JPH02292502A - Control device for fluid actuator - Google Patents

Control device for fluid actuator

Info

Publication number
JPH02292502A
JPH02292502A JP11442089A JP11442089A JPH02292502A JP H02292502 A JPH02292502 A JP H02292502A JP 11442089 A JP11442089 A JP 11442089A JP 11442089 A JP11442089 A JP 11442089A JP H02292502 A JPH02292502 A JP H02292502A
Authority
JP
Japan
Prior art keywords
signal
deviation
integrating
fluid actuator
control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11442089A
Other languages
Japanese (ja)
Other versions
JP2576627B2 (en
Inventor
Yoshinari Sasaki
能成 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP1114420A priority Critical patent/JP2576627B2/en
Publication of JPH02292502A publication Critical patent/JPH02292502A/en
Application granted granted Critical
Publication of JP2576627B2 publication Critical patent/JP2576627B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To remove deviation, which is caused by overshoot or temperature drift, by setting up a first integrating means with small gain which outputs control signals after integrating deviation signals, a second integrating means with large gain, and a switching means for the second integrating means which operates when a fluid actuator reaches a stationary state. CONSTITUTION:There are subtracter 3 which outputs deviation signals Ve created by subtracting speed inspection signals Vf from speed command signals Vi, a first integrating device 4 with small gain which integrates the deviation signals Ve, and a second integrating device 5 with large gain for removing drift. There are also a switching means 6 which switches the deviation signals Ve over to the first integrating device 4 when the oil pressure cylinder is in a non-stationary state while to a second integrating device 5 when in a stationary state, and an adding device 7 which outputs speed control signals Vc, which are calculated by adding signals from both integrating devices, to a control objective block 1. Consequently, overshoot is eliminated and stationary deviation by temperature drift can be made zero.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、電磁弁を経る作動流体で駆動される流体アク
ヂュエータを、その位置検出信号に基づいてフィードバ
ック制御する制御装置に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a control device that performs feedback control of a fluid actuator driven by working fluid passing through a solenoid valve based on a position detection signal thereof.

く従来の技術〉 従来、この種の制御装置として、例えば第4図に示すよ
うなものがある。この制御装置は、油圧シリンダ21の
両端のボートに、電磁比例式制御弁22を介して油圧源
23からの圧油を切換供給するとともに、油圧ンリンダ
21のロツド21aの速度を検出ずるセンサ24からの
速度検出信号■fと目標速度を表わす速度指令信号Vi
をコントローラ25に人力し、コントローラ25で両信
号の偏差Vi−Vfを求め、これに制御特性に関する補
償演算を施して、速度制御信号Vcとして上記電磁比例
式制御弁22のソレノイド22aに出力するものである
BACKGROUND ART Conventionally, as this type of control device, there is one shown in FIG. 4, for example. This control device selectively supplies pressurized oil from a hydraulic source 23 to the boats at both ends of the hydraulic cylinder 21 via an electromagnetic proportional control valve 22, and a sensor 24 that detects the speed of the rod 21a of the hydraulic cylinder 21. The speed detection signal f and the speed command signal Vi representing the target speed
is manually input to the controller 25, the controller 25 calculates the deviation Vi-Vf between both signals, performs compensation calculation regarding control characteristics on this, and outputs it to the solenoid 22a of the electromagnetic proportional control valve 22 as the speed control signal Vc. It is.

ところで、作動油の粘度は温度上昇と共に低下するから
、電磁比例式制御弁22の開度が一定の場合、油圧シリ
ンダ21には高温になるほど多量の作動油か供給される
。従って、油圧シリンダ2!の往動速度を一定に保つに
は、コントローラ25から出力する速度制御信号Vcを
、第5図(a)に示すように高温になるほど大きくして
、制御弁22をその間度を小さくする図中右シンボル位
置側に切り換える必要かある。換言すれば、油温の変動
によって速度制御信号Vcにドリフトが生じることにな
る。この速度制御信号Vcの温度ドリフトは、油温変化
を検出して解析的に解消するのが難しいため、上記制御
装置では、コントローラ25内に上記偏差信号Vi−V
rを積分補償する積分回路を設けて、温度ドリフト分を
オフセットした速度制御信号を出力し、シリンダ速度の
定常偏差をなくすようにしている。
By the way, the viscosity of hydraulic oil decreases as the temperature rises, so when the opening degree of the electromagnetic proportional control valve 22 is constant, a larger amount of hydraulic oil is supplied to the hydraulic cylinder 21 as the temperature increases. Therefore, hydraulic cylinder 2! In order to keep the forward speed constant, the speed control signal Vc output from the controller 25 is increased as the temperature increases, as shown in FIG. Is it necessary to switch to the right symbol position? In other words, a drift occurs in the speed control signal Vc due to changes in oil temperature. Since it is difficult to analytically eliminate this temperature drift of the speed control signal Vc by detecting oil temperature changes, the controller 25 uses the deviation signal Vi-V in the controller 25.
An integral circuit for integrally compensating r is provided to output a speed control signal offset by temperature drift, thereby eliminating steady-state deviations in cylinder speed.

