブレソトを入れずに、タング
ステン、タンタル、モリブデン、窒化ボロン、アルミナ
などの材質で、該ハースと空気断熱を有するように作ら
れたハースライナー?入れて真空蒸着等に用いられてい
る。また、TiO■は融点まで加熱されると分解が起こ
り、0■が発生する(3TiO■→TiOz+TiO 
+Ti+ 1.5 02)ので、ハースライナー中の溶
融状態のTiO■の飛散現象が起こる。このため、この
飛散を防止し槽内の汚れを発生させない目的で薄膜形成
前にじゅうぶんな脱ガスが行なわれている。
For this reason, instead of directly inserting the Tie2 table soot into the copper electron beam hearth, which is cooled with water, it is necessary to use a material such as tungsten, tantalum, molybdenum, boron nitride, or alumina to provide air insulation between the hearth and the hearth. A hearth liner made in? It is used for vacuum evaporation, etc. Furthermore, when TiO■ is heated to its melting point, it decomposes and 0■ is generated (3TiO■→TiOz+TiO
+Ti+ 1.5 02), a scattering phenomenon of molten TiO■ in the hearth liner occurs. For this reason, sufficient degassing is performed before forming the thin film in order to prevent this scattering and to prevent the formation of dirt in the tank.

一方、TiOも蒸発温度(1800〜2000゜C)が
融点(1750゜C)より高いので蒸発中は熔融状態で
あるが、TiOzとは逆に02を吸収するゲノター作用
があり、これによる薄膜の着色を防止する目的で0■ま
たは空気などのO原子を含むガスを真空槽内に導入しな
がら、抵抗加熱または電子ビーム加熱により酸化チタン
薄膜を基板表面に形成することが行なわれている。
On the other hand, TiO also remains in a molten state during evaporation because its evaporation temperature (1800-2000°C) is higher than its melting point (1750°C), but contrary to TiOz, it has a genotar action that absorbs 02, and this causes the formation of thin films. For the purpose of preventing coloring, a titanium oxide thin film is formed on the substrate surface by resistance heating or electron beam heating while introducing a gas containing O atoms such as O2 or air into a vacuum chamber.

(発明が解決しようとする課題) しかしながら、蒸発物質としてTiOzを単独で用いる
前記従来の方法では、電子ビーム加熱するとき、0■ガ
スの発生のため電子ビーム用ハースライナー内の溶融物
質の飛散現象が起きるので、薄?形成前に十分脱ガスす
るという前処理(ペイキング)を必らず実施しなければ
ならないという欠点があった。また、この前処理時間を
短くするためには、電子ビームのパワーを大きくすると
真空槽内の圧力が高くなるので排気速度の大きいポンプ
が必要であったり、逆に、排気速度の小さいポンプでは
、圧力が高くなりすぎるので電子ビームのパワーを小さ
くしなければならず、このため前処理時間が長くかかっ
たりするなどの問題点を有していた。この前処理時間を
短くするため、もし圧力が高いうちに酸化チタン薄膜の
基板表面への形成を始めても、前記光学膜に用いられる
所定の屈折率を有する酸化チタン薄膜はえられない。
(Problem to be Solved by the Invention) However, in the conventional method using TiOz alone as the evaporative substance, when heating with an electron beam, 0.0 gas is generated, resulting in a scattering phenomenon of the molten substance in the hearth liner for the electron beam. Is it thin because it happens? There is a drawback that a pretreatment (paking) of sufficient degassing must be carried out before formation. In addition, in order to shorten this pretreatment time, increasing the power of the electron beam increases the pressure inside the vacuum chamber, so a pump with a high pumping speed is required, or conversely, a pump with a low pumping speed Since the pressure becomes too high, the power of the electron beam must be reduced, resulting in problems such as a long preprocessing time. In order to shorten this pretreatment time, even if the formation of a titanium oxide thin film on the substrate surface is started while the pressure is high, a titanium oxide thin film having a predetermined refractive index used for the optical film cannot be obtained.

