JPH02291985A - Magnetic field sensor - Google Patents

Magnetic field sensor

Info

Publication number
JPH02291985A
JPH02291985A JP11330789A JP11330789A JPH02291985A JP H02291985 A JPH02291985 A JP H02291985A JP 11330789 A JP11330789 A JP 11330789A JP 11330789 A JP11330789 A JP 11330789A JP H02291985 A JPH02291985 A JP H02291985A
Authority
JP
Japan
Prior art keywords
light
magnetic field
intensity
optical fiber
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11330789A
Other languages
Japanese (ja)
Inventor
Noriko Omata
尾股 典子
Masakazu Hayashi
正和 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11330789A priority Critical patent/JPH02291985A/en
Publication of JPH02291985A publication Critical patent/JPH02291985A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Magnetic Variables (AREA)

Abstract

PURPOSE:To enable highly accurate measurement of an intensity of a magnetic field within an ultrafine pipe by rotating a polarization plane of light polarized linearly according to the intensity of magnetic field with a Faraday rotation element. CONSTITUTION:When a light source 10 emits light, the light from the light source 10 is transmitted through an optical fiber 11 and reaches a selfoc lens 15. The light is converted into a parallel light with the selfoc lens and polarized linearly with the subsequent polarizer 14 to be incident into a garnet element 13 as Faraday rotation element. Under such a condition, when a magnetic field H is applied to the garnet element 13, the garnet element 13 rotates a polariza tion plane of the light incident according to an intensity of a magnetic field. The light thus rotated is converted to an intensity of light with an analyzer 16 and condensed with the subsequent selfoc lens 11 to be sent to an optical fiber 18. The light is transmitted through the optical fiber 18 to reaches a meas uring device 19. The measuring device 19 converts the light incident into an voltage signal with a photoelectric transducer to determine the intensity of magnetic field from a voltage signal level thereof.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は磁界センサに関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to magnetic field sensors.

(従来の技術) 磁界センサはブローブとこのブローブの先端に設けられ
ている測定素子とから構成されており、この測定素子の
形状には大きく分けて平型及びアキシャル型がある。第
7図及び第8図はかかる磁界センサの構成図であって、
第7図はブローブ1と平型のn1定素子2とから構成さ
れる磁気センサであり、第8図はブローブ3とアキシャ
ル型のdPj定素子4とから構成される磁気センサであ
る。ここで、71?3定素子2,4はいずれもゲルマニ
ウムのホール発電器が用いられている.そして、磁界強
度を測定する場合、平型の測定素子2を持った磁気セン
サでは磁界Hに対してホール発電器が垂直に配置されよ
うにブローブ1を挿入し、又アキシャル型の測定素子4
を持った磁界センサでは磁界Hに対してホール発電器が
平行に配置されようにプロープ3を挿入するものとなっ
ている。
(Prior Art) A magnetic field sensor is composed of a probe and a measuring element provided at the tip of the probe, and the shape of this measuring element can be roughly divided into flat type and axial type. 7 and 8 are configuration diagrams of such a magnetic field sensor,
FIG. 7 shows a magnetic sensor composed of a probe 1 and a flat type n1 constant element 2, and FIG. 8 shows a magnetic sensor composed of a probe 3 and an axial type dPj constant element 4. Here, germanium Hall generators are used for both the 71?3 constant elements 2 and 4. When measuring the magnetic field strength, in the case of a magnetic sensor with a flat measuring element 2, the probe 1 is inserted so that the Hall generator is arranged perpendicularly to the magnetic field H, and also with the axial measuring element 4.
In a magnetic field sensor having a magnetic field H, the probe 3 is inserted so that the Hall generator is arranged parallel to the magnetic field H.

ところで、径の小さいバイブ内部における磁界・j度を
al定するには、平型のΔIII定素子2よりもアキシ
ャル型の測定素子4の方がより径の小さいバ・rブ内部
の磁界強度をallJ定するのに有利である。
By the way, in order to determine the magnetic field/j degree inside the small-diameter vibrator, the axial type measuring element 4 is better than the flat type ΔIII constant element 2 because the magnetic field strength inside the small-diameter vibrator can be determined by using the axial type measuring element 4. This is advantageous for determining allJ.

そこで、アキシャル型のΔP1定索子4を持った磁界セ
ンサでは、ブローブ3の径は測定素子4の大きさによっ
て決定される。具体的にブローブ3の径はφ5lllI
1程度となっている。従って、バイブの径がφ5報以下
、例えば極細の径φ1!llIIとなると、ブローブ3
をバイブ内部に挿入することができず、極細のバイブ内
部の磁界aP1定が不可能となる。
Therefore, in a magnetic field sensor having an axial type ΔP1 constant probe 4, the diameter of the probe 3 is determined by the size of the measuring element 4. Specifically, the diameter of probe 3 is φ5llllI
It is about 1. Therefore, the diameter of the vibrator is less than φ5, for example, the ultra-thin diameter φ1! When it comes to llII, the bulb 3
cannot be inserted into the vibrator, and it becomes impossible to constant the magnetic field aP1 inside the ultra-thin vibrator.

(発明が,解決しようとする課題) 以上のように極細のバイブ内部の磁界強度を;IF+定
することが困難であった。
(Problems to be Solved by the Invention) As described above, it has been difficult to determine the magnetic field strength inside the ultra-thin vibrator.

そこで本発明は、極細のパイプ内部の磁界強度を高精度
に測定できる磁界センサを提洪することを[1的とする
Therefore, one object of the present invention is to provide a magnetic field sensor that can measure the magnetic field strength inside an extremely thin pipe with high precision.

[発明のもが成] (課題を解決するための手段) 本発明は、光源と、この光源からの光を伝送する極細の
第1光伝送路と、一端がこの第1光伝送路に接続されこ
の第1光伝送路とほほ同径に形成された中空の筐体と、
この筐体内部に配置されたファラディー回転素子と、筐
体内部に配置され光源からの光を弔行光とする光学系と
、筐体内部に配置され光学系を透過した光を直線偏光す
る直線偏光素子と、筐体内部に配置され直線偏光素子の
偏光角度に対して所定角度ずれた偏光角度に設定されフ
ァラディー回転素子を通過した光を険出する検出光学素
子と、筐体内部に配置され検出光学素子を透過した光を
集光する集光光学系と、筐体の他端に接続され検出光学
素子で検出された光を伝送する極細の第2先伝送路と、
この第2光伝送路で伝送された光量から磁界強度を求め
るlIll定器とを備えて上記目的を達成しようとする
磁界センサである。
[Details of the Invention] (Means for Solving the Problems) The present invention provides a light source, an extremely thin first optical transmission line for transmitting light from the light source, and one end connected to the first optical transmission line. a hollow casing formed to have approximately the same diameter as the first optical transmission path;
A Faraday rotation element placed inside the housing, an optical system placed inside the housing that uses the light from the light source as mourning light, and a linear polarization of the light transmitted through the optical system placed inside the housing. A linear polarizing element, a detection optical element disposed inside the housing and set at a polarization angle shifted by a predetermined angle with respect to the polarization angle of the linear polarizing element, and emitting light that has passed through the Faraday rotation element; a condensing optical system configured to condense the light that has passed through the detection optical element; an ultra-thin second transmission line connected to the other end of the housing and transmitting the light detected by the detection optical element;
The present invention is a magnetic field sensor that attempts to achieve the above object by being equipped with an Illl constant device that determines the magnetic field intensity from the amount of light transmitted through the second optical transmission line.