〈発明が解決しようとする課題〉 ところが、上記従来の制御装置は、コントローラ25内
に積分回路を設け、この積分回路では単に偏差信号を積
分しているだけなので、次のような問題がある。即ち、
温度ドソフトによる定常偏差Bをなくするように積分ゲ
インを大きくすると速度制御信号Vcにより制御弁22
を介して駆動される油圧シリンダ21の応答(シリンダ
速度)は、第5図(b)に示すように、目標速度Viに
対してオーバーンユートAを生じる。一方、積分ゲイン
を小さくすると、温度ドリフトをなくすることができな
い。
<Problems to be Solved by the Invention> However, the conventional control device described above has an integrating circuit in the controller 25, and this integrating circuit simply integrates the deviation signal, so there are the following problems. That is,
When the integral gain is increased so as to eliminate the steady-state deviation B due to temperature deformation, the control valve 22 is increased by the speed control signal Vc.
The response (cylinder speed) of the hydraulic cylinder 21 driven via the cylinder 21 produces an overburning point A with respect to the target speed Vi, as shown in FIG. 5(b). On the other hand, if the integral gain is made small, temperature drift cannot be eliminated.

そこで、本発明の目的は、制御特性を補償すべく本来の
検出信号を積分する積分手段と、温度ドリフトによる検
出信号を解消する積分手段を別々に制御装置に併設する
ことによって、電磁弁を介して流体アクチュエータを才
一バーシュート等のない良好な制御特性に維持しつつ、
温度ドリフトによる定常偏差を皆無にすることができる
流体アクチュエータの制御装置を提供することである。
Therefore, an object of the present invention is to separately install an integrating means for integrating the original detection signal in order to compensate for the control characteristics, and an integrating means for canceling the detection signal due to temperature drift in a control device. While maintaining the fluid actuator with good control characteristics without bar shoot etc.
It is an object of the present invention to provide a control device for a fluid actuator that can completely eliminate steady state deviation due to temperature drift.

く課題を解決するための手段〉 上記目的を達成するため、本発明の流体アクチュエータ
の制御装置は、第t図に例示するように、電磁弁22を
経る作動流体で駆動される流体アクチュエータ2Iの作
−動を検出するセンサ24からの検出信号Vrを受け、
この検出信号vrを指令信号Viから減算して得た偏差
信号Veに補償演算を施して、制御信号Vcとして上記
電磁弁22に出力するものにおいて、制御特性を補償す
べく上記偏差信号Veを積分して制御信号Vcとして出
力するゲインの小さい第1積分手段4と、温度変動によ
る制御信号のドリフトを解消すべく上記偏差信号Veを
積分して制御信号Vcとして出力するゲインの大きい第
2積分手段5と、流体アクヂュエータ2Iの非定常作動
時には上記第1積分手段4を動作させ、流体アクチュエ
ータ21が定常状態に達したとき上記第1積分手段4に
代えて上記第2積分手段5を動作させる切換手段6を設
けたことを特徴とする。
Means for Solving the Problems> In order to achieve the above object, the fluid actuator control device of the present invention, as illustrated in FIG. Receiving a detection signal Vr from the sensor 24 that detects the operation,
The deviation signal Ve obtained by subtracting this detection signal vr from the command signal Vi is subjected to a compensation calculation and outputted to the solenoid valve 22 as the control signal Vc, and the deviation signal Ve is integrated to compensate for the control characteristics. and a second integrating means 4 with a large gain that integrates the deviation signal Ve and outputs it as a control signal Vc in order to eliminate the drift of the control signal due to temperature fluctuation. 5, a switch in which the first integrating means 4 is operated during unsteady operation of the fluid actuator 2I, and the second integrating means 5 is operated in place of the first integrating means 4 when the fluid actuator 21 reaches a steady state; It is characterized in that means 6 is provided.

