JPH022918Y2 - - Google Patents

Info

Publication number
JPH022918Y2
JPH022918Y2 JP1983007907U JP790783U JPH022918Y2 JP H022918 Y2 JPH022918 Y2 JP H022918Y2 JP 1983007907 U JP1983007907 U JP 1983007907U JP 790783 U JP790783 U JP 790783U JP H022918 Y2 JPH022918 Y2 JP H022918Y2
Authority
JP
Japan
Prior art keywords
injection timing
itm
control
duty
δit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1983007907U
Other languages
Japanese (ja)
Other versions
JPS59114432U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP790783U priority Critical patent/JPS59114432U/en
Publication of JPS59114432U publication Critical patent/JPS59114432U/en
Application granted granted Critical
Publication of JPH022918Y2 publication Critical patent/JPH022918Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

【考案の詳細な説明】 本考案はデイーゼルエンジン用燃料噴射ポンプ
の噴射時期制御装置に関し、特に制御の安定性改
善を図つたものに関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an injection timing control device for a fuel injection pump for a diesel engine, and particularly to one that improves control stability.

この種の噴射時期制御装置の一例を第1図〜第
4図に基づいて説明する。第1図は分配型燃料噴
射ポンプの噴射時期制御装置に係る部分を示す。
図において、タイマーピストン1は燃料噴射用プ
ランジヤと一体のカムデイスクに接するローラホ
ルダー(いずれも図示せず)に係合している。こ
のタイマーピストン1の一端面側には高圧燃料が
導かれる高圧室2、他端面側には低圧燃料源に連
通し、かつタイマーピストン1を高圧室2側に付
勢するスプリング3を内装した低圧室4が形成さ
れ、これら高圧室2と低圧室4とが電磁式のタイ
ミングコントロールバルブ(以下T.C.V.という)
5を介装したバイパス通路6によつて接続されて
いる。そして前記T.C.V.5の通電時間、即ち、
開弁デユーテイ(以下iTデユーテイという)を
制御することにより、高圧室2からバイパス通路
6を介して低圧室4へバイパスされる燃料量を調
節し、もつて両室の燃料圧力を制御してタイマー
ピストン1の位置つまり燃料噴射時期(開始時
期)を制御するようになつている。ここで、タイ
マーピストン1が低圧室4側へ移動する程、即
ち、iTデユーテイを小さくしてバイパス燃料量
を減らし、高圧室2の燃料圧力を高める程噴射時
期が進角するようになつている。
An example of this type of injection timing control device will be explained based on FIGS. 1 to 4. FIG. 1 shows a portion related to an injection timing control device of a distributed fuel injection pump.
In the figure, a timer piston 1 is engaged with a roller holder (none of which is shown) that contacts a cam disk integral with a fuel injection plunger. The timer piston 1 has a high-pressure chamber 2 on one end side into which high-pressure fuel is introduced, and a low-pressure chamber 2 on the other end side that communicates with a low-pressure fuel source and is equipped with a spring 3 that biases the timer piston 1 toward the high-pressure chamber 2. A chamber 4 is formed, and these high pressure chamber 2 and low pressure chamber 4 are connected to an electromagnetic timing control valve (hereinafter referred to as TCV).
It is connected by a bypass passage 6 with a bypass passage 5 interposed therebetween. And the energization time of the TCV5, that is,
By controlling the valve opening duty (hereinafter referred to as iT duty), the amount of fuel bypassed from the high pressure chamber 2 to the low pressure chamber 4 via the bypass passage 6 is adjusted, thereby controlling the fuel pressure in both chambers and setting the timer. The position of the piston 1, that is, the fuel injection timing (start timing) is controlled. Here, the injection timing is advanced as the timer piston 1 moves toward the low pressure chamber 4 side, that is, as the iT duty is reduced to reduce the amount of bypass fuel and as the fuel pressure in the high pressure chamber 2 is increased. .

次に、かかる装置における従来の一般的な噴射
時期制御方法、つまりT.C.V 5のデユーテイ制
御方法について説明する。
Next, a conventional general injection timing control method in such an apparatus, that is, a duty control method for the TCV 5 will be explained.

