JPH02291932A - Temperature measuring method - Google Patents

Temperature measuring method

Info

Publication number
JPH02291932A
JPH02291932A JP1112242A JP11224289A JPH02291932A JP H02291932 A JPH02291932 A JP H02291932A JP 1112242 A JP1112242 A JP 1112242A JP 11224289 A JP11224289 A JP 11224289A JP H02291932 A JPH02291932 A JP H02291932A
Authority
JP
Japan
Prior art keywords
temperature
lens
zoom lens
measured
reference temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1112242A
Other languages
Japanese (ja)
Inventor
Kamekichi Shiba
芝 亀吉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHISAKA KENKYUSHO KK
Original Assignee
SHISAKA KENKYUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHISAKA KENKYUSHO KK filed Critical SHISAKA KENKYUSHO KK
Priority to JP1112242A priority Critical patent/JPH02291932A/en
Publication of JPH02291932A publication Critical patent/JPH02291932A/en
Pending legal-status Critical Current

Links

Landscapes

  • Radiation Pyrometers (AREA)

Abstract

PURPOSE:To change the range of temperature that can be measured by using a suitable reference temperature and an optical pyrometer using a zoom lens without specifying a gold point as the reference temperature, and changing said reference temperature. CONSTITUTION:This apparatus is composed of a photodetctor 1, a zoom lens 2, an amplifier 3 and an operating circuit 4. The light emitted from a body whose temperature is to be measured 5 passes through the lens 2. An image 5a or 5b is formed on a plane of projection 1'. Since the distance between the body whose temperature is to be measured 5 and the lens 2 is constant, the amount of the light passing through the lens 2 is constant. The intensity of the emission received with the element 1 is increased and decreased in inverse ly proportional to the area of the image. Therefore, the intensity of emission projected on the element 1 can be changed continuously in a broad range only by adjusting an adjusting ring 2a of the lens 2. The output of the element 1 is sent into the operating circuit 4 after amplification in the amplifier 3. The temperature of the body whose temperature is to be measured 5 is computed based on the magnitude of the output. Thus, the measurable temperature range can be changed with appropriate temperature as a reference temperature.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、ズームレンズを用いた光高温計による温度測
定方法に関し、特に、その測定温度範囲を変える方法に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a temperature measurement method using an optical pyrometer using a zoom lens, and particularly to a method for changing the measurement temperature range.

〔従来の技術〕[Conventional technology]

光高温計は、溶鉱炉その他の高温の彼測温体からの放射
光を受光素子で検知することにより非接触的に測温を行
なう装置として各分野で利用されている。
Optical pyrometers are used in various fields as devices for non-contact temperature measurement by detecting emitted light from blast furnaces and other high-temperature thermometers with light-receiving elements.

その測定原理の概略を説明すれば次の通りである。An outline of the measurement principle is as follows.

即ち、国際実用温度目盛でも、計1法の温度目盛でも、
金点(金の凝固点1337. 5K即ち 1064. 
43゜C、金点即ち金の凝固点)以上の温度TKは、な
る式で定義されている。こ\で、Lλ(T)とLλ(T
Au)は、それぞれ温度TKと金点TAuとでの黒体の
放射のエネルギー輝度の波長λの分光密度であり、C 
o ” 1. 4388X 10−2m Kである。
In other words, whether it is the international practical temperature scale or the temperature scale of the one-total method,
Gold point (freezing point of gold 1337.5K or 1064.
The temperature TK above 43°C (gold point, that is, the freezing point of gold) is defined by the following formula. Here, Lλ(T) and Lλ(T
Au) is the spectral density of the wavelength λ of the energy brightness of the blackbody radiation at the temperature TK and the gold point TAu, respectively, and C
o ” 1. 4388X 10-2mK.

この温度の定義は、黒体の放射のエネルギー輝度の波長
λの分光密度が金点のそれの何倍であるかによクて、そ
の黒体の温度が定められる、とするものである。
This definition of temperature is that the temperature of a black body is determined by how many times the spectral density of the wavelength λ of the energy brightness of the black body's radiation is that of a gold point.