また、第2図に例示するように、上記制御装置の切換千
段6を省略し、第1積分手段14の前段に偏差信号Ve
中の高周波信号のみを通過させるバイパスフィルタ12
を設け、第2積分手段15の前段に偏差信号中の低周波
信号のみを通過させるローパスフィルタ13を設けて制
御装置を構成することもできる。
Further, as illustrated in FIG. 2, the switching stage 6 of the control device is omitted, and the deviation signal Ve
Bypass filter 12 that allows only middle high frequency signals to pass through
It is also possible to configure a control device by providing a low-pass filter 13 that passes only the low-frequency signal in the deviation signal before the second integrating means 15.

く作用〉 起動直後.停止直前などの流体アクチュエータ21が非
定常状態にあるとき、切換手段6によってゲインの小さ
い第I積分手段4が動作し、偏差信号Ve(一Vi−V
Dを積分し、過渡応答特性を改善するように補償を施し
て制御信号Vcとして出力する。従って、この制御信号
Vcで制御される電磁弁22を経る作動流体で駆動され
る流体アクチュエータ21の応答は、振動やオーバーシ
ュートを生じることなく指令信号の変化に追従せしめら
れ、制御特性が向上する。次に、流体アクチュエータ2
1の動きが定常状態に達すると、切換手段6によってゲ
インの大きい第2積分手段5が第1積分手段4に代わっ
て動作し、偏差信号Veを積分し、温度ドリフトを解消
するように補償を施して制御信号Vcとして出力する。
Effect> Immediately after startup. When the fluid actuator 21 is in an unsteady state, such as immediately before stopping, the switching means 6 operates the I-th integration means 4 with a small gain, and the deviation signal Ve (-Vi-V
D is integrated, compensated to improve transient response characteristics, and output as a control signal Vc. Therefore, the response of the fluid actuator 21 driven by the working fluid passing through the electromagnetic valve 22 controlled by this control signal Vc is made to follow changes in the command signal without causing vibration or overshoot, improving control characteristics. . Next, the fluid actuator 2
1 reaches a steady state, the switching means 6 causes the second integrating means 5 with a large gain to operate in place of the first integrating means 4, integrates the deviation signal Ve, and performs compensation to eliminate temperature drift. and outputs it as a control signal Vc.

従って、この制御信号Vcで制御される電磁弁22を経
る作動流体で駆動される流体アクチュエータ2Iの動き
に存する定常偏差が皆無となり、流体アクチュエータ2
Iの動きは指令信号Viに一致して変化すまた、上記切
換手段6を省略し、ハイバスフィルタl2とローパスフ
ィルタ13を設けた制御装置においては、バイパスフィ
ルタが偏差信号Ve中の温度ドリフトによる低周波の信
号をカットして第1積分手段14に出力する一方、ロー
パスフィルタ13が偏差信号Ve中の高周波の信号をカ
ットして第2積分手段15に出力するので、上述と同様
に第1積分手段14で制御特性の補償が、第2積分手段
I5で温度ドリフトの補償が夫々行なわれる。また、こ
の制御装置では、両積分手段14,15が常時動作する
ので、定常状態においても温度ドリフト以外の外乱に直
ちに対応することができる。
Therefore, there is no steady-state deviation in the movement of the fluid actuator 2I driven by the working fluid passing through the electromagnetic valve 22 controlled by this control signal Vc, and the fluid actuator 2
The movement of I changes in accordance with the command signal Vi.In addition, in a control device in which the switching means 6 is omitted and a high-pass filter l2 and a low-pass filter 13 are provided, the bypass filter changes according to the temperature drift in the deviation signal Ve. While the low-frequency signal is cut and output to the first integrating means 14, the low-pass filter 13 cuts the high-frequency signal in the deviation signal Ve and outputs it to the second integrating means 15. The integrating means 14 compensates for control characteristics, and the second integrating means I5 compensates for temperature drift. In addition, in this control device, since both the integrating means 14 and 15 operate at all times, it is possible to immediately respond to disturbances other than temperature drift even in a steady state.

く実施例〉 以下、本発明を図示の実施例により詳細に説明する。Example Hereinafter, the present invention will be explained in detail with reference to illustrated embodiments.