第2図はその制御回路の構成を示し、コントロ
ールユニツト7にはエンジン各気筒の上死点位置
を検出するT.D.C.センサからのT.D.C.信号、燃
料噴射弁の実際の噴射開始時期を弁リフトによつ
て検出するリフトセンサからのリフト信号及び燃
料噴射ポンプのガバナコントロールレバーの開度
(エンジン負荷)を検出するレバー開度センサか
らのレバー開度信号及びエンジン回転数信号等が
入力される。コントロールユニツト7はこれら信
号に基づいて、第3図のフローチヤートに示すよ
うにiTデユーテイをPI制御する。まず、エンジ
ン回転数信号と燃料噴射ポンプのガバナコントロ
ールレバーの開度信号とに基づきエンジン運転状
態に対応するる目標噴射時期iTSを求めると共に
(ステツプ1)、第4図に示すようにリフト信号を
入力してから、即ち、当該気筒の燃料噴射が開始
されてからT.D.C.信号を入力するまでの間隔を
求めることによつて、噴射開始時期に相当する実
際の噴射量時期iTMを求める(ステツプ2)。次
に、前記実噴射時期iTMが目標噴射時期iTSを中
心とした誤差範囲内の領域(以下不感ゾーンとい
う)に入つているか否かを判定する(ステツプ
3)。そしてiTMが不感ゾーンに入つている時に
はiTM≒iTSであるとしてiTデユーテイを現状
に維持し(ステツプ4)、入つていない時には
ΔiT=iTS−iTMの変化率を求めてこれの正負を
判別した後、各場合に夫々ΔiTの正負を判別する
(ステツプ5,6,7)。ΔiTの変化率が正の場合
は、さらにΔiT<0の時にはiTデユーテイを遅
角方向にI(積分)制御し(ステツプ8)、ΔiT>
0の時にはこの条件が初回である時(第5図の
A2点、ステツプ9)iTデユーテイにマイナス方
向即ち進角方向の比例分(−P)を与え(ステツ
プ9,10)、以後は進角方向にI工制御を行う
(ステツプ11)。一方、ΔiTの変化率が負の場合
は、ΔiT>0の時にはiTデユーテイを進角方向
にI制御し(ステツプ12)、ΔiT<0の時は前記
同様この条件が初回である時(第5図のA1点、
ステツプ13)iTデユーテイにプラス方向即ち遅
角方向の比例分Pを与え(ステツプ14)、以後遅
角方向にI制御を行う(ステツプ15)。
Figure 2 shows the configuration of the control circuit.The control unit 7 uses the TDC signal from the TDC sensor that detects the top dead center position of each engine cylinder, and the actual injection start timing of the fuel injection valve using the valve lift. A lift signal from a lift sensor that detects, a lever opening signal and an engine rotation speed signal from a lever opening sensor that detects the opening (engine load) of the governor control lever of the fuel injection pump, and the like are input. Based on these signals, the control unit 7 performs PI control of the iT duty as shown in the flowchart of FIG. First, the target injection timing iTS corresponding to the engine operating condition is determined based on the engine speed signal and the opening signal of the governor control lever of the fuel injection pump (step 1), and the lift signal is determined as shown in Fig. 4. The actual injection amount timing iTM corresponding to the injection start timing is determined by determining the interval from when the TDC signal is input, that is, after the start of fuel injection for the cylinder concerned until the input of the TDC signal (Step 2). . Next, it is determined whether or not the actual injection timing iTM falls within an error range (hereinafter referred to as dead zone) centered on the target injection timing iTS (step 3). Then, when iTM is in the dead zone, iTM≒iTS is assumed and the iT duty is maintained at the current level (step 4), and when it is not in the dead zone, the rate of change of ΔiT = iTS - iTM is determined and the positive or negative of this is determined. After that, it is determined whether ΔiT is positive or negative in each case (steps 5, 6, and 7). When the rate of change of ΔiT is positive, and when ΔiT<0, the iT duty is controlled in the retard direction (step 8), and ΔiT>
When it is 0, this condition is the first time (see Figure 5).
A 2 points, Step 9) A proportional amount (-P) in the negative direction, that is, in the advance angle direction is given to the iT duty (Steps 9 and 10), and thereafter I control is performed in the advance direction (Step 11). On the other hand, if the rate of change of ΔiT is negative, when ΔiT > 0, the iT duty is controlled in the advance direction (step 12), and when ΔiT < 0, this condition is the first time that this condition is met (step 5). 1 point A in the diagram,
Step 13) A proportional amount P in the positive direction, that is, in the retard direction is given to the iT duty (step 14), and thereafter I control is performed in the retard direction (step 15).