そこで、金点以上の温度領域の温度TKを測定するには
、TKの黒体のLλ(T)をn分の1としたものが金点
のLλ(TA−)に等しいようにすれば、 L λ ( T Au) であるから、式(1)によって温度TKが知られもので
ある。
Therefore, in order to measure the temperature TK in the temperature range above the gold point, if Lλ(T) of the black body of TK is 1/n equal to Lλ(TA-) of the gold point, then Since L λ (T Au), the temperature TK is known from equation (1).

Lλ(T)を変える方法はいろいろあり、吸収板(フィ
ルター)、回転セクター、偏光仮、絞りなどが用いられ
ることは公知である。
There are various methods for changing Lλ(T), and it is known that an absorption plate (filter), rotating sector, polarization temporary, aperture, etc. are used.

然しなから、フィルターや絞りは光量を非連続的にしか
変えられず、また回転セクターや偏光板は可変のレンジ
が狭いという問題点があった。
However, there were problems in that filters and apertures could only change the amount of light discontinuously, and rotating sectors and polarizing plates had a narrow variable range.

そこで本出願人は先に特わ昭60− 285690号に
おいて、彼測温体から受光素子に照射される放射の強さ
をズームレンズにより調節するようにした光高温計を開
示した。
Therefore, the present applicant previously disclosed, particularly in No. 1985-285690, an optical pyrometer in which the intensity of radiation irradiated from a thermometer to a light receiving element is adjusted by a zoom lens.

その場合、最大倍率がνのズームレンズを用いる光高温
計では、金点の黒体の輝度のν2倍の輝度の黒体の温度
までの測定ができる。この測定可能な温度範囲を変える
方法は、フィルターを用いる等いろいろあるが、本発明
においては基準温度を変えることによって測定可能な〆
温度範囲を変えようとするものである。
In that case, an optical pyrometer using a zoom lens with a maximum magnification of ν can measure up to the temperature of a black body with a luminance ν2 times the luminance of a black body at a gold point. There are various ways to change this measurable temperature range, such as using a filter, but in the present invention, the measurable end temperature range is changed by changing the reference temperature.

即ち、従来は基準温度を金点に設定するのが常法であっ
た。然しなから、必ずしも金点を基準温度とする必要は
なく、適宜の温度を基準温度とすることか可能である。
That is, conventionally, the standard temperature was set at the gold point. However, it is not always necessary to set the gold point as the reference temperature, and it is possible to set an appropriate temperature as the reference temperature.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は、叙上の観点に立ってなされたものであり、そ
の目的とするところは、ズームレンズを用いた光高温計
において、金点を基準温度とすることなく、適宜の基準
温度を用いることにより、測定可能な温度範囲を変え得
る温度測定方法を提供することにある。
The present invention has been made based on the above-mentioned viewpoints, and its purpose is to use an appropriate reference temperature without using the gold point as the reference temperature in an optical pyrometer using a zoom lens. Accordingly, it is an object of the present invention to provide a temperature measurement method that can change the measurable temperature range.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的は、 ズームレンズを具備した光高温計を用いて温度を測定す
る方法において、 金点にある黒体の放射のエネルギー輝度のν。
The above purpose is to determine the energy brightness ν of the blackbody radiation at a gold point in a method of measuring temperature using an optical pyrometer equipped with a zoom lens.