第1図は本発明の制御装置を備えた流体アクチュエータ
の制御系の一例を示すブロック線図であり、この制御系
は、既述の第4図と同じ油圧源23.電磁比例式制御弁
22.油圧シリンダ21,速度センサ24をもち、速度
制御信号Vcに対して速度検出信号Vfを出力する制御
対象ブロックlと、図中の破線で囲まれた各ブロックを
備えたコントローラ2からなる。
FIG. 1 is a block diagram showing an example of a control system of a fluid actuator equipped with a control device of the present invention, and this control system includes the same hydraulic power source 23. Electromagnetic proportional control valve 22. The controller 2 includes a controlled object block 1 having a hydraulic cylinder 21 and a speed sensor 24 and outputting a speed detection signal Vf in response to a speed control signal Vc, and each block surrounded by a broken line in the figure.

上記コントローラ2は、制御対象ブロックIの速度セン
サ24からフィードバックされる速度検出信号vrを速
度指令信号Viから減算して、偏差信号Ve(=Vi−
VDを出力する減算器3と、制御特性を補償すべく上記
偏差信号Veを積分するゲインの小さい(例えば5以下
)第1積分器4と、温度変動による速度制御信号Vcの
ドリフトを消去すべく上記偏差信号Veを積分するゲイ
ンの大きい(例えば50以上)第2積分器5と、上記減
算器3からの偏差信号Veを、油圧シリンダ21の非定
常作動時に第1積分器4へ、定常作動時に第2積分器5
へ切換人力するスイッチ手段6と、上記両積分器4,5
からの信号を加算して速度制御信号Vcとして制御対象
ブロックlに出力す゛・る加算器7から構成される。な
お、スイッチ千段6は、速度指令信号Viと速度検出信
号vrの変化に基づいて、油圧シリンダ21の作動が定
常状態にあるか否かを判断し、自動的に偏差信号Veの
切り換えを行なうようになっている。
The controller 2 subtracts the speed detection signal vr fed back from the speed sensor 24 of the controlled block I from the speed command signal Vi, and generates a deviation signal Ve (=Vi-
A subtracter 3 that outputs VD, a first integrator 4 with a small gain (for example, 5 or less) that integrates the deviation signal Ve to compensate for the control characteristics, and a first integrator 4 with a small gain (for example, 5 or less) to eliminate the drift of the speed control signal Vc due to temperature fluctuations. The deviation signal Ve from the second integrator 5 with a large gain (for example, 50 or more) that integrates the deviation signal Ve and the subtracter 3 is sent to the first integrator 4 during the unsteady operation of the hydraulic cylinder 21, When the second integrator 5
a switch means 6 for manually switching the integrators 4 and 5;
It is composed of an adder 7 which adds the signals from and outputs it to the controlled block l as a speed control signal Vc. Note that the switch 6 determines whether the operation of the hydraulic cylinder 21 is in a steady state based on changes in the speed command signal Vi and the speed detection signal vr, and automatically switches the deviation signal Ve. It looks like this.

上記構成のコントローラ2による油圧シリンダ21の制
御について次に述べる。
The control of the hydraulic cylinder 21 by the controller 2 having the above configuration will be described next.

制御対象ブロック1内の速度センサ24は、油圧シリン
ダ21のロツド21aの速度を検出して、速度検出信号
Vrをコントローラ2の減算器3に出力する。減算器3
は、この速度検出信号vrを速度指令信号Viから減じ
て、偏差信号Ve(=ViVr)を出力する。いま、油
圧シリンダ21が起動直後あるいは停止直前などの非定
常作動状態にあるとき、スイッチ手段6は、これを検知
して切り換わり、上記偏差信号Veを第1積分器4へ入
力する。すると、ゲインの小さい第1積分器4は、偏差
信号Veを積分し、過渡応答特性を改善するように補償
を施して出力する。次いで、加算器7は、第2積分器5
からの出力信号がないので、上記第I積分器4からの出
力信号を速度制御信号Vcとして制御対象ブロック1の
電磁比例式制御弁22に出力する。従って、この制御弁
22を経る圧油で駆動される油圧シリンダ2!の応答(
シリンダ速度)は、振動やオーバーシュート(第5図(
b)参照)を生じることな《速度指令信号Viの変化に
追従せしめられ、過渡応答等の制御特性が向上する。
The speed sensor 24 in the controlled block 1 detects the speed of the rod 21a of the hydraulic cylinder 21 and outputs a speed detection signal Vr to the subtracter 3 of the controller 2. Subtractor 3
subtracts this speed detection signal vr from the speed command signal Vi and outputs a deviation signal Ve (=ViVr). Now, when the hydraulic cylinder 21 is in an unsteady operating state, such as immediately after starting or immediately before stopping, the switch means 6 detects this, switches, and inputs the deviation signal Ve to the first integrator 4. Then, the first integrator 4 having a small gain integrates the deviation signal Ve, performs compensation to improve the transient response characteristics, and outputs the result. Next, the adder 7 connects the second integrator 5
Since there is no output signal from the I-th integrator 4, the output signal from the I-th integrator 4 is outputted to the electromagnetic proportional control valve 22 of the controlled block 1 as the speed control signal Vc. Therefore, the hydraulic cylinder 2 is driven by the pressure oil passing through this control valve 22! response (
cylinder speed), vibration and overshoot (Fig. 5 (
(See b)) can be made to follow changes in the speed command signal Vi, and control characteristics such as transient response are improved.