一方、蒸着物質としてTiOを単独で用いる前記従来の
方法では、0原子を含むガスの真空槽内への導入が必須
で、0■分圧の調整が不十分であると褐色の薄膜になり
、透明な薄膜はできないという問題点を有していた。ま
た、TiOはTiO2にくらべて数倍、高価であるとい
う欠点がある。
On the other hand, in the conventional method using TiO alone as a deposition material, it is essential to introduce a gas containing zero atoms into the vacuum chamber, and if the partial pressure of zero is insufficiently adjusted, a brown thin film will result. The problem was that a transparent thin film could not be produced. Furthermore, TiO has the disadvantage that it is several times more expensive than TiO2.

したがって、本発明の目的は、従来の酸化チタ?薄膜の
基板表面への形成方法における上記問題点を除去するた
めの酸化チタン薄膜の新規な形成方法およびそれに用い
る蒸着物質を提供することにある。
Therefore, the purpose of the present invention is to solve the problem of conventional titanium oxide. It is an object of the present invention to provide a novel method for forming a titanium oxide thin film and a vapor deposition material used therein to eliminate the above-mentioned problems in the method for forming a thin film on a substrate surface.

(課題を解決するための手段) 本発明者等は、上記問題点を解決すべく真空蒸着法につ
いて鋭意検討した結果、特定割合のTiOとTiO■と
の混合物を蒸着物質として用いることにより課題を解決
できることを見出し、本発明を完成した。
(Means for Solving the Problems) As a result of intensive studies on vacuum evaporation methods to solve the above-mentioned problems, the present inventors solved the problems by using a mixture of TiO and TiO■ in a specific ratio as a deposition material. They found that this could be solved and completed the present invention.

すなわち、本発明によれば上記目的は、真空蒸着法によ
り基板表面に蒸着薄膜を形成する方法において、TiO
とTiO■の混合物中のTiOの含有率が15〜30重
量%である蒸発物質を用いる酸化チタン薄膜の形成方法
により達成することができる。
That is, according to the present invention, the above object is achieved in a method of forming a deposited thin film on a substrate surface by a vacuum evaporation method.
This can be achieved by a method of forming a titanium oxide thin film using an evaporated material in which the content of TiO in a mixture of and TiO2 is 15 to 30% by weight.

また、上記目的は、TiO270〜85重量%とTiO
30〜15重量%との溶融混合物からなり、真空蒸着法
により基板表面に酸化チタン薄膜を形成するための蒸着
物質によって達成することができる。
In addition, the above purpose is to combine 270 to 85% by weight of TiO and
It can be achieved by a vapor deposition material consisting of a molten mixture of 30 to 15% by weight and forming a thin titanium oxide film on the substrate surface by a vacuum vapor deposition method.

以下本発明を詳細に説明する。The present invention will be explained in detail below.

本発明の真空蒸着法としては、通常の用いる方法が採用
することができ、これに使用する真空蒸着槽は、たとえ
ば電子ビーム発生用の電子銃とその電源を備えた通常の
もので、銅製のハース内にはタングステン製またはタン
タル製のハースライナーを備えた装置が一般的に用いら
れる。イオンプレーティング法やIAD法を用いる場合
は、それぞれ高周波発振器やイオン銃を前記装置に備え
ることにより可能となる。
As the vacuum evaporation method of the present invention, a commonly used method can be adopted, and the vacuum evaporation tank used for this is, for example, an ordinary one equipped with an electron gun for generating an electron beam and its power source, and is made of copper. Equipment with a tungsten or tantalum hearth liner inside the hearth is commonly used. When using the ion plating method or the IAD method, this becomes possible by equipping the device with a high frequency oscillator or an ion gun, respectively.

本発明で使用される基板としては、金属、ガラス、樹脂
などが用いられるが透明であることが好ましく、例えば
ポリメチルメタクリレート樹脂、ポリカーボネート樹脂
、ポリエチレンテレフタレート樹脂、ポリスチレン樹脂
、透明As樹脂、透明ABS樹脂、透明塩化ビニル樹脂
、セルロースアセテート樹脂、ジエチレングリコールビ
スアリルカーボネート樹脂などのプラスチックおよびガ
ラスなどの成形品が好ましく使用される。
The substrate used in the present invention may be made of metal, glass, resin, etc., but is preferably transparent; for example, polymethyl methacrylate resin, polycarbonate resin, polyethylene terephthalate resin, polystyrene resin, transparent As resin, transparent ABS resin. , plastics such as transparent vinyl chloride resin, cellulose acetate resin, diethylene glycol bisallyl carbonate resin, and glass molded products are preferably used.