倍の輝度に対応する温度を基準温度として光高温計の較
正を行なうステップと、 上記ステップにより較正された光高温計を用いて所望の
黒体の放射のエネルギー輝度を測定するステップと、 上記所望の黒体の放射のエネルギー輝度から下記式、即
ち、 〔こ\で、Lλ(T)及びLλ(Tν。)は、それぞれ
ユ度TKとTν。とでの黒体の放射のエネルギー輝度の
波長λの分光密度であり、Co=1. 4388x 1
0−”m K − T A− − 1337. 5K 
( 1064. 43℃、金点)である。〕 により上記所望の魚体の温度Tを得るステップとから成
る上記の温度測定方法、 によって達成し得る。
calibrating an optical pyrometer using a temperature corresponding to double the brightness as a reference temperature; measuring the energy brightness of the desired blackbody radiation using the optical pyrometer calibrated in the above step; From the energy luminance of the blackbody radiation, the following equation is obtained: [Here, Lλ(T) and Lλ(Tν.) are the degrees TK and Tν, respectively. is the spectral density of the wavelength λ of the energy brightness of the radiation of the black body at Co=1. 4388x 1
0-”m K-TA--1337.5K
(1064.43℃, gold point). ] Obtaining the desired temperature T of the fish body according to the above temperature measuring method.

〔作   用〕[For production]

上記の如き方法によれば、金点を基準温度とすることな
く、適宜の基準温度を用いて、測定可能な温度範囲を変
え得るものである。
According to the method described above, the measurable temperature range can be changed using an appropriate reference temperature without using the gold point as the reference temperature.

〔実 施 例〕〔Example〕

以下、図面を参照しつ\本発明の構成を具体的に説明す
る。
Hereinafter, the configuration of the present invention will be specifically explained with reference to the drawings.

第1図は本発明にか\る方法を実施する場合に使用する
光高1計の概要を示す説明図であり、X中、1は受光素
子、2はズームレンズ、3は増幅器、4は演算回路、5
は彼測温体であり、l゜は説明の便宜のため上記受光素
子1の受光面と同一平面上に描かれた投影面である。
FIG. 1 is an explanatory diagram showing the outline of a light height meter used when carrying out the method according to the present invention, where 1 is a light receiving element, 2 is a zoom lens, 3 is an amplifier, and 4 is Arithmetic circuit, 5
is a temperature measuring body, and l° is a projection plane drawn on the same plane as the light-receiving surface of the light-receiving element 1 for convenience of explanation.

披測温体5から放射された光はズームレンズ2を通過し
て投影面工1上に像5a若しくは5b等を結ぶ。
The light emitted from the thermometer 5 passes through the zoom lens 2 and forms an image 5a or 5b on the projection surface 1.

受光素子l、ズームレンズ2及び彼測温体5の配置は、
ズームレンズ2により投影面l“上に彼測温体5の鮮明
な影像が形成されるような位置関係となるよう配置する
のが望ましい。
The arrangement of the light receiving element 1, the zoom lens 2 and the thermometer 5 is as follows:
It is desirable to arrange the thermometer 5 in such a positional relationship that a clear image of the thermometer 5 is formed on the projection plane l'' by the zoom lens 2.

また、図では省略してあるが、ズームレンズ2の倍率は
ズーム制御モータにより制御され、かつ演算回路4にフ
ィードバックされ、温度の演算に用いられる。
Further, although not shown in the figure, the magnification of the zoom lens 2 is controlled by a zoom control motor, and fed back to the calculation circuit 4, which is used to calculate the temperature.

受光素子1の出力は増幅器3で増幅された後、演算回路
4に送られ、上記出力の大きさに基づいて彼測温体5の
温度か算出される。
The output of the light receiving element 1 is amplified by an amplifier 3 and then sent to an arithmetic circuit 4, where the temperature of the thermometer 5 is calculated based on the magnitude of the output.

而して、投影面1′上に形成される被測温体5の影像の
大きさは、上記投影面1“、ズームレンズ2及び被測温
体5の相互間の距離を一切変化させることなく、ズーム
レンズの調節リング2aを回動させることによって自由
に変更することかできる。その場合、被llllIa体
5とズームレンズ2の距離が一定であるから、ズームレ
ンズ2を通過する光量は一定であり、従って受光素子l
の受ける放射の強さは像の面積に逆比例する形で増減す
る。
Therefore, the size of the image of the object to be measured 5 formed on the projection surface 1' can be determined by changing the distance between the projection surface 1'', the zoom lens 2, and the object to be measured 5 at all. The amount of light passing through the zoom lens 2 is constant because the distance between the object 5 and the zoom lens 2 is constant. Therefore, the light receiving element l
The intensity of the radiation received by the image increases or decreases in inverse proportion to the area of the image.