次に、油圧シリンダ21の速度が略一定の定常作動状態
に達すると、スイッチ千段6は、これを検知して切り換
わり、偏差信号Veを第2積分器5へ入力する。すると
、ゲインの大きい第2積分器5は、偏差信号Veを積分
し、温度ドリフトを解消するように補償を施して出力す
る。次いで、加算器7は、上記第2積分器5からの出力
信号と第1積分器4が動作時に積分補償した最終出力信
号を加算するが、後者の信号は定常作動状態に達する時
点で殆んど0になっているから、前者の大きなゲインの
積分で作成された出力信号が、速度制御信号Vcとして
制御弁22に出力される。従って、この制御弁22を経
る圧油で駆動される油圧シリンダ21の速度の定常偏差
(第5図(b)のB参照)が0になり、シリンダ速度は
速度指令信号Viに一致して変化することになる。
Next, when the speed of the hydraulic cylinder 21 reaches a steady operating state where the speed is substantially constant, the switch 6 detects this, switches, and inputs the deviation signal Ve to the second integrator 5. Then, the second integrator 5 having a large gain integrates the deviation signal Ve, performs compensation to eliminate temperature drift, and outputs the result. Next, the adder 7 adds the output signal from the second integrator 5 and the final output signal integrally compensated by the first integrator 4 during operation, but the latter signal is mostly Since the output signal is 0, the output signal created by integrating the former large gain is output to the control valve 22 as the speed control signal Vc. Therefore, the steady deviation of the speed of the hydraulic cylinder 21 driven by the pressure oil passing through the control valve 22 (see B in FIG. 5(b)) becomes 0, and the cylinder speed changes in accordance with the speed command signal Vi. I will do it.

第2図は、本発明の制御装置の他の実施例を示すブロッ
ク線図である。この制御装置は、第1図で述べたコント
ローラ2のスイッチ手段3を省略し、これに代えて第1
積分器14,第2積分器15と減算器3の間に夫々バイ
パスフィルタ12,ローパスフィルタ13を設けるとと
もに、加算器7の出力信号を増幅して速度制御信号Vc
として出力するアンプl6を設けている。バイパスフィ
ルタ12は、第3図(a)に示すように、偏差信号Ve
中の周波数がF1以上の本来の信号成分だけを第1積分
器14へ通過させ、ローパスフィルタ13は、第3図(
b)に示すように、偏差信号Ve中の温度ドリフトによ
る周波数がF,以下の信号成分だけを第2積分器15へ
通過させる。そして、第1積分器14は制御特性を補償
すべく、第2積分器15は温度ドリフトを補償すべく夫
々の信号成分を積分する。なお、上記両積分器14.1
5のゲインの大,小は問わない。
FIG. 2 is a block diagram showing another embodiment of the control device of the present invention. This control device omits the switch means 3 of the controller 2 described in FIG.
A bypass filter 12 and a low-pass filter 13 are provided between the integrator 14, the second integrator 15, and the subtracter 3, respectively, and the output signal of the adder 7 is amplified to generate the speed control signal Vc.
An amplifier 16 is provided to output the signal as follows. As shown in FIG. 3(a), the bypass filter 12 receives the deviation signal Ve.
Only the original signal components whose frequencies are F1 or higher are passed to the first integrator 14, and the low-pass filter 13 is configured as shown in FIG.
As shown in b), only signal components whose frequency due to temperature drift in the deviation signal Ve is F or less are passed to the second integrator 15. The first integrator 14 integrates the respective signal components to compensate for the control characteristics, and the second integrator 15 integrates the respective signal components to compensate for temperature drift. Note that both integrators 14.1
It does not matter whether the gain of 5 is large or small.

従って、この制御装置も、第1図で述べた実施例と同様
に動作し、油圧シリンダ21の過渡応答等の速度制御特
性が向上するとともに、速度の定常偏差がOになる。さ
らに、この制御装置では、両積分器1 4.1 5が常
時動作するので、非定常状態においても温度ドリフトを
解消できるとともに、定常状態においても温度ドリフト
以外の外乱に起因する偏差を補償でき、油圧シリンダ2
1の位置決め時の剛性を高め得て、常に所望の制御特性
を維持することができる。
Therefore, this control device also operates in the same manner as the embodiment described in FIG. 1, and the speed control characteristics such as the transient response of the hydraulic cylinder 21 are improved, and the steady-state deviation of the speed becomes O. Furthermore, in this control device, since both integrators 1, 4, and 5 operate constantly, temperature drift can be eliminated even in an unsteady state, and deviations caused by disturbances other than temperature drift can be compensated for even in a steady state. Hydraulic cylinder 2
The rigidity at the time of positioning can be increased, and desired control characteristics can always be maintained.

なお、上記実施例では、コントローラ2をアナログ回路
として構成したが、これを公知の手法でディジタル化し
て、コントローラたるコンピュータを駆動する積分プロ
グラムやフィルタプログラム等のソフトウェアとして構
成することもできる。
In the above embodiment, the controller 2 is configured as an analog circuit, but it can also be digitized using a known method and configured as software such as an integral program or a filter program that drives a computer serving as a controller.

また、流体アクチュエータは、実施例の油圧シリンダに
限らず、制御対象を流体アクチュエータの位置にするこ
ともできる。
Moreover, the fluid actuator is not limited to the hydraulic cylinder of the embodiment, but the control target can also be the position of the fluid actuator.

さらに、本発明が図示の実施例に限られないのはいうま
でもない。
Furthermore, it goes without saying that the present invention is not limited to the illustrated embodiment.

