JPH022935Y2 - - Google Patents

Info

Publication number
JPH022935Y2
JPH022935Y2 JP1985020508U JP2050885U JPH022935Y2 JP H022935 Y2 JPH022935 Y2 JP H022935Y2 JP 1985020508 U JP1985020508 U JP 1985020508U JP 2050885 U JP2050885 U JP 2050885U JP H022935 Y2 JPH022935 Y2 JP H022935Y2
Authority
JP
Japan
Prior art keywords
passage
branch
fuel
intake manifold
intake
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1985020508U
Other languages
Japanese (ja)
Other versions
JPS61137877U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP1985020508U priority Critical patent/JPH022935Y2/ja
Publication of JPS61137877U publication Critical patent/JPS61137877U/ja
Application granted granted Critical
Publication of JPH022935Y2 publication Critical patent/JPH022935Y2/ja
Expired legal-status Critical Current

Links

Landscapes

  • Cylinder Crankcases Of Internal Combustion Engines (AREA)

Description

【考案の詳細な説明】 (考案の技術分野) この考案は、共通の燃料供給系からの混合気を
複数の各気筒に分配供給する多気筒内燃機関の吸
気マニホールドに関する。
[Detailed Description of the Invention] (Technical Field of the Invention) This invention relates to an intake manifold for a multi-cylinder internal combustion engine that distributes a mixture from a common fuel supply system to each of a plurality of cylinders.

(技術の背景) 内燃機関の吸気マニホールドは、燃料供給系に
おいて燃料と空気とが混合した混合気をシリンダ
ヘツドの各気筒の燃焼室に供給するものである
が、前記燃料供給系が共通であつて、その共通の
燃料供給系からの混合気を複数の各気筒に分配供
給するものでは混合気は各気筒に均一に分配供給
されることが必要である。
(Technical Background) The intake manifold of an internal combustion engine supplies a mixture of fuel and air to the combustion chambers of each cylinder in the cylinder head in the fuel supply system. In the case where the air-fuel mixture is distributed and supplied to each of a plurality of cylinders from the common fuel supply system, it is necessary that the air-fuel mixture is uniformly distributed and supplied to each cylinder.

(従来技術と問題点) 従来一般に、内燃機関の吸気マニホールドは霧
化された燃料の通路であるとの観点からその通路
を丸形断面形状としている。
(Prior Art and Problems) Conventionally, the intake manifold of an internal combustion engine generally has a round cross-sectional shape from the viewpoint of being a passage for atomized fuel.

しかし乍ら、このような通路構造の場合、機関
が高温状態にある場合にはそれ程問題はないが、
燃料の霧化が完全に為されず、液状のままのもの
が残る低温状態にある場合には各気筒への燃料の
分配機能が低下する。
However, with this kind of passage structure, there is not much of a problem when the engine is in a high temperature state;
If the fuel is not completely atomized and some liquid remains at low temperatures, the ability to distribute fuel to each cylinder will deteriorate.

すなわち、機関が低温時には燃料の霧化は促進
されず、多くの燃料が液状のまま通路底部を流
れ、シリンダヘツド内の各吸入ポートから燃焼室
内に流入するが、このとき、通路が前記丸形断面
を成す構造である場合には、液状燃料は流れ方向
の自由度が大きく各吸入ポートへの均一な分配供
給が難しい。その結果、各燃焼室での完全燃焼が
困難となり、有害排気ガスの排出、出力低下、燃
費等の低下を来す。特に液状燃料の流れ方向は遠
心力等に影響され易く、車両旋回時等には各気筒
への均一な分配供給を確保するのが一層難しい。
In other words, when the engine is at a low temperature, fuel atomization is not promoted, and much of the fuel flows in liquid form at the bottom of the passage and flows into the combustion chamber from each intake port in the cylinder head. In the case of a cross-sectional structure, the liquid fuel has a large degree of freedom in the flow direction, and it is difficult to uniformly distribute and supply the liquid fuel to each intake port. As a result, complete combustion in each combustion chamber becomes difficult, resulting in the emission of harmful exhaust gases, a decrease in output, and a decrease in fuel efficiency. In particular, the flow direction of liquid fuel is easily affected by centrifugal force and the like, and it is even more difficult to ensure uniform distribution and supply to each cylinder when the vehicle is turning.

又、従来、上記の如き燃料分配系の不具合を改
良すべく実公昭52−21399号公報に開示されてい
るように、吸気マニホールドの通路内底部に液体
燃料が流れる溝部を形成する技術が提案されてい
るが、このものは、溝部は液状燃料が流れる方向
に向かつて急激な形状変化をする構造となつてい
るため、吸入抵抗が増大するという欠点があり、
実用上好ましくない。
Furthermore, in order to improve the above-mentioned problems in the fuel distribution system, a technique has been proposed in which a groove is formed in the bottom of the passage of the intake manifold through which liquid fuel flows, as disclosed in Japanese Utility Model Publication No. 52-21399. However, this type has the disadvantage that the groove changes its shape rapidly in the direction in which the liquid fuel flows, which increases suction resistance.
Practically unfavorable.

(考案の目的) そこでこの考案は、上述の如き問題に鑑み、霧
化されずに液状のままにある燃料を各気筒に略均
一に分配供給することが可能であると共に、その
分配供給においては通路形状が徐々に変化するこ
とによつて吸気抵抗の増大が防止できる構造とし
た多気筒内燃機関の吸気マニホールドを提供する
ことを目的とするものである。
(Purpose of the invention) Therefore, in view of the above-mentioned problems, this invention is capable of distributing and supplying liquid fuel without being atomized to each cylinder almost uniformly, and in the distribution supply. It is an object of the present invention to provide an intake manifold for a multi-cylinder internal combustion engine that has a structure in which an increase in intake resistance can be prevented by gradually changing the shape of a passage.

(考案の構成) 上記目的を達成するため、この考案では共通の
燃料供給系からの混合気を複数の各気筒に分配供
給する多気筒内燃機関の吸気マニホールドにおい
て、前記各気筒に混合気を供給する通路の内底部
を通路内側壁部となめらかに連続するなめらかな
断面略V字状に形成すると共に該内底部のV字角
を吸気方向の下流側に向かうに連れて順次小さく
設定するようにしたものである。
(Structure of the invention) In order to achieve the above object, this invention supplies the air-fuel mixture to each cylinder in the intake manifold of a multi-cylinder internal combustion engine that distributes the air-fuel mixture from a common fuel supply system to each of a plurality of cylinders. The inner bottom of the passageway is formed into a substantially V-shaped cross section that smoothly continues with the inner wall of the passageway, and the V-shaped angle of the inner bottom is set to gradually become smaller toward the downstream side in the intake direction. This is what I did.

(考案の実施例) 以下、この考案の一実施例を第1図及び第2図
に基づき具体的に説明する。
(Embodiment of the invention) Hereinafter, an embodiment of the invention will be described in detail based on FIGS. 1 and 2.

第1図に示す吸気マニホールド1は4気筒内燃
機関用のものである。この吸気マニホールド1で
はキヤブレタ取付用のフランジ2の中心線上に形
成されたプライマリ吸気通路3とセカンダリ吸気
通路4の各吸気方向下流側の第1分岐部5から左
右に分岐する左右の各第1分岐通路6と、更にこ
の左右の各第1分岐通路6の下流の第2分岐部7
で更に左右に分岐する左右の各第2分岐通路8と
を有している。
The intake manifold 1 shown in FIG. 1 is for a four-cylinder internal combustion engine. In this intake manifold 1, the primary intake passage 3 and the secondary intake passage 4, which are formed on the center line of the flange 2 for attaching the carburetor, have left and right first branches that branch left and right from the first branch part 5 on the downstream side in the intake direction. The passage 6 and the second branch part 7 downstream of each of the left and right first branch passages 6.
It further has left and right second branch passages 8 that branch left and right.

これらの各第1分岐通路6と各第2分岐通路8
は連通しており、前記プライマリ吸気通路3或は
セカンダリ吸気通路4から流入する混合気は、図
中矢印で示すように先ず、第1分岐部5において
分流されて左右の各第1分岐通路6を夫々流れて
下流に流れ、更に夫々の第2分岐部7において分
流されて左右の各第2分岐通路8を流れ夫々の第
2分岐通路8を流れる混合気はフランジ9に接続
される図示しないエンジンの各気筒のシリンダ内
吸入ポートを介して各燃焼室に供給される。
These first branch passages 6 and second branch passages 8
are in communication with each other, and the air-fuel mixture flowing from the primary intake passage 3 or the secondary intake passage 4 is first divided at the first branch part 5 as shown by the arrow in the figure, and then flows into the left and right first branch passages 6. The air-fuel mixture flows through the respective second branch passages 8 and flows downstream, and is further divided at the respective second branch portions 7 and flows through the left and right second branch passages 8. The air-fuel mixture flowing through the respective second branch passages 8 is connected to a flange 9 (not shown). It is supplied to each combustion chamber through the in-cylinder intake port of each cylinder of the engine.

前記各第1分岐通路6と各第2分岐通路8の内
底部は第3図〜第6図に示すように断面略V字状
の形状とされており、そのV字角θは吸気方向の
下流側に向かうに連れて順次小さく設定されてい
る。また、断面略V字状形状とされる内底部は前
記第1分岐部5から各前記第2分岐通路8の下流
端(フランジ9)の直前に至るまでの間連続的に
形成されている。
The inner bottoms of each of the first branch passages 6 and each of the second branch passages 8 have a substantially V-shaped cross section as shown in FIGS. 3 to 6, and the V-shaped angle θ is equal to They are set to become smaller as they go downstream. Further, the inner bottom portion having a substantially V-shaped cross section is continuously formed from the first branch portion 5 to just before the downstream end (flange 9) of each of the second branch passages 8.

すなわち、第1分岐通路6の略中央(−
部)では第3図に示すようにV字角θ1(例えば
165゜)とされ、それよりも下流の第1分岐通路6
の下流端近傍(−部)では第4図に示すよう
に前記V字角θ1よりも小さなV字角θ2(例えば
155゜)とされ、それよりも下流の第2分岐部7付
近(−部)では第5図に示すように前記V字
角θ2よりも小さなV字角θ3(例えば150゜)とされ、
それよりも下流の第2分岐通路8の略中央(−
部)では第6図に示すように前記V字角θ3より
も小さなV字角θ4(例えば115゜)とされている。
また、それよりも下流の各第2分岐通路8では逆
に徐々にV字角θを180゜に近づけ、フランジ9の
開口端付近では第2図に示すように略180゜、すな
わち水平としている。
That is, approximately the center (-
), the V-shaped angle θ 1 (e.g.
165°), and the first branch passage 6 downstream from it
As shown in FIG. 4, near the downstream end (- part) of the V-shaped angle θ 2 ( for example,
155°), and the V-shaped angle θ 3 (for example, 150°) is smaller than the V-shaped angle θ 2 as shown in FIG. ,
Approximately the center of the second branch passage 8 downstream from it (-
As shown in FIG. 6, the V-shaped angle θ 4 is smaller than the V-shaped angle θ 3 (for example, 115°).
On the other hand, in each of the second branch passages 8 downstream from this point, the V-shaped angle θ gradually approaches 180°, and near the opening end of the flange 9 it is approximately 180°, that is, horizontal, as shown in FIG. .

このような構造とされる実施例の吸気マニホー
ルド1によると、機関の低温時に図示しないキヤ
ブレタから前記プライマリ吸気通路3或はセカン
ダリ通路4及び第1分岐部5を介して左右の各第
1分岐通路6に混合気と共に流入する霧化されな
い液状の燃料が上述のように各第1分岐通路6よ
り各第2分岐通路8に向かつて流れるとき、液状
の燃料は各第1分岐通路6及び各第2分岐通路8
と共に内底部の中央に集液されてその中央部を流
れるようになる。この場合、内底部が燃料の吸気
方向と同一方向の流動指向性を有する形状とされ
ているために各第1分岐通路6から各第2分岐通
路8に分流する液状の燃料は夫々略均一な量とな
り、各気筒の空燃比を略同一にすることができ
る。特に、例示の吸気マニホールド1のように、
共通の燃料供給系からの混合気を複数の気筒に分
配供給す上で複数の分岐部(第1分岐部5及び第
2分岐部7)にて分流させるものでは空燃比を均
一化する効果が高い。
According to the intake manifold 1 of the embodiment having such a structure, when the engine is at a low temperature, the air flows from the carburetor (not shown) to the left and right first branch passages via the primary intake passage 3 or the secondary passage 4 and the first branch part 5. When the non-atomized liquid fuel flowing into the air-fuel mixture 6 flows from each first branch passage 6 toward each second branch passage 8 as described above, the liquid fuel flows through each first branch passage 6 and each second branch passage 8. 2 branch passage 8
At the same time, the liquid is collected at the center of the inner bottom and flows through the center. In this case, since the inner bottom is shaped to have flow directionality in the same direction as the fuel intake direction, the liquid fuel that flows from each first branch passage 6 to each second branch passage 8 is approximately uniform. This makes it possible to make the air-fuel ratio of each cylinder substantially the same. In particular, like the illustrated intake manifold 1,
When the air-fuel mixture from a common fuel supply system is distributed and supplied to a plurality of cylinders, it is possible to divide the mixture at a plurality of branch parts (the first branch part 5 and the second branch part 7), which has the effect of equalizing the air-fuel ratio. expensive.

また、各通路の下流側に向かうに連れてV字角
θを小さくし、更にそのV字形状を吸気通路の側
壁部から滑らかに内底壁全体に亘り形成して断面
通路形状の急激な変化をさけているので通路抵抗
の急激な増大及び変化がなく、円滑な混合気の吸
気が行われ、均一な空燃比を確保しながら出力の
向上も達成できる。
In addition, the V-shaped angle θ becomes smaller toward the downstream side of each passage, and the V-shape is formed smoothly from the side wall of the intake passage to the entire inner bottom wall, thereby preventing a sudden change in the cross-sectional passage shape. Since this avoids a sudden increase or change in passage resistance, smooth air-fuel mixture intake is achieved, and an improvement in output can be achieved while ensuring a uniform air-fuel ratio.

(考案の効果) 以上説明したように本願考案の多気筒内燃機関
の吸気マニホールドによれば、共通の燃料供給系
からの混合気を複数の各気筒に分配供給する多気
筒内燃機関の吸気マニホールドにおいて、前記各
気筒に混合気を供給する通路の内底部を通路内側
壁部となめらかに連続するなめらかな断面略V字
状に形成すると共に該内底部のV字角を吸気方向
の下流側に向かうに連れて順次小さく設定するよ
うにしたので、吸気抵抗(通路抵抗)を大きくす
ることなく、機関の低温時に液状のまま流れる燃
料に流動指向性もたせることができ、このために
液状の燃料流れに影響を及ぼす車両旋回時等であ
つても液状の燃料を各気筒に略均一に分配供給す
ることが可能となり、機関の低温時の燃料の分配
機能が向上する。
(Effects of the invention) As explained above, according to the intake manifold of a multi-cylinder internal combustion engine of the present invention, the intake manifold of a multi-cylinder internal combustion engine that distributes the air-fuel mixture from a common fuel supply system to each of a plurality of cylinders. , the inner bottom of the passage supplying the air-fuel mixture to each cylinder is formed into a substantially V-shaped cross section that smoothly continues with the inner wall of the passage, and the V-shaped angle of the inner bottom faces toward the downstream side in the intake direction. Since the setting is made gradually smaller as the temperature increases, it is possible to give flow directionality to the fuel that flows in liquid form when the engine is at low temperature without increasing the intake resistance (passage resistance). It becomes possible to distribute and supply liquid fuel substantially uniformly to each cylinder even when the vehicle turns, which may affect the engine, and improves the fuel distribution function when the engine is at low temperature.

また、通路の内底部のV字角を吸気方向の下流
側に向かうに連れて順次小さく設定するようにし
たので、吸気方向上流で通路内周面に付着した燃
料を溜めずに各気筒に対してほぼ均一に向かうよ
うにでき、吸気方向下流では車両の変動により拡
散しようとする燃料の動きを抑制し、燃料を各気
筒内にスムースに送り込むことができる。
In addition, the V-shaped angle at the inner bottom of the passage is set to become smaller as it goes downstream in the intake direction, so that the fuel that adheres to the inner circumferential surface of the passage in the upstream direction of the intake direction is not accumulated and is In the downstream direction in the intake direction, the movement of the fuel that tends to spread due to vehicle fluctuations is suppressed, and the fuel can be sent smoothly into each cylinder.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの考案に係る多気筒内燃機関の吸気
マニホールドの一実施例の平面図、第2図は同正
面図、第3図は第1図の−線に沿う断面図、
第4図は第1図の−線に沿う断面図、第5図
は第1図のV−V線に沿う断面図、第6図は第1
図の−線に沿う断面図である。 1……吸気マニホールド、2……キヤブレタ取
付用フランジ、3……プライマリ吸気通路、4…
…セカンダリ吸気通路、5……第1分岐部、6…
…第1分岐通路、7……第2分岐部、8……第2
分岐通路、θ1〜θ4……V字角。
FIG. 1 is a plan view of an embodiment of the intake manifold of a multi-cylinder internal combustion engine according to this invention, FIG. 2 is a front view of the same, and FIG. 3 is a sectional view taken along the line - in FIG.
Figure 4 is a cross-sectional view taken along the - line in Figure 1, Figure 5 is a cross-sectional view taken along the V-V line in Figure 1, and Figure 6 is a cross-sectional view taken along the line V-V in Figure 1.
It is a sectional view taken along the - line in the figure. 1... Intake manifold, 2... Carburetor mounting flange, 3... Primary intake passage, 4...
...Secondary intake passage, 5...First branch, 6...
...First branch passage, 7...Second branch, 8...Second
Branch passage, θ 1 to θ 4 ... V-shaped angle.

Claims (1)

【実用新案登録請求の範囲】 1 共通の燃料供給系からの混合気を複数の各気
筒に分配供給する多気筒内燃機関の吸気マニホ
ールドにおいて、前記各気筒に混合気を供給す
る通路の内底部を通路内側壁部となめらかに連
続するなめらかな断面略V字状に形成すると共
に該内底部のV字角を吸気方向の下流側に向か
うに連れて順次小さく設定するようにしたこと
を特徴とする多気筒内燃機関の吸気マニホール
ド。 2 前記吸気マニホールドは前記共通の燃料供給
系から分岐する第1分岐通路と、各前記第1分
岐通路から夫々分岐する第2分岐通路から成
り、前記略V字状の内底部は各前記第1分岐通
路の分岐部から各前記第2分岐通路の下流端の
直前に至るまでの間連続的に形成したことを特
徴とする実用新案登録請求の範囲第1項記載の
多気筒内燃機関の吸気マニホールド。
[Claims for Utility Model Registration] 1. In an intake manifold of a multi-cylinder internal combustion engine that distributes a mixture from a common fuel supply system to each of a plurality of cylinders, the inner bottom of the passage that supplies the mixture to each of the cylinders is It is characterized in that it is formed into a substantially V-shaped cross section that is smoothly continuous with the inner wall of the passage, and the V-shaped angle of the inner bottom is set to become gradually smaller toward the downstream side in the intake direction. Intake manifold of multi-cylinder internal combustion engine. 2. The intake manifold is composed of a first branch passage branching from the common fuel supply system and a second branch passage branching from each of the first branch passages, and the substantially V-shaped inner bottom portion is formed of a first branch passage branching from the common fuel supply system and a second branch passage branching from each of the first branch passages. The intake manifold for a multi-cylinder internal combustion engine according to claim 1, wherein the intake manifold is continuously formed from the branching part of the branching passage to just before the downstream end of each of the second branching passages. .
JP1985020508U 1985-02-18 1985-02-18 Expired JPH022935Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1985020508U JPH022935Y2 (en) 1985-02-18 1985-02-18

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1985020508U JPH022935Y2 (en) 1985-02-18 1985-02-18

Publications (2)

Publication Number Publication Date
JPS61137877U JPS61137877U (en) 1986-08-27
JPH022935Y2 true JPH022935Y2 (en) 1990-01-24

Family

ID=30511059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1985020508U Expired JPH022935Y2 (en) 1985-02-18 1985-02-18

Country Status (1)

Country Link
JP (1) JPH022935Y2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4710567U (en) * 1971-03-03 1972-10-07

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4710567U (en) * 1971-03-03 1972-10-07

Also Published As

Publication number Publication date
JPS61137877U (en) 1986-08-27

Similar Documents

Publication Publication Date Title
JPH04128567A (en) Intake device for engine
JPH022935Y2 (en)
JPH022934Y2 (en)
US4153029A (en) Heat insulator for a carburetor
JPS6034770Y2 (en) Internal combustion engine intake manifold
JPH0754604Y2 (en) Intake device in a three-cylinder internal combustion engine
JPS60228758A (en) Intake device of multi-cylinder engine
JPH0329572Y2 (en)
JPS6033333Y2 (en) Internal combustion engine intake system
JPS63306268A (en) Intake manifold for internal combustion engine
JPH0141903Y2 (en)
JPH0437254Y2 (en)
JP3143687B2 (en) Multi-cylinder engine intake manifold
JPH0313574Y2 (en)
JPS60224965A (en) Intake unit for multi-cylinder engine
JPH0729220Y2 (en) Multi-valve internal combustion engine
JP2510100Y2 (en) Internal combustion engine intake system
JPS6132126Y2 (en)
JPS6246808Y2 (en)
JPH0234459Y2 (en)
JPH10252577A (en) Egr distributing device of internal combustion engine
JP2542030B2 (en) Internal combustion engine intake system
JPH0746768Y2 (en) Intake device in a multi-cylinder internal combustion engine
JPH0515566Y2 (en)
JPS60252154A (en) Suction device for engine