即ち、例えば図示した例において、像5aの面積を5A
,像5bの面積を5Bとすれば、像5aが形成されてい
るときに受光素子1の受ける放射の強さは、像5bが形
成されているときの強さの5B/ 5A倍ということに
なる。
That is, in the illustrated example, the area of the image 5a is 5A.
, if the area of the image 5b is 5B, then the intensity of the radiation received by the light receiving element 1 when the image 5a is formed is 5B/5A times the intensity when the image 5b is formed. Become.

従って、ズームレンズ2の調節リング2aを調整するだ
けで、受光素子1に照射される放射の強さを連続的かつ
広範囲に変更し得るものである。
Therefore, simply by adjusting the adjustment ring 2a of the zoom lens 2, the intensity of radiation irradiated to the light receiving element 1 can be changed continuously and over a wide range.

而して、上記の如くズームレンズ2を具備した光高温計
を用いて被測温体5の温度測定を行なうに当たっては、
従来金点を基準温度としていた。
Therefore, when measuring the temperature of the object to be measured 5 using the optical pyrometer equipped with the zoom lens 2 as described above,
Traditionally, the gold point was used as the reference temperature.

即ち、金点にある黒体からの放射光をズームレンズ2を
通して受光素子1で受光せしめ、当該放射?工不ルギー
輝度の波長λの分光密度Lλ(TA,)を基準とするよ
う増幅器3や演算回路4等の基準設定を行ない、然るの
ち、被測温体5からの放射光を受光せしめてそのエネル
ギー蝉度の波長λの分光!度Lλ(T)と上記基準値L
λ(TAu)とを演算回路において比較することにより
彼測温体5の温度を求めていたものである。
That is, the light emitted from the black body at the gold point is received by the light receiving element 1 through the zoom lens 2, and the emitted light is received by the light receiving element 1. The amplifier 3, the arithmetic circuit 4, etc. are set as a reference so that the spectral density Lλ(TA,) of the wavelength λ of the industrial luminance is used as a reference, and then the emitted light from the temperature-measuring object 5 is received. Spectroscopy of the wavelength λ of that energy! degree Lλ(T) and the above reference value L
He used to find the temperature of the thermometer 5 by comparing it with λ(TAu) in an arithmetic circuit.

然しなから、本発明においては、従来の如く金点を基4
温度とすることなく、適宜の温度を基準温度として、測
定可能な温度範囲を変え得るようにするものである。
However, in the present invention, four points are used based on gold points as in the past.
It is possible to change the measurable temperature range by setting an appropriate temperature as a reference temperature without setting it as a temperature.

即ち例えば、金点が基準温度であるときの黒体の放射の
エネルギー輝度の波長λの分光密度Lλ(T■)のν。
That is, for example, ν of the spectral density Lλ(T■) of the wavelength λ of the energy luminance of the radiation of a black body when the gold point is at the reference temperature.

倍のLλ(Tν。)に対応する温度Tν。Kを基準温度
とすると、 L λ (Tν。)=  νo L λ ( T , 
.,)    一・・・f21であり、 Lλ (T)      L λ (T)      
L  λ (TA.)Lλ (Tν.)    Lλ 
(TA.)     L λ (Tν。
Temperature Tν corresponding to twice Lλ(Tν.). If K is the reference temperature, L λ (Tν.) = νo L λ (T,
.. ,) 1...f21, and Lλ (T) L λ (T)
L λ (TA.) Lλ (Tν.) Lλ
(TA.) L λ (Tν.