く発明の効果〉 以上の説明で明らかなように、本発明の流体アクチュエ
ータの制御装置は、電磁弁を経る作動流体で駆動される
流体アクチュエータの作動状態検出信号vrと指令信号
Viの偏差信号Veに補償を施して、制御信号Vcとし
て上記電磁弁に出力するものにおいて、切換手段あるい
はバイパスフィルタ,ローパスフィルタを用いて、非定
常状態時の偏差信号Veを第1積分手段で積分して過渡
応答特性を補償する一方、定常状態時の偏差信号Veを
第2積分手段で積分して温度ドリフトを解消し、両積分
手段からの出力信号を制御信号Vcとして出力するよう
にしているので、流体アクチュエータをオーバーシュー
ト等のない良好な制御特性に維持しつつ、温度ドリフト
による定常偏系を0にすることができる。
Effects of the Invention> As is clear from the above description, the fluid actuator control device of the present invention is capable of controlling the deviation signal Ve between the operating state detection signal vr and the command signal Vi of the fluid actuator driven by the working fluid passing through the electromagnetic valve. In the control signal Vc that is compensated for and output to the solenoid valve as the control signal Vc, the deviation signal Ve in an unsteady state is integrated by the first integrating means using a switching means, a bypass filter, or a low-pass filter to obtain a transient response. While compensating the characteristics, the deviation signal Ve in the steady state is integrated by the second integrating means to eliminate temperature drift, and the output signals from both integrating means are output as the control signal Vc, so that the fluid actuator While maintaining good control characteristics without overshoot etc., the steady-state eccentric system due to temperature drift can be reduced to zero.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の制御装置の一実施例を備えた流体アク
チュエータの制御系を示すブロック線図、第2図は他の
実施例を備えた同様のプロッ2線図、第3図は第2図の
フィルタの特性を示す図、第4図は従来の制御系を示す
全体図、第5図(a) , (b)は従来の制御信号の
温度ドリフト,シリンダ速度の応答を示す図である。 l・・・制御対象、2・・・コントローラ、3・・・減
算器、4.14・・・第l積分器、5.15・・・第2
積分器、7・・・加W器、12・・・ハイバスフィルタ
、13・・・ローパスフィルタ、Vi・・・速度指令信
号、vr・・・速度検出信号、Ve・・・偏差信号、V
c・・・速度制御信号。 特 許 出 願 人  ダイキン工業株式会社代 理 
人 弁理士  青山 葆 ほかl名第3図 第 図 第5図
FIG. 1 is a block diagram showing a control system of a fluid actuator equipped with one embodiment of the control device of the present invention, FIG. 2 is a similar plot diagram with another embodiment, and FIG. Figure 2 is a diagram showing the characteristics of the filter, Figure 4 is an overall diagram showing the conventional control system, and Figures 5 (a) and (b) are diagrams showing the temperature drift of the conventional control signal and the response of the cylinder speed. be. 1...Controlled object, 2...Controller, 3...Subtractor, 4.14...1th integrator, 5.15...2nd
Integrator, 7... Addition device, 12... High-pass filter, 13... Low-pass filter, Vi... Speed command signal, vr... Speed detection signal, Ve... Deviation signal, V
c...Speed control signal. Patent applicant Agent: Daikin Industries, Ltd.
Person Patent attorney Aoyama Aoyama and others Figure 3 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)電磁弁(22)を経る作動流体で駆動される流体
アクチュエータ(21)の作動を検出するセンサ(24
)からの検出信号(Vf)を受け、この検出信号(Vf
)を指令信号(Vi)から減算して得た偏差信号(Ve
)に補償演算を施して、制御信号(Vc)として上記電
磁弁(22)に出力する流体アクチュエータの制御装置
において、 制御特性を補償すべく上記偏差信号(Ve)を積分して
制御信号(Vc)として出力するゲインの小さい第1積
分手段(4)と、温度変動等によるドリフトを解消すべ
く上記偏差信号(Ve)を積分して制御信号(Vc)と
して出力するゲインの大きい第2積分手段(5)と、流
体アクチュエータ(21)の非定常作動時には上記第1
積分手段(4)を動作させ、流体アクチュエータ(21
)が定常状態に達したとき上記第1積分手段(4)に代
えて上記第2積分手段(5)を動作させる切換手段(6
)を設けたことを特徴とする流体アクチュエータの制御
装置。
(1) A sensor (24) that detects the operation of a fluid actuator (21) driven by working fluid passing through a solenoid valve (22).
) and receives the detection signal (Vf) from
) is subtracted from the command signal (Vi) to obtain the deviation signal (Ve
) in a fluid actuator control device that performs a compensation calculation on the control signal (Vc) and outputs it to the electromagnetic valve (22) as a control signal (Vc). ), and a second integrating means (4) with a large gain, which integrates the deviation signal (Ve) and outputs it as a control signal (Vc) in order to eliminate drift due to temperature fluctuations, etc. (5), and when the fluid actuator (21) is in unsteady operation, the first
The integrating means (4) is operated and the fluid actuator (21
) reaches a steady state, switching means (6) operates the second integrating means (5) instead of the first integrating means (4);
) A control device for a fluid actuator.
(2)電磁弁(22)を経る作動流体で駆動される流体
アクチュエータ(21)の作動を検出するセンサ(24
)からの検出信号(Vf)を受け、この検出信号(Vf
)を指令信号(Vi)から減算して得た偏差信号(Ve
)に補償演算を施して、制御信号(Vc)として上記電
磁弁(22)に出力する流体アクチュエータの制御装置
において、 上記偏差信号(Ve)を受けるバイパスフィルタ(12
)と、制御特性を補償すべく上記バイパスフィルタ(1
2)の出力信号を積分して制御信号(Vc)として出力
する第1積分手段(14)と、上記偏差信号(Ve)を
受けるローパスフィルタ(13)と、温度変動等による
ドリフトを解消すべく上記ローパスフィルタ(13)の
出力信号を積分して制御信号(Vc)として出力する第
2積分手段(15)を設けたことを特徴とする流体アク
チュエータの制御装置。
(2) A sensor (24) that detects the operation of a fluid actuator (21) driven by the working fluid passing through a solenoid valve (22).
) and receives the detection signal (Vf) from
) is subtracted from the command signal (Vi) to obtain the deviation signal (Ve
) in a control device for a fluid actuator that performs a compensation calculation on the signal and outputs it as a control signal (Vc) to the solenoid valve (22), the bypass filter (12) receiving the deviation signal (Ve).
) and the bypass filter (1) to compensate for the control characteristics.
A first integrating means (14) that integrates the output signal of 2) and outputs it as a control signal (Vc), a low-pass filter (13) that receives the deviation signal (Ve), and A control device for a fluid actuator, characterized in that a second integrating means (15) is provided for integrating the output signal of the low-pass filter (13) and outputting it as a control signal (Vc).
JP1114420A 1989-05-08 1989-05-08 Fluid actuator control device Expired - Lifetime JP2576627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1114420A JP2576627B2 (en) 1989-05-08 1989-05-08 Fluid actuator control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1114420A JP2576627B2 (en) 1989-05-08 1989-05-08 Fluid actuator control device