(作用) このような手段を備えたことにより、光源からの光は極
細の第1光伝送路を伝送してこの第1光伝送路とほぼ同
径に形成された筐体内部の光学系で牢行光に変換され,
i線偏光素子で直線偏光されてファラディー回転素子に
送られ、このファラディー回転素子で磁界強度に応じて
直線偏光された光の偏光面が回転される。そして、この
ファラディー回転素子で偏光面が回転された光は険出光
学素子で険出されて極細の第2先伝送路で′AFl定器
・\伝送され、この刈定器でその光量から磁界強瓜が求
められれる。
(Function) By providing such a means, the light from the light source is transmitted through the ultra-thin first optical transmission path and is transmitted to the optical system inside the casing, which is formed to have approximately the same diameter as the first optical transmission path. converted into prison light,
The light is linearly polarized by the i-line polarizing element and sent to the Faraday rotation element, where the plane of polarization of the linearly polarized light is rotated in accordance with the magnetic field strength. Then, the light whose polarization plane has been rotated by this Faraday rotation element is projected by an exposed optical element and transmitted through an ultra-thin second transmission line to the 'AFl constant device. A strong magnetic field is required.

(実施例) 以下、本発明の一実施例について図面を参照して説明す
る。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は磁界センサの構成図であり、第2図は同センサ
の一部構成図である。光源10には発光ダイオード(L
ED)が用いられており、この光源10には極細、例え
ばφ1 am程度の先ファイバー11が接続されている
。この光ファイバー11の他端には中空の筐体つまり銅
バイブ12が接続されており、この銅バイプ12はその
径が光ファイバー11とほぼ同一に形成されている。こ
の銅バイブ12の中空内部には第2図に示すようにその
中央部にファラディー回転素子としてのガーネット素子
13が配置されている。さらに銅パイブ12の中空内部
におけるガーネット素子13から見て光ファイバー11
側には偏光子14及びセルフネックレンズ15が配置さ
れている。又、ガーネット素子13から見て先ファイバ
ー11とは反対側には検光子16及びセルフオツクレン
ズ17が配置されている。なお、検光子16は偏光而の
角度を偏光子14の偏光面に対して45″ずらしている
。そうして、銅バイブ12の内部におけるセルフォック
レンズ17が配置された側には極細の光ファイバー18
が接続され、この光ファイバー18の他端にはa−1定
器19が接続されている。この測定器1つは光ファイバ
ー18を伝送してきた光を受光してその受光量から磁界
強度を求める機能を有するものである。
FIG. 1 is a block diagram of a magnetic field sensor, and FIG. 2 is a partial block diagram of the same sensor. The light source 10 includes a light emitting diode (L
ED) is used, and this light source 10 is connected to an extremely thin fiber 11 having a diameter of, for example, φ1 am. A hollow casing, ie, a copper vib 12, is connected to the other end of the optical fiber 11, and the copper vibe 12 is formed to have approximately the same diameter as the optical fiber 11. As shown in FIG. 2, a garnet element 13 as a Faraday rotation element is disposed in the hollow interior of the copper vibe 12 at the center thereof. Furthermore, the optical fiber 11 seen from the garnet element 13 in the hollow interior of the copper pipe 12
A polarizer 14 and a self-neck lens 15 are arranged on the side. Further, an analyzer 16 and a self-occurring lens 17 are disposed on the opposite side of the tip fiber 11 when viewed from the garnet element 13. The angle of polarization of the analyzer 16 is shifted by 45'' with respect to the polarization plane of the polarizer 14.Then, on the side where the SELFOC lens 17 is placed inside the copper vibe 12, an ultra-fine optical fiber is installed. 18
is connected to the optical fiber 18, and an a-1 regulator 19 is connected to the other end of the optical fiber 18. This one measuring device has the function of receiving light transmitted through the optical fiber 18 and determining the magnetic field strength from the amount of received light.

次に上記の如< !+1成された磁界センサの作用につ
いて説明する。
Next, as above! The operation of the magnetic field sensor that has been increased by +1 will be explained.

光源10が発光すると、この先源10からの光は先ファ
イバー11を伝送してセルフオツクレンズ15に到達す
る。このセルフオツクレンズ15で光は平行光に変換さ
れ、次の偏光子14で直線{一光されてガーネット素子
13に入射する。この状態にガーネット素子13に磁界
Hが加わると、このガーネット素子13は第3図に示す
ように入射した光の偏光面を磁界強度に応じて回転する
When the light source 10 emits light, the light from the front source 10 is transmitted through the front fiber 11 and reaches the self-cleaning lens 15. This self-occurring lens 15 converts the light into parallel light, which is then converted into a straight line by a polarizer 14 and enters the garnet element 13 . When a magnetic field H is applied to the garnet element 13 in this state, the garnet element 13 rotates the plane of polarization of the incident light in accordance with the strength of the magnetic field, as shown in FIG.