1   Lλ (T) ν。  L λ ( T Au) である。1 Lλ (T) ν. L λ (T Au) It is.

上記(2)式と前記(1)式とから、 〔こ\で、Lλ(T)及びLλ(Tν。)は、それぞれ
温度TKとTν.とでの黒体の放射のエネルギー輝度の
波長λの分光密度であり、Co”1. 4388X 1
0−”m K , T A−= 1337. 5K (
金点)である。〕 が導かれる。
From the above equation (2) and the above equation (1), [Here, Lλ(T) and Lλ(Tν.) are the temperature TK and Tν., respectively. is the spectral density of the wavelength λ of the energy brightness of the blackbody radiation at Co”1.4388X 1
0-”m K, T A-= 1337.5K (
gold point). ] is derived.

従って被測1体からの放射のエネルギー輝度の波長λの
分光密度Lλ(T)を測定することにより、予め知られ
たLλ(TA,,)、Lλ(Tν。)、C0、TAuに
基づき、被測昌体の昌度Tを求め得るものである。
Therefore, by measuring the spectral density Lλ(T) of the wavelength λ of the energy brightness of the radiation from one object to be measured, based on the previously known Lλ(TA,,), Lλ(Tν.), C0, TAu, It is possible to obtain the degree T of the object to be measured.

従って、金点にある黒体の放射のエネルギー輝度Lλ(
TA.,)のν。倍の輝度Lλ(Tν,)に対応する温
度Tν。を基準温度として光高温計の較正を行なってお
き、このように較正された光高温計を用いて彼測温体の
放射のエネルギー輝度Lλ(T)を測定し、これに基づ
き上記(3)式を用いて彼測1体の温度Tを求め得るも
のである。
Therefore, the energy luminance Lλ(
T.A. , ) of ν. Temperature Tν corresponding to double luminance Lλ(Tν,). The optical pyrometer is calibrated using the reference temperature as the reference temperature, and the optical pyrometer thus calibrated is used to measure the energy luminance Lλ(T) of the radiation of the thermometer, and based on this, the above (3) is determined. Using the formula, the temperature T of a single body can be determined.

〔発明の効果〕〔Effect of the invention〕

本発明は叙上の如く構成されるから、本発明によるとき
は、ズームレンズを用いた光高温計において、金点を基
f$温度とすることなく、適宜の基準温度を用いること
により、測定可能な温度範囲を変え得る温度測定方法を
提供し得るものである。
Since the present invention is configured as described above, in the optical pyrometer using a zoom lens, measurement can be performed by using an appropriate reference temperature without using the gold point as the base f$ temperature. It is possible to provide a temperature measurement method that allows changing the possible temperature range.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明にか\る方法を実施する場合に使用する
光高温計の概要を示す説明図である。 1−・・・−・・・−・・・・・・・・・・・・・−・
−・受光素子2・−・・・・・・・・・− ・−・・・
ズームレンズ増幅器 演算回路 彼測温体
FIG. 1 is an explanatory diagram showing an outline of an optical pyrometer used when carrying out the method according to the present invention. 1−・・・−・・・−・・・・・・・・・・・・・・・・−・
−・Photodetector 2・−・・・・・・・− ・−・・
Zoom lens amplifier arithmetic circuit thermometer

Claims (1)