このようにiTMが不感ゾーンを外れた時に不
感ゾーン内に入る方向に比例分を与えることによ
りiTMをiTSに一致させるように制御が行われ
る。
In this way, control is performed to match iTM to iTS by giving a proportional amount in the direction of entering the dead zone when iTM leaves the dead zone.

しかしながら、かかる従来のPI制御方式では、
ΔiTが大きくなつた場合でもI制御(積分制御)
しか行うことができず、再び不感ゾーンに入るま
でに時間がかかり、その間の機関運転性能を低下
させるという問題点があつた。
However, in such conventional PI control method,
I control (integral control) even when ΔiT becomes large
However, there was a problem in that it took a long time to enter the dead zone again, and the engine operating performance deteriorated during that time.

本考案はこのような従来の問題点に鑑みなされ
たもので、目標噴射時期iTSを中心として不感ゾ
ーンより幅広く設定したゾーン境界点を通過する
時にも比例分を与える手段を設けることにより、
実噴射時期iTMを迅速かつ安定して不感ゾーン
内にセツテイングさせ、もつて良好な噴射時期制
御性能が得られるようにしたデイーゼルエンジン
用燃料噴射ポンプの噴射時期制御装置を提供する
ことを目的とする。
The present invention was developed in view of these conventional problems, and by providing a means for giving a proportional amount even when passing through a zone boundary point that is set wider than the dead zone around the target injection timing iTS,
An object of the present invention is to provide an injection timing control device for a fuel injection pump for a diesel engine, which quickly and stably sets the actual injection timing iTM within a dead zone, thereby achieving good injection timing control performance. .

以下に本考案を図示実施例に基づいて説明す
る。第6図は本考案の一実施例における制御回路
の構成を示し、コントロールユニツト11はiTS
演算回路11A、iTM演算回路11B、ΔiT演
算回路11C、第1比較回路11D、第2比較回
路11E、ΔiT変化率演算回路11F、PI制御回
路11Gを備えて構成される。
The present invention will be explained below based on illustrated embodiments. FIG. 6 shows the configuration of a control circuit in an embodiment of the present invention, in which the control unit 11 is an iTS
It is configured to include an arithmetic circuit 11A, an iTM arithmetic circuit 11B, a ΔiT arithmetic circuit 11C, a first comparison circuit 11D, a second comparison circuit 11E, a ΔiT change rate arithmetic circuit 11F, and a PI control circuit 11G.