また、上記の基板表面に無機質や有機質の薄膜?形成さ
れた成形品も基板として使用することができ、樹脂基板
と蒸着薄膜との密着性を向上する目的で基板上に、シリ
コン系あるいは多官能アクリル系の表面硬化膜を形成さ
れたもの又は該表面硬化股上に無機質薄膜を形成させた
ものが好ましく用いられる。
Also, is there an inorganic or organic thin film on the surface of the above substrate? The formed molded product can also be used as a substrate, and a silicone-based or polyfunctional acrylic-based surface hardening film is formed on the substrate for the purpose of improving the adhesion between the resin substrate and the vapor-deposited thin film. Preferably used is one in which an inorganic thin film is formed on the surface hardened crotch.

本発明に用いられる蒸着物質としては、TiOとTiO
■の混合物中のTiOの含有率が15〜30重量%、好
ましくは20〜25重量%であるものが用いられる。本
発明におけるrTioとTiO■の混合物中のTiOの
含有率が15〜30重景%である」とは、通常蒸着物質
として用いられるTiOとTiO■とを重量比率で15
〜30重量%と85〜70重量%となるようにそれぞれ
計量し調製又は混合する場合、あるいは前記調製・混合
したものを融点以上に加熱して溶融混合する場合等を意
味する。
The vapor deposition substances used in the present invention include TiO and TiO
The TiO content in the mixture (2) is 15 to 30% by weight, preferably 20 to 25% by weight. The content of TiO in the mixture of rTio and TiO in the present invention is 15 to 30% by weight" means that the weight ratio of TiO and TiO
This refers to cases in which the amounts are measured and prepared or mixed so as to be 30% by weight and 85 to 70% by weight, respectively, or cases in which the prepared and mixed materials are heated above the melting point and melted and mixed.

TiO含有率が15重量%未満の場合には、02発生量
が多く蒸発物質の前処理に時間がかかりすぎるため作業
性が悪くなったり、蒸発物質からの輻射熱により真空槽
内の温度かたかくなりすぎるな?して好まし《ない。一
方、それが30重量%を超える場合には、それ以上の効
果の向上は見られず、高価なTiOの使用量がふえ蒸発
物質のコストが高価となって好ましくない。
If the TiO content is less than 15% by weight, the amount of 02 generated is large and it takes too long to pre-treat the evaporated substances, resulting in poor workability, and the temperature inside the vacuum chamber becomes high due to radiant heat from the evaporated substances. Isn't it too much? I don't like it. On the other hand, if it exceeds 30% by weight, no further improvement in the effect is observed, the amount of expensive TiO used increases, and the cost of the evaporated material becomes expensive, which is not preferable.

蒸発物質の形状は、電子ビーム用ハースライナー内に入
る形状なら、いずれでも採用でき、1例をあげると粒状
、円柱状、球状、角状などが用いられる。
The shape of the evaporated substance can be any shape as long as it can fit inside the electron beam hearth liner, and examples of the shape used include granular, cylindrical, spherical, and angular shapes.

本発明は、前記の如< TiOとTi(hの混合物中の
TiOの含有率が15〜30重量%である蒸着物質を用
いて、通常用いられる真空蒸着法により基板表面に光学
膜としての酸化チタン薄膜を形成することができる。こ
の場合、TiOz75〜85重量%とTiO30〜15
重量%とを前記の如く融点以上に加熱して得られる溶融
混合物を蒸着物質として用いると、計量・調整の準備が
いらず簡便である。
In the present invention, an oxidized optical film is formed on the surface of a substrate by a commonly used vacuum evaporation method using a vapor deposition material in which the content of TiO in the mixture of TiO and Ti (h) is 15 to 30% by weight. A titanium thin film can be formed.In this case, 75-85% by weight of TiOz and 30-15% of TiO
When a molten mixture obtained by heating % by weight above the melting point as described above is used as the vapor deposition material, it is convenient because there is no need for preparation for measurement and adjustment.

(発明の効果) 以上述べたように、本発明によればTiOとTiO■の
混合物中のTiOの含有率が、15〜30重量%である
蒸発物質を用いることにより、透明で外観?好な光学膜
用途としての酸化チタン薄膜の形成の作業が効率よく、
また安価にすることができる。
(Effects of the Invention) As described above, according to the present invention, by using an evaporative material in which the content of TiO in the mixture of TiO and TiO is 15 to 30% by weight, it has a transparent appearance. The process of forming titanium oxide thin films, which are suitable for optical film applications, is efficient.
It can also be made cheaper.