Publications (2)

Publication Number Publication Date
JPH02292502A true JPH02292502A (en) 1990-12-04
JP2576627B2 JP2576627B2 (en) 1997-01-29

Family

ID=14637265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1114420A Expired - Lifetime JP2576627B2 (en) 1989-05-08 1989-05-08 Fluid actuator control device

Country Status (1)

Country Link
JP (1) JP2576627B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068842A (en) * 1992-03-03 1994-01-18 Deutsche Forsch & Vers Luft Raumfahrt Ev Method for steering surface vehicle having front and rear wheel steering
JP2003014157A (en) * 2001-06-27 2003-01-15 Koso Service Kk Valve positioner and control unit
JP2014029617A (en) * 2012-07-31 2014-02-13 Hitachi Ltd Plant control device, plant control method and plant control program
JP5632115B1 (en) * 2014-03-04 2014-11-26 株式会社ニレコ Feedback control method, feedback control device, and program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595104A (en) * 1979-01-09 1980-07-19 Nippon Shiyuuhenki Kk Movement control system
JPS6284309A (en) * 1985-10-08 1987-04-17 Yaskawa Electric Mfg Co Ltd Machine rigidity compensation servo control system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595104A (en) * 1979-01-09 1980-07-19 Nippon Shiyuuhenki Kk Movement control system
JPS6284309A (en) * 1985-10-08 1987-04-17 Yaskawa Electric Mfg Co Ltd Machine rigidity compensation servo control system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068842A (en) * 1992-03-03 1994-01-18 Deutsche Forsch & Vers Luft Raumfahrt Ev Method for steering surface vehicle having front and rear wheel steering
JP2003014157A (en) * 2001-06-27 2003-01-15 Koso Service Kk Valve positioner and control unit
JP2014029617A (en) * 2012-07-31 2014-02-13 Hitachi Ltd Plant control device, plant control method and plant control program
JP5632115B1 (en) * 2014-03-04 2014-11-26 株式会社ニレコ Feedback control method, feedback control device, and program
WO2015132872A1 (en) * 2014-03-04 2015-09-11 株式会社ニレコ Feedback control method, feedback control device, and program

Also Published As

Publication number Publication date
JP2576627B2 (en) 1997-01-29

Similar Documents

Publication Publication Date Title
JP2004211669A (en) Servo valve controlling device and abnormality detection device of servo valve control system
KR920006773B1 (en) Method and system obtaining the parameter of process control
JPH02292502A (en) Control device for fluid actuator
JP3362053B2 (en) Device for controlling automobile actuators
JP2932235B2 (en) Mold oscillation device for continuous casting machine
JPH0974783A (en) Control apparatus for motor
US6259223B1 (en) Method and apparatus for phase compensation in a vehicle control system
JPH05321297A (en) Vibration suppressing control device for operation device of hydraulic working machine
JP3570056B2 (en) Material testing machine
JPH0876811A (en) Process controller
JP3608302B2 (en) Fatigue testing machine
RU1788161C (en) Apparatus for limiting dynamic efforts of excavator mechanisms
JP2891531B2 (en) Shaking table controller
JP4241747B2 (en) Servo control device
JP2986329B2 (en) Mold vibration device in continuous casting equipment
JP2002157002A (en) Process control unit
JPS6252202A (en) Control device of hydraulic circuit
KR100218930B1 (en) Velocity control method and velocity control apparatus of servo motor
JP3810140B2 (en) Servo control device
Voda et al. High performance position tracking with friction compensation for an electro-pneumatical actuator
JPH07210203A (en) Dead time compensation controller
JPS5941004A (en) Process control device
JPS60218106A (en) Control device
KR100240330B1 (en) One side load hydraulic cylinder control device for virtual reality system
JPH02206801A (en) Process controller