次に本実施例の制御動作を第7図に示したフロ
ーチヤートにしたがつて説明する。iTS演算回路
11A、iTM演算回路11BによりiTS,iTM
を求め(ステツプ21,22)、ΔiT演算回路11C
により求めたΔiTにより第1比較回路11Dにお
いてiTMが不感ゾーン内に入つているか否かを
判別する(ステツプ23)。iTMが不感ゾーンに入
つている時はiTデユーテイを現状に維持し(ス
テツプ24)、不感ゾーンから外れている時はΔiT
変化率演算回路11FによりΔiTの変化率を求め
その正負を判別する(ステツプ25)。そして、
ΔiTの変化率が正の場合はΔiTの正負を判別し
(ステツプ26)、ΔiT<0の時はiTデユーテイを
遅角方向にI制御し(ステツプ27)、ΔiT>の時
は第2比較回路11Eにより、iTMがiTSから±
Aだけ離れた2つの境界点に挟まれる不感ゾーン
より拡い設定ゾーン内にあるか否かを判別し(ス
テツプ28)、設定ゾーン内に含まれている時には、
PI制御回路11Gによりこの条件が初回の時
(第8図のB3点、ステツプ29)iTデユーテイに進
角方向の比例分−P1を与え(ステツプ30)、第2
回目以後は進角方向にI制御する(ステツプ30,
31)。又、設定領域から外れている時は、PI制御
回路11Gによりその条件が初回の時(第8図の
B4点)iTSデユーテイに進角方向の比例分−P2
与え(ステツプ32,33)、2回目以後は進角方向
にI制御する(ステツプ31)。
Next, the control operation of this embodiment will be explained according to the flowchart shown in FIG. iTS, iTM by iTS arithmetic circuit 11A and iTM arithmetic circuit 11B
(Steps 21 and 22) and calculate ΔiT calculation circuit 11C.
The first comparison circuit 11D determines whether iTM is within the dead zone based on ΔiT determined by (step 23). When iTM is in the dead zone, maintain the iT duty at the current level (step 24), and when it is out of the dead zone, ∆iT
The rate of change calculation circuit 11F determines the rate of change of ΔiT and determines whether it is positive or negative (step 25). and,
If the rate of change of ΔiT is positive, it is determined whether ΔiT is positive or negative (step 26), if ΔiT<0, the iT duty is controlled in the retarded direction (step 27), and if ΔiT>, the second comparator circuit Due to 11E, iTM is ± from iTS
It is determined whether it is within a set zone that is wider than the dead zone between two boundary points separated by A (step 28), and if it is within the set zone,
When this condition is met for the first time by the PI control circuit 11G ( 3 points B in Fig. 8, step 29), a proportional amount -P 1 in the advance direction is given to the iT duty (step 30), and the second
After the first time, I control is performed in the advance direction (step 30,
31). In addition, when it is out of the setting range, the PI control circuit 11G sets the condition for the first time (see Fig. 8).
B 4 points) Give the iTS duty a proportional amount -P2 in the advance angle direction (steps 32, 33), and perform I control in the advance direction from the second time onwards (step 31).

一方、ΔiTの変化率が負の場合はΔiTの正負の
判別により(ステツプ26′)、ΔiT>0の時はiTデ
ユーテイを進角方向にI制御し(ステツプ34)、
ΔiT<0の時はiTMが前記設定ゾーン内に含ま
れているか否かを判別し(ステツプ35)、含まれ
ている時は初回にiTデユーテイに遅角方向の比
例分P1を与え(第8図B1点、ステツプ36,37)、
2回目以後は遅角方向にI制御を行う(ステツプ
38)。又、iTMが設定ゾーン外にある時には初回
に遅角方向の比例分P2を与え(第8図B2点、ス
テツプ39,40)、2回目以後は遅角方向にI制御
を行う(ステツプ38)。
On the other hand, if the rate of change of ΔiT is negative, it is determined whether ΔiT is positive or negative (step 26'), and if ΔiT>0, the iT duty is controlled in the advance direction (step 34).
When ΔiT<0, it is determined whether or not iTM is included in the setting zone (step 35), and if it is included, a proportional amount P1 in the retard direction is given to the iT duty for the first time (step 35). Figure 8 B 1 point, steps 36, 37),
After the second time, I control is performed in the retard direction (step
38). Furthermore, when the iTM is outside the setting zone, the proportional amount P 2 in the retard direction is applied for the first time (Fig. 8 B 2 points, steps 39 and 40), and from the second time onwards, I control is performed in the retard direction (step 38).

このようにすればiTMが不感ゾーンを外れる
瞬間のみならず、設定ゾーンを外れる瞬間もiTS
に近づく方向に比例分が与えられるため、ΔiTが
大きくなつてもiTMが不感ゾーンに戻されるま
での時間が短縮され、噴射時期制御特性ひいては
エンジン運転特性を安定化させることができる。
In this way, not only the moment when the iTM leaves the dead zone, but also the moment when the iTM leaves the set zone, the iTS
Since a proportional portion is given in the direction closer to , even if ΔiT becomes large, the time until iTM is returned to the dead zone is shortened, and the injection timing control characteristics and eventually the engine operating characteristics can be stabilized.

第9図は本考案の別の実施例の制御動作を示す
フローチヤートである。即ち、この実施例におい
ては、前記第1の実施例におけるPI制御に加え、
iTMが設定ゾーン内及び不感ゾーン内に入つて
くる瞬間に夫々これらのゾーンから外れる方向の
比例分を与える制御を行うようにしたものであ
る。具体的にはiTSとiTMとを演算した後(ステ
ツプ51,52)、ΔiTの正負の判別(ステツプ53)、
ΔiT変化率の正負の判別(ステツプ54,55)、
iTMが不感ゾーンにあるか否かの判別(ステツ
プ56〜59)、不感ゾーンの通過時の判別(ステツ
プ62,66,76,79)、iTMが設定ゾーンにあるか
否かの判別(ステツプ68,71,72,75)、設定ゾ
ーンの通過時の判別(ステツプ77,78,80,81)
を行う。ことにより、第10図Aに示すiTMが
不感ゾーン及び設定ゾーンを通過する8通りの通
過点(C1〜C8)を判別する。そして、同図で
iTMが不感ゾーン及び設定ゾーンから外れる瞬
間の各点C3,C4,C7,C8では前記実施例同様順
次+P1,+P2,−P1,−P2の比例分を与えると共
に、ΔiT>0であつてiTMが設定ゾーン及び不
感ゾーンに入つてくる瞬間の点C1,C2では+P2
+P1の比例分を与え、又、ΔiT<0であつて
iTMが設定ゾーン及び不感ゾーンに入つてくる
瞬間の点C5,C6では−P2,−P1の比例分を与え
る。
FIG. 9 is a flowchart showing the control operation of another embodiment of the present invention. That is, in this embodiment, in addition to the PI control in the first embodiment,
At the moment when the iTM enters the set zone and the dead zone, control is performed to give a proportional amount in the direction of moving out of these zones. Specifically, after calculating iTS and iTM (steps 51 and 52), determining whether ΔiT is positive or negative (step 53),
Determining whether the ΔiT change rate is positive or negative (steps 54 and 55),
Determining whether the iTM is in the dead zone (steps 56 to 59), determining when the dead zone is passed (steps 62, 66, 76, 79), determining whether the iTM is in the set zone (step 68) , 71, 72, 75), determination when passing the set zone (steps 77, 78, 80, 81)
I do. As a result, the iTM shown in FIG. 10A determines eight passing points (C 1 to C 8 ) at which the iTM passes through the dead zone and the set zone. And in the same figure
At each point C 3 , C 4 , C 7 , C 8 at the moment when iTM deviates from the dead zone and set zone, proportional portions of +P 1 , +P 2 , −P 1 , −P 2 are sequentially given as in the previous embodiment, and At point C 1 and C 2 at the moment when ΔiT > 0 and iTM enters the set zone and dead zone, +P 2 ,
Give the proportional component of +P 1 , and if ΔiT<0
At points C 5 and C 6 at the moment when iTM enters the set zone and dead zone, the proportional portions of −P 2 and −P 1 are given.

第10図BはかかるPI制御におけるiTデユー
テイの特性を示す。このようにすればiTMが設
定ゾーン及び不感ゾーンに入つてくる時には該
iTMの変化する方向とは逆向きの比例分が与え
られるため、iTSに近づく速度が階段的に減じら
れ、この時の勢いで不感ゾーンから外れる時のオ
ーバーシユートを抑御することができる。即ち、
iTMがiTSから離れようとする時には前記実施例
同様の比例分を与えて迅速に不感ゾーンに戻され
るように制御する一方、iTSに近づこうとする時
には逆向きの比例分を与えてその勢いを減じるこ
とによりハンチングが抑制され安定した制御特性
が得られる。
FIG. 10B shows the characteristics of iT duty in such PI control. In this way, when iTM enters the setting zone and dead zone, the
Since a proportional amount is given in the opposite direction to the direction in which the iTM changes, the speed at which it approaches the iTS is reduced stepwise, and this momentum can be used to suppress overshoot when it leaves the dead zone. That is,
When the iTM tries to move away from the iTS, it is controlled so that it is quickly returned to the dead zone by giving it a proportional amount similar to the previous embodiment, while when it tries to approach the iTS, it is given a proportional amount in the opposite direction to reduce its momentum. This suppresses hunting and provides stable control characteristics.

以上説明したように本考案によれば、iTMが
iTSの不感ゾーン及びこれより拡く設定したゾー
ンの境界点を通過する時に、T.C.V.5のiTデユ
ーテイに比例分を与える構成としたため、iTM
の変動時迅速にiTSの不感ゾーン内にセツトさせ
ることができ、噴射時期制御特性が安定しひいて
はエンジン性能を安定させることができるという
効果が得られる。
As explained above, according to the present invention, iTM
The iTM
When the iTS fluctuates, it can be quickly set within the iTS dead zone, resulting in the effect that the injection timing control characteristics can be stabilized and, in turn, the engine performance can be stabilized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は一般的な分配型燃料噴射ポンプの電子
式噴射時期制御装置に係る部分を示す断面図、第
2は従来の電子式噴射制御装置の制御回路を示す
ブロツク図、第3図は同上装置の制御フローを示
すフローチヤート、第4図は同上装置において実
際の噴射時期を検出する方法を示すタイムチヤー
ト、第5図は同上装置による噴射時期特性及びP
制御点を示す線図、第6図は本考案の一実施例を
示す制御ブロツク図、第7図は同上実施例の制御
動作を示すフローチヤート、第8図は同上実施例
の噴射時期特性及びP制御点をす線図、第9図は
本考案の別の実施例の制御動作を示すフローチヤ
ート、第10図Aは同上実施例の噴射時期制御特
性及びP制御点を示す線図、同図Bは同上実施例
のiTデユーテイ制御特性を示す線図である。 1…タイマーピストン、2…高圧室、4…低圧
室、5…タイミングコントロールバルブ、6…バ
イパス通路、11…コントロールユニツト、11
A…iTS演算回路、11B…iTM演算回路、11
C…ΔiT演算回路、11D…第1比較回路、11
E…第2比較回路、11F…ΔiT変化率演算回
路、11G…PI制御回路。
Fig. 1 is a cross-sectional view showing the part related to the electronic injection timing control device of a general distribution type fuel injection pump, Fig. 2 is a block diagram showing the control circuit of the conventional electronic injection control device, and Fig. 3 is the same as above. A flowchart showing the control flow of the device, FIG. 4 is a time chart showing a method for detecting the actual injection timing in the same device, and FIG. 5 shows the injection timing characteristics and P by the same device.
A diagram showing control points, FIG. 6 is a control block diagram showing an embodiment of the present invention, FIG. 7 is a flowchart showing the control operation of the above embodiment, and FIG. 8 is a diagram showing the injection timing characteristics and FIG. 9 is a flowchart showing the control operation of another embodiment of the present invention; FIG. 10A is a diagram showing the injection timing control characteristics and P control point of the same embodiment; FIG. B is a diagram showing the iT duty control characteristics of the same embodiment. DESCRIPTION OF SYMBOLS 1...Timer piston, 2...High pressure chamber, 4...Low pressure chamber, 5...Timing control valve, 6...Bypass passage, 11...Control unit, 11
A...iTS arithmetic circuit, 11B...iTM arithmetic circuit, 11
C...∆iT calculation circuit, 11D...first comparison circuit, 11
E...Second comparison circuit, 11F...ΔiT change rate calculation circuit, 11G...PI control circuit.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] タイマーピストンの両側に画成され高圧燃料が
導かれる高圧室と低圧燃料が導かれる低圧室とを
電磁式タイミングコントロールバルブを介装した
バイパス通路により接続し、前記タイミングコン
トロールバルブの開弁デユーテイを比例積分制御
することによつてタイマーピストン位置で定まる
燃料噴射時期を予め設定された目標、噴射時期に
近づけるように制御してなるデイーゼルエンジン
用燃料噴射ポンプの噴射時期制御装置において、
実際の噴射時期が目標噴射時期近傍に設定した不
感ゾーンの境界点及び該境界点より目標噴射時期
から離して設定された設定点を通過する時にタイ
ミングコントロールバルブの開弁デユーテイに比
例分を与えるデユーテイ制御手段を設けたことを
特徴とするデイーゼルエンジン用燃料噴射ポンプ
の噴射時期制御装置。
A high-pressure chamber defined on both sides of the timer piston, into which high-pressure fuel is guided, and a low-pressure chamber, into which low-pressure fuel is led, are connected by a bypass passage interposed with an electromagnetic timing control valve, and the opening duty of the timing control valve is proportionally controlled. An injection timing control device for a fuel injection pump for a diesel engine, which controls the fuel injection timing determined by the timer piston position by integral control so as to approach a preset target injection timing,
A duty that provides a proportional amount to the valve opening duty of the timing control valve when the actual injection timing passes through a boundary point of a dead zone set near the target injection timing and a set point set away from the target injection timing from the boundary point. An injection timing control device for a fuel injection pump for a diesel engine, comprising a control means.
JP790783U 1983-01-25 1983-01-25 Injection timing control device for fuel injection pump for diesel engine Granted JPS59114432U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP790783U JPS59114432U (en) 1983-01-25 1983-01-25 Injection timing control device for fuel injection pump for diesel engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP790783U JPS59114432U (en) 1983-01-25 1983-01-25 Injection timing control device for fuel injection pump for diesel engine