(実施例) 次に、本発明を実施例により具体的に説明する。(Example) Next, the present invention will be specifically explained using examples.

実施例1〜3、比較例1,2 円柱状(15φ×7t)のTiOz (オプトロン■製
:バルク密度4.9、融点1640℃、屈折率2.35
)と粒状(10〜20メソシュ)のTiO  (大阪チ
タニウム製造@:バルク密度4.9、融点1750℃)
を混合してTiOの含有率がθ〜30重量%になるよう
に調整した5種類の蒸発物質1 3. 7 gを、真空
槽内に備えられたタングステン製のハースライナーにそ
れぞれ入れて、5 X 1 0−5Torrまで排気し
た。この後、真空槽内の圧力が0■導入により自動的に
5 X 1 0−’Torrになるように圧力調節器を
設定して、電子ビームのパワーを9kV, 3 0 0
m^、Amp=3.5に設定した。
Examples 1 to 3, Comparative Examples 1 and 2 Cylindrical (15φ x 7t) TiOz (manufactured by Optron ■: bulk density 4.9, melting point 1640°C, refractive index 2.35
) and granular (10-20 mesh) TiO (Osaka Titanium Manufacturing @: bulk density 4.9, melting point 1750°C)
5 types of evaporated substances 1 adjusted so that the content of TiO is θ~30% by weight by mixing 3. 7 g was placed in a tungsten hearth liner provided in a vacuum chamber, and the vacuum chamber was evacuated to 5 X 10-5 Torr. After this, the pressure regulator was set so that the pressure in the vacuum chamber automatically became 5 x 10-' Torr by introducing 0.
m^, Amp was set to 3.5.

この時の真空槽内のそれぞれの圧力変化を第1図〜第5
図に示す。比較例1の第1図(TiO  : 0%)、
比較例2の第2E (TiO  : 1 0%)では?
■ガス発生による圧力変化が大きく、5X10−5To
rrになるまでの時間が長く、前処理に時間がかかった
。実施例1の第3図(TiO : 1 5%)において
は圧力変化は小さく、実施例2の第4図(TiO:24
%)、実施例3の第5図(Tie:30%)においては
、圧力変化はまったく見られない。すなわち、この結果
からTiOの含有率が24重量%、30重量%のときは
前処理は特に必要ないことがわかる。
Figures 1 to 5 show the pressure changes in the vacuum chamber at this time.
As shown in the figure. FIG. 1 of Comparative Example 1 (TiO: 0%),
What about 2nd E (TiO: 10%) of Comparative Example 2?
■There is a large pressure change due to gas generation, and 5X10-5To
It took a long time to reach rr, and the pretreatment took time. In FIG. 3 of Example 1 (TiO: 15%), the pressure change was small, and in FIG. 4 of Example 2 (TiO: 24%), the pressure change was small.
%), and in FIG. 5 of Example 3 (Tie: 30%), no pressure change is seen at all. That is, from this result, it can be seen that no particular pretreatment is necessary when the TiO content is 24% by weight or 30% by weight.

TiO含有率が15重量%のときは5分間前処理した蒸
発物質を、TiO含有率が24重量%、30重量%のと
きは前処理なしの蒸発物質を用いて、ポリメチルメタク
リレート樹脂成形品の基板に、5 X 1 0−5To
rrの圧力で、電子ビームのパワーが9kV, 2 5
 0mA..Amp = 3. 5の条件で、Ti(h
の光学的膜厚が90nm(分光法により測定)の薄膜を
形成したところ、それぞれ透明な外観良好で基板への密
着性良好な酸化チタン薄膜ができた。
When the TiO content was 15% by weight, the evaporated material was pretreated for 5 minutes, and when the TiO content was 24% and 30% by weight, the evaporated material without pretreatment was used to form polymethyl methacrylate resin molded products. On the board, 5 x 1 0-5To
At a pressure of rr, the power of the electron beam is 9kV, 2 5
0mA. .. Amp=3. 5, Ti(h
When a thin film with an optical thickness of 90 nm (measured by spectroscopy) was formed, each titanium oxide thin film was transparent, had a good appearance, and had good adhesion to the substrate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図〜第5図は、本発明を説明するための図q で、Ti(hとTiOの混合物の前処理における各Ti
O含有率の真空槽内の圧力変化への影響を示す。 第1図(TiO : O%) 第2図(TiO : 1 0%) 第3図(TiO : 1 5%) 第4図(TiO:24%) 第5図(TiO:30%)
Figures 1 to 5 are diagrams for explaining the present invention.
The influence of O content on pressure change in the vacuum chamber is shown. Figure 1 (TiO: O%) Figure 2 (TiO: 10%) Figure 3 (TiO: 15%) Figure 4 (TiO: 24%) Figure 5 (TiO: 30%)

Claims (1)

【特許請求の範囲】 1 真空蒸着法により基板表面に蒸着薄膜を形成する方
法において、TiOとTiO_2の混合物中のTiOの
含有率が15〜30重量%である蒸発物質を用いること
を特徴とする酸化チタン薄膜の形成方法。 2 TiO_270〜85重量%とTiO30〜15重
量%との溶融混合物からなる蒸着物質。
[Claims] 1. A method for forming a deposited thin film on a substrate surface by a vacuum evaporation method, characterized in that an evaporation material having a TiO content of 15 to 30% by weight in a mixture of TiO and TiO_2 is used. Method for forming titanium oxide thin film. 2. Vapor deposition material consisting of a molten mixture of 270-85% by weight of TiO and 30-15% by weight of TiO.
JP1113267A 1989-05-02 1989-05-02 Formation of titanium oxide thin film and material to be deposited by evaporation used therein Pending JPH02293701A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1113267A JPH02293701A (en) 1989-05-02 1989-05-02 Formation of titanium oxide thin film and material to be deposited by evaporation used therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1113267A JPH02293701A (en) 1989-05-02 1989-05-02 Formation of titanium oxide thin film and material to be deposited by evaporation used therein

Publications (1)

Publication Number Publication Date
JPH02293701A true JPH02293701A (en) 1990-12-04

Family

ID=14607840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1113267A Pending JPH02293701A (en) 1989-05-02 1989-05-02 Formation of titanium oxide thin film and material to be deposited by evaporation used therein

Country Status (1)

Country Link
JP (1) JPH02293701A (en)

Similar Documents

Publication Publication Date Title
US5464683A (en) Coated transparent substrate
EP0754777B1 (en) Process for producing thin film, and thin film formed by the same
EP1211524B1 (en) Method for producing composition for vapor deposition, composition for vapor deposition, and method for producing optical element with antireflection film
JP6045043B2 (en) Quenchable and non-quenable transparent nanocomposite layers
ZA200510376B (en) Dielectric-layer-coated substrate and installation for production thereof
JP2004511655A (en) Preparation method of indium tin oxide thin film using magnetron negative ion sputtering source
US5340607A (en) Vapor-deposition material for the production of high-refraction optical coatings
JPH02194943A (en) Transparent conductive laminate
CA2360619C (en) Composition for vapor deposition, method for forming antireflection film using it, and optical element
JPH0234772A (en) Method for manufacturing a plastics molding having an improved weatherability
JPH0868902A (en) Device for manufacturing optical lens and thin layer on plastic supporter,manufacture of layer having heterogeneous hardened material,manufacture of reflection preventing layerand method for applying thin layer on plastic supporter
JP3723580B2 (en) Vapor deposition materials for the production of medium refractive index optical coatings
TW415922B (en) Light absorptive anti-reflector and method for manufacturing the same
EP0704547B1 (en) Deposition process for transparent barrier layer
JPH02293701A (en) Formation of titanium oxide thin film and material to be deposited by evaporation used therein
Williams et al. Metal oxides deposited using ion assisted deposition at low temperature
CN1159245C (en) Glass coated with low-radiation film
JPS62101428A (en) Film for packaging
JPH09263936A (en) Production of thin film and thin film
JP4060898B2 (en) Synthetic resin spectacle lens manufacturing method
JP3742443B2 (en) Thin film manufacturing method
JP3933218B2 (en) Optical thin film manufacturing method and optical thin film
EP0762151A2 (en) Optical article with coat and method of making the same
JPH0753240A (en) Ultraviolet-transmission preventive glass
JPS63227B2 (en)