ここで、ガーネット索子13のベルデ定数をv1ガーネ
ット素子13の軸方向の厚さをp1ガーネット素子13
に加わった磁界をHとすると、ガーネット素子13にお
ける光の偏光面の回転角ψは、ψ−V−H−,Q となる。そして、このガーネット素子13で偏光面が回
転された光は検光子16によって先強度に変換され、次
のセルフォックスレンズ17で集光されて光ファイバー
18に送られる。しかして、この光は光ファイバー18
を伝送して測定器19に到達する。このjl定器19は
入射した光を光ra変換素子で電圧信号に変換し、この
屯圧1,号レベルから磁界強度を求める。この磁界強度
の求め方は、第4図に示すように電圧信号レベルと磁界
強度とが比例した関係にあることを応用している。
Here, the Verdet constant of the garnet cord 13 is v1, the thickness of the garnet element 13 in the axial direction is p1, the garnet element 13
When the magnetic field applied to is H, the rotation angle ψ of the polarization plane of light in the garnet element 13 becomes ψ-VH-,Q. The light whose polarization plane has been rotated by this garnet element 13 is converted into a pre-intensity by an analyzer 16, and then condensed by a Selfox lens 17 and sent to an optical fiber 18. However, this light is transmitted through the optical fiber 18
is transmitted and reaches the measuring device 19. This jl determiner 19 converts the incident light into a voltage signal using an optical ra conversion element, and determines the magnetic field strength from this tonic pressure level. This method of determining the magnetic field strength applies the fact that the voltage signal level and the magnetic field strength are in a proportional relationship as shown in FIG.

なお、偏光子14と検光子16の各偏光面が45°ずれ
ているので、測定器19における光電変換素子の出力電
圧は第5図に示すようにガーネッ11子13における光
の偏光面の回転角ψを45゜を中心とした範囲Qで磁界
強度の検出感度が高くなる。
Note that since the polarization planes of the polarizer 14 and the analyzer 16 are shifted by 45 degrees, the output voltage of the photoelectric conversion element in the measuring device 19 is determined by the rotation of the polarization plane of the light in the Garnet element 13, as shown in FIG. The detection sensitivity of the magnetic field strength becomes high in a range Q centered around the angle ψ of 45°.

このように上記一実施例においては、極細の先ファイバ
ー11に偏光子14、ガーネソト素子13及び検光子1
6を内部に配置した光ファイバ−11.18とほぼ同径
の銅バイブ12を接続するとともにこの銅バイブ12に
極細の先ファイバー18を介してflFj定′519を
接続した構成としたので、銅パイブ12の径を極細の光
ファイバー11.18とほぼ同径、具体的には銅パイプ
12の径をφ1 w程度に形成することができる。従っ
て、径がミリメートルオーダのバイブ内部の磁界強度が
容易にAI1定できる。又、外部の影響は偏光子14と
検光子16とによってキャンセルされるので、磁界及び
電界等の外乱の影響を受けない。
In this way, in the above-mentioned embodiment, the ultra-fine tip fiber 11 includes a polarizer 14, a Garnet Soto element 13, and an analyzer 1.
In this configuration, a copper vibe 12 having approximately the same diameter as the optical fiber 11.18 in which the fiber 6 is disposed inside is connected, and a flFj constant The diameter of the pipe 12 can be approximately the same as that of the ultra-fine optical fiber 11.18, specifically, the diameter of the copper pipe 12 can be approximately φ1 w. Therefore, the magnetic field strength inside the vibrator whose diameter is on the order of millimeters can be easily determined as AI1. Further, since external influences are canceled by the polarizer 14 and the analyzer 16, it is not affected by disturbances such as magnetic fields and electric fields.

さらに、第5図に示す感度を有するので、磁界強度を高
精度に.1−1定できる。又、偏光子14と検光子16
との各光ファイバー11.18側にそれぞれセルフォッ
クスレンズ15.17を配置しているので、光学的な損
失が少ない。
Furthermore, since it has the sensitivity shown in Figure 5, the magnetic field strength can be adjusted with high precision. 1-1 can be determined. In addition, a polarizer 14 and an analyzer 16
Since Selfox lenses 15 and 17 are arranged on each optical fiber 11 and 18 side, optical loss is small.

なお、本発明は上記一実施例に限定されるものでなくそ
の主旨を逸脱しない範囲で変形してもよい。例えば、第
6図に示すようにガーネット素子13の両側にそれぞれ
偏光子として作用するポラロイド膜等の薄膜20を形成
するとともに検光子として作用するポラロイド膜等の薄
膜21を形成しても良い。このように構成することによ
り各光ファイバー11と18との間が狭くなってセルフ
ォックスレンズを無くすことができるとともに光学的な
損失をより少なくできる。又、光源としては発光ダイオ
ードに限らずレーザダイオードやHeNeレーザなどを
用いても良い。
Note that the present invention is not limited to the above-mentioned embodiment, and may be modified without departing from the spirit thereof. For example, as shown in FIG. 6, a thin film 20 such as a Polaroid film that acts as a polarizer may be formed on both sides of the garnet element 13, and a thin film 21 such as a Polaroid film that acts as an analyzer may be formed on each side of the garnet element 13. With this configuration, the space between each optical fiber 11 and 18 becomes narrower, making it possible to eliminate the Selfox lens and further reducing optical loss. Further, the light source is not limited to a light emitting diode, but a laser diode, a HeNe laser, or the like may be used.

【発明の効果J 以上詳記したように本発明によれば、極細のバイブ内部
の磁界強度を高精度に測定できる磁界センサをi洪でき
る。
Effects of the Invention J As described in detail above, according to the present invention, a magnetic field sensor capable of measuring the magnetic field strength inside an ultra-thin vibrator with high precision can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第5図は本発明に係わる磁界センサの一実施
例を説明するための図であって、第1図は全体構成図、
第2図は銅バイブ内部の構成図、第3図はガーネット回
転素子の作用を示す模式図、第4図及び第5図は一一1
定器での磁界強度の算出作用を説明するための図、第6
図は本発明の変形例を示す構成図、第7図及び第8図は
従来の磁界センサの構成図である。 10・・・光源、11.18・・・光ファイバー12・
・・銅パイプ、13・・・ガーネット回転素子、14・
・・偏光子、15.17・・・セルフォックレンズ、1
6・・・検光子、19・・・4−j定器。 出願人代理人 弁理士 鈴江武必 ″″7 3 区 冥 7 区 二) 8  二}4
1 to 5 are diagrams for explaining one embodiment of a magnetic field sensor according to the present invention, and FIG. 1 is an overall configuration diagram;
Figure 2 is a diagram of the internal configuration of the copper vibe, Figure 3 is a schematic diagram showing the action of the garnet rotating element, Figures 4 and 5 are
Diagram 6 for explaining the calculation effect of magnetic field strength in the measuring device
The figure is a configuration diagram showing a modification of the present invention, and FIGS. 7 and 8 are configuration diagrams of a conventional magnetic field sensor. 10... Light source, 11.18... Optical fiber 12.
・・Copper pipe, 13・・Garnet rotating element, 14・
...Polarizer, 15.17...Selfoc lens, 1
6...Analyzer, 19...4-j meter. Applicant's agent Patent attorney Takeshi Suzue 7 3 Mei Ku 7 Ku 2) 8 2} 4

Claims (1)

【特許請求の範囲】[Claims] 光源と、この光源からの光を伝送する極細の第1光伝送
路と、一端がこの第1光伝送路に接続されこの第1光伝
送路とほぼ同径に形成された中空の筐体と、この筐体内
部に配置されたファラディー回転素子と、前記筐体内部
に配置され前記光源からの光を平行光とする光学系と、
前記筐体内部に配置され前記光学系を透過した光を直線
偏光する直線偏光素子と、前記筐体内部に配置され前記
直線偏光素子の偏光角度に対して所定角度ずれた偏光角
度に設定され前記ファラディー回転素子を通過した光を
検出する検出光学素子と、前記筐体内部に配置され前記
検出光学素子を透過した光を集光する集光光学系と、前
記筐体の他端に接続され前記検出光学素子で検出された
光を伝送する極細の第2光伝送路と、この第2光伝送路
で伝送された光量から磁界強度を求める測定器とを具備
したことを特徴とする磁界センサ。
A light source, an ultra-thin first optical transmission line for transmitting light from the light source, and a hollow housing having one end connected to the first optical transmission line and having approximately the same diameter as the first optical transmission line. , a Faraday rotation element disposed inside the housing, and an optical system disposed inside the housing that converts light from the light source into parallel light;
a linear polarizing element arranged inside the casing and linearly polarizing the light transmitted through the optical system; a detection optical element that detects the light that has passed through the Faraday rotary element; a condensing optical system that is arranged inside the housing and that collects the light that has passed through the detection optical element; and a condensing optical system that is connected to the other end of the housing. A magnetic field sensor comprising: an ultrathin second optical transmission path that transmits the light detected by the detection optical element; and a measuring device that determines magnetic field strength from the amount of light transmitted through the second optical transmission path. .
JP11330789A 1989-05-02 1989-05-02 Magnetic field sensor Pending JPH02291985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11330789A JPH02291985A (en) 1989-05-02 1989-05-02 Magnetic field sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11330789A JPH02291985A (en) 1989-05-02 1989-05-02 Magnetic field sensor

Publications (1)

Publication Number Publication Date
JPH02291985A true JPH02291985A (en) 1990-12-03

Family

ID=14608918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11330789A Pending JPH02291985A (en) 1989-05-02 1989-05-02 Magnetic field sensor

Country Status (1)

Country Link
JP (1) JPH02291985A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005241489A (en) * 2004-02-27 2005-09-08 Nec Corp Magnetic field measurement equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005241489A (en) * 2004-02-27 2005-09-08 Nec Corp Magnetic field measurement equipment
JP4656282B2 (en) * 2004-02-27 2011-03-23 日本電気株式会社 Magnetic field measuring device

Similar Documents

Publication Publication Date Title
US4495411A (en) Fiber optic sensors operating at DC
KR0164227B1 (en) Integrated optics pockels cell voltage sensor
US4524322A (en) Fiber optic system for measuring electric fields
JP3131242B2 (en) Method of measuring incident angle of light beam, measuring device and method of using the device for distance measurement
JPH02291985A (en) Magnetic field sensor
JPS59145977A (en) Magnetic field measuring device
JPS5862571A (en) Photometric apparatus
JPH0639341Y2 (en) Optical electric field detector
JP3350280B2 (en) Optical current transformer
JPS63196865A (en) Optical current measuring apparatus
JPS5935156A (en) Optical current transformer
JPH02291984A (en) Magnetic field sensor
JPS5938663A (en) Current measuring apparatus using optical fiber
JPS59634A (en) Temperature measuring method using optical fiber preserving polarized wave surface
JPS5961783A (en) Measuring apparatus using optical substance
JPS59151071A (en) Optical sensor for measuring magnetic field
JPS63151878A (en) Optical fiber type magnetic field measuring apparatus
SU1064215A1 (en) Device for determination of direct current magnitude
JPH01302174A (en) Current measuring apparatus
JPH01250039A (en) Measuring instrument for liquid refractive index
JPH0229514Y2 (en)
JPS6040970A (en) Optical magnetic flux meter
JPS59212779A (en) Plasma current measuring device
JPS60104270A (en) Magnetic field measuring device
JPH07333569A (en) Optical current transformer