Publications (2)

Publication Number Publication Date
JPS59114432U JPS59114432U (en) 1984-08-02
JPH022918Y2 true JPH022918Y2 (en) 1990-01-24

Family

ID=30139419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP790783U Granted JPS59114432U (en) 1983-01-25 1983-01-25 Injection timing control device for fuel injection pump for diesel engine

Country Status (1)

Country Link
JP (1) JPS59114432U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102767500A (en) * 2011-05-03 2012-11-07 上海科斗电子科技有限公司 Reciprocating type electromagnetic pump
CN102767499A (en) * 2011-05-03 2012-11-07 上海科斗电子科技有限公司 Self-sucking type magnetic drive pump

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0627513B2 (en) * 1985-07-16 1994-04-13 トヨタ自動車株式会社 Injection timing feedback control method for diesel engine

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654504A (en) * 1979-10-09 1981-05-14 Mitsuwa Seiki Co Ltd Control method for digital actuator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5654504A (en) * 1979-10-09 1981-05-14 Mitsuwa Seiki Co Ltd Control method for digital actuator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102767500A (en) * 2011-05-03 2012-11-07 上海科斗电子科技有限公司 Reciprocating type electromagnetic pump
CN102767499A (en) * 2011-05-03 2012-11-07 上海科斗电子科技有限公司 Self-sucking type magnetic drive pump

Also Published As

Publication number Publication date
JPS59114432U (en) 1984-08-02

Similar Documents

Publication Publication Date Title
US4636957A (en) Method for controlling operating state of an internal combustion engine with an overshoot preventing function
KR100564069B1 (en) Method for determining the advance ignition angle in internal combustion engine ignition systems
JP2000008931A (en) Engine control device with electromagnetic drive type intake/exhaust valve
JPS62162744A (en) Operating control for internal-combustion engine
JPH09256897A (en) Fuel injection control device for internal combustion engine
US5144915A (en) System for controlling an operating parameter of an internal combustion engine of a vehicle
JPH07111151B2 (en) Fuel injection amount control device for diesel engine
JPH022918Y2 (en)
US5188084A (en) Apparatus for controlling fuel injection timing in a fuel injection pump
JP2000008962A (en) Actuator control device for internal combustion engine
JPH0238048Y2 (en)
JPS6339394Y2 (en)
JPS6036771Y2 (en) Injection amount control device
JPS6354135B2 (en)
JPS6153441A (en) Control method of fuel injection timing
JPH04262062A (en) Control device for diesel type internal combustion engine
JPS59153938A (en) Apparatus for controlling injection timing of fuel injection pump for diesel engine
JPS6354136B2 (en)
JPS6339393Y2 (en)
JPS6120268Y2 (en)
JPS59120735A (en) Injection timing control device for fuel injection pump for diesel engine
JP3635726B2 (en) Fuel injection control device for internal combustion engine
JP2000205053A (en) Egr control system
JPH10103120A (en) Combustion control device of internal combustion engine
JPS63235639A (en) Feedback control of idle speed of internal combustion engine for vehicle