【特許請求の範囲】 ズームレンズを具備した光高温計を用いて温度を測定す
る方法において、 金点にある黒体の放射のエネルギー輝度のν_0倍の輝
度に対応する温度を基準温度として光高温計の較正を行
なうステップと、 上記ステップにより較正された光高温計を用いて所望の
黒体の放射のエネルギー輝度を測定するステップと、 上記所望の黒体の放射のエネルギー輝度から下記式、即
ち、 {exp[C_2/λT_A_u]−1}/{exp[
C_2/λT]−1}=ν_0[Lλ(T)]/[Lλ
(T_ν_0)]〔こゝで、Lλ(T)及びLλ(T_
ν_0)は、それぞれ温度TKとT_ν_0とでの黒体
の放射のエネルギー輝度の波長λの分光密度であり、C
_0=1.4388×10^−^2mK、T_A_u=
1337.5K(1064.43℃、金点)である。〕 により上記所望の黒体の温度Tを得るステップとから成
る上記の温度測定方法。
[Claims] In a method of measuring temperature using an optical pyrometer equipped with a zoom lens, the optical high temperature is set to a temperature corresponding to a luminance of ν_0 times the energy luminance of radiation of a black body at a gold point as a reference temperature. calibrating the meter, measuring the energy brightness of the desired black body radiation using the optical pyrometer calibrated in the above step, and calculating the energy brightness of the desired black body radiation from the following formula, i.e. , {exp[C_2/λT_A_u]-1}/{exp[
C_2/λT]-1}=ν_0[Lλ(T)]/[Lλ
(T_ν_0)] [Here, Lλ(T) and Lλ(T_
ν_0) is the spectral density of the wavelength λ of the energy brightness of the blackbody radiation at temperatures TK and T_ν_0, respectively, and C
_0=1.4388×10^-^2mK, T_A_u=
It is 1337.5K (1064.43°C, gold point). ] Obtaining the desired blackbody temperature T by:
JP1112242A 1989-05-02 1989-05-02 Temperature measuring method Pending JPH02291932A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1112242A JPH02291932A (en) 1989-05-02 1989-05-02 Temperature measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1112242A JPH02291932A (en) 1989-05-02 1989-05-02 Temperature measuring method

Publications (1)

Publication Number Publication Date
JPH02291932A true JPH02291932A (en) 1990-12-03

Family

ID=14581802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1112242A Pending JPH02291932A (en) 1989-05-02 1989-05-02 Temperature measuring method

Country Status (1)

Country Link
JP (1) JPH02291932A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5335308A (en) * 1992-05-04 1994-08-02 Bgk Finishing Systems, Inc. Movable heat treat apparatus with sighting means

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5335308A (en) * 1992-05-04 1994-08-02 Bgk Finishing Systems, Inc. Movable heat treat apparatus with sighting means

Similar Documents

Publication Publication Date Title
Mielenz et al. Spectroradiometric determination of the freezing temperature of gold
Anhalt et al. Thermodynamic temperature by primary radiometry
CN107941352A (en) A kind of room temperature black matrix spoke luminance parameter calibrating installation and measuring method
Danehy et al. A plenoptic multi-color imaging pyrometer
US3610592A (en) Method and apparatus for estimating errors in pyrometer readings
US3654809A (en) Temperature measurement technique and apparatus
JPH02291932A (en) Temperature measuring method
JP2006133146A (en) Spectral responsivity measuring device for photodetector, measuring method therefor, and spectral irradiance calibration method of light source
Gibson A two-colour infra-red radiation pyrometer
Samedov et al. Filter-radiometer-based realization of candela and establishment of photometric scale at UME
US4283934A (en) Pyrometric temperature measurements in flameless atomic absorption spectroscopy
Anderson et al. A new detector-based spectral emission scale
RU2739731C1 (en) Method and apparatus for reproducing and transmitting a temperature unit at high temperatures
JPS60263819A (en) Optical pyrometer
JPS62145123A (en) Radiation pyrometer
RU2727340C1 (en) Method of measuring actual temperature and spectral emissivity of an object
Samedov et al. Realization of photometric base unit of candela traceable to cryogenic radiometer at UME
JPS61175534A (en) Emissivity measuring apparatus
JP3713538B2 (en) Radiation temperature measuring device using double resonance
JPH05223632A (en) Calibrating system for light power meter
JPH09126889A (en) Method and instrument for measuring temperature of semiconductor substrate
Barela et al. Pyrometer for temperature measurement of selective objects of unknown and variable emissivity
JP3325700B2 (en) Optical fiber radiation thermometer
JPH0425729A (en) Temperature measuring instrument
CN116124294A (en) Low-temperature multispectral radiation temperature measurement method