JPH02291649A - Charge beam device - Google Patents

Charge beam device

Info

Publication number
JPH02291649A
JPH02291649A JP1060348A JP6034889A JPH02291649A JP H02291649 A JPH02291649 A JP H02291649A JP 1060348 A JP1060348 A JP 1060348A JP 6034889 A JP6034889 A JP 6034889A JP H02291649 A JPH02291649 A JP H02291649A
Authority
JP
Japan
Prior art keywords
sample
charged particle
image
sample image
processing device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1060348A
Other languages
Japanese (ja)
Other versions
JP2787299B2 (en
Inventor
Yutaka Sato
裕 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP1060348A priority Critical patent/JP2787299B2/en
Publication of JPH02291649A publication Critical patent/JPH02291649A/en
Application granted granted Critical
Publication of JP2787299B2 publication Critical patent/JP2787299B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To set up the internal number of times of a picture processing device by eliminating a change of the integral number of times of a picture processing device considering an after-image every time an operator moves a sample so as to obtain the optimal S/N when an static image is observed. CONSTITUTION:When an operator operates an input device 21 in order to find a position for observing a sample 9, the central control unit 22 reads the direction of moving of a visual field, speed and a scale factor of observation of the device 21 while fixing a stage moving speed to send a signal to a stage driving circuit 20 for moving a stage 10. Simultaneously, the speed V such as moving of a sample image or magnification, reduction accompanying a change of a scale factor and rotation of the sample image due to rotation in a CRT 19 is calculated to decide the proper integral number of times of a picture processing device 18, which is not mush influenced of an after-image result due to integration to the speed thereof.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は走査型電子顕微鏡等の荷電粒子線装置に関する
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a charged particle beam device such as a scanning electron microscope.

〔従来の技術〕[Conventional technology]

従来、走査型電子顕微鏡等の装置は試料像信号のS/N
を上げるため0.5〜数秒/フレームのスロースキャン
で試料に荷電粒子を照射し、この荷電粒子線の走査に同
期して試料像を表示器(以降CRTと称する)に表示す
る方式が多かった。しかしこの方式は長残光性のCRT
を使用しても明るい所では試料像を観察しずらく、また
スキャン速度が遅いため顕微鏡の倍率を変更する時等の
操作性が悪く、その改善が要求されていた。
Conventionally, devices such as scanning electron microscopes use the S/N ratio of sample image signals.
In many cases, the sample was irradiated with charged particles in a slow scan of 0.5 to several seconds/frame in order to increase the speed, and the sample image was displayed on a display (hereinafter referred to as CRT) in synchronization with the scanning of this charged particle beam. . However, this method uses long-afterglow CRT.
Even when using a microscope, it is difficult to observe the sample image in a bright place, and the scan speed is slow, making it difficult to operate when changing the magnification of the microscope, so improvements have been needed.

最近では荷電粒子線を高速でスキャンして.試料から得
られる2次電子または反射電子等の試料像信号をデジタ
ル変換してフレームメモリに取り込み、その取込まれた
試料像信号を荷電粒子線のスキャンする速度とは同期さ
せず、通常のテレビ放送と同等のスキャン速度でCRT
に表示する装置が開発されている。このように改良され
た装置は、明るい所でも通常のテレビと同様に試料像を
観察することができ、また、画像処理装置内での積算機
能によりS/Nの向上がはかれるため、試料取込みのス
キャン速度を高速化する事によって操作性が向上すると
共に、一度画像処理装置内のフレームメモリに試料像を
取込んだ後は、荷電粒子線の照射を止めてもフレームメ
モリ内に蓄えられた試料像をCRTに表示し続けること
が出来る。
Recently, charged particle beams have been scanned at high speed. Sample image signals such as secondary electrons or reflected electrons obtained from the sample are digitally converted and captured into a frame memory, and the captured sample image signals are not synchronized with the scanning speed of the charged particle beam and are CRT with scanning speed equivalent to broadcasting
A device for displaying images has been developed. This improved device allows you to observe the sample image in the same way as a normal television even in bright places, and the integration function within the image processing device improves the S/N ratio, making it easier to take in the sample. In addition to improving operability by increasing the scanning speed, once the sample image has been captured in the frame memory in the image processing device, the sample image stored in the frame memory will remain unchanged even if charged particle beam irradiation is stopped. Images can continue to be displayed on the CRT.

ここで言う画像処理装置の積算機能とは、試料像信号を
連続的に取込み、既に取込んである試料像と新たに取込
んだ試料像をメモリ内で積算して連続的に複数枚の試料
像を平均化して表示する方法であり積算回数を多くする
事によって試料像の質を大幅に向上させることが出来る
ものである。
The integration function of the image processing device referred to here refers to the integration function that continuously captures sample image signals, integrates the previously captured sample images and newly captured sample images in memory, and continuously processes multiple samples. This is a method of averaging and displaying images, and by increasing the number of integrations, the quality of the sample image can be greatly improved.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、この種の装置を使用して試料像を観察す
る際、試料から得られる試料像信号のS/Nが悪い場合
、画像処理装置のフレームメモリの積算回数を増やすこ
とが必要となる。ところが、この状態でステージを移動
させたり倍率を変更したりしてCRTの試料像が変化す
ると、積算回数が多いため、今迄観察していた試料像の
残像が消えず、著しく見にくくなるという欠点があった
However, when observing a sample image using this type of device, if the S/N of the sample image signal obtained from the sample is poor, it is necessary to increase the number of integrations in the frame memory of the image processing device. However, if the sample image on the CRT changes by moving the stage or changing the magnification in this state, the afterimage of the sample image that has been observed until now will not disappear because the number of integrations will be large, making it extremely difficult to see. was there.

また、試料像の変化がない場合、試料への荷電粒子照射
を停止しても、フレームメモリに記憶された試料像を表
示することが出来るにもがかわらずオペレータは通常、
静止像の状態で試料像観察をしているので、照明停止へ
の切換えを忘れてしまう事が多く、その結果、不要に試
料を汚したり損傷を与えてしまうと言う欠点もあった。
Furthermore, if there is no change in the sample image, the sample image stored in the frame memory can be displayed even if charged particle irradiation to the sample is stopped.
Since the sample image is observed in a static image state, it is often forgotten to switch off the illumination, which has the disadvantage of unnecessarily contaminating or damaging the sample.

本発明の目的は、試料像の変化時に試料像の残像効果に
よる乱れがなく且つ、試料像の静止時は不要な荷電粒子
の照射を停止する荷電粒子線装置を提供することにある
An object of the present invention is to provide a charged particle beam device that does not cause disturbance due to the afterimage effect of the sample image when the sample image changes, and that stops irradiating unnecessary charged particles when the sample image is stationary.

〔課題を解決する為の手段〕[Means to solve problems]

上記課題解決のために、本発明では荷電粒子光学系(1
、2、3、4、5、6、7)と検出部材(8、17)と
画像処理装置(18)と該画像処理装置(l8)内のフ
レームメモリに蓄えられた試料像を表示するCRT (
1 g)とステージ(10)とを制御する制御装置(1
)、12、13、l4、15、16、2o、22)と、
該制御装置に試料像の移動や観察倍率の変更、及び画像
回転等の指示を人力する入力装置(21)と、を備えた
荷電粒子装置において、 人力装置(21)に指示された試料像の移動、観察倍率
の変更、画像回転等による試料像の変化速度から画像処
理装置(18)の積算回数を演算する手段と、咳演算手
段の出力を受けて画像処理装置(18)のフレームメモ
リの積算回数を自動的に設定する手段とを有する画像処
理装置(18)のフレームメモリ積算回数設定手段と、
試料像の停止時、画像処理装置(18)のフレームメモ
リが予め設定された積算回数又は積算回数の所定倍数に
達したことを検出する手段と該検出手段からの積算完了
の出力を受けて、その後試料移動、倍率変更、試料回転
等の試料像変化をともなう指示がくるまで、試料(9)
への荷電粒子照射を停止させる手段とを有する荷電粒子
の照射制限手段と、を具備したことを課題解決の手段と
するものである。
In order to solve the above problems, the present invention provides a charged particle optical system (1
, 2, 3, 4, 5, 6, 7), a detection member (8, 17), an image processing device (18), and a CRT that displays a sample image stored in a frame memory in the image processing device (18). (
1 g) and the stage (10).
), 12, 13, l4, 15, 16, 2o, 22) and
In a charged particle device, the control device is equipped with an input device (21) for manually instructing movement of the sample image, change of observation magnification, image rotation, etc. Means for calculating the number of integrations of the image processing device (18) from the rate of change of the sample image due to movement, change of observation magnification, image rotation, etc.; Frame memory accumulation number setting means of the image processing device (18) having means for automatically setting the accumulation number;
When the sample image is stopped, a means for detecting that the frame memory of the image processing device (18) has reached a preset number of integrations or a predetermined multiple of the number of integrations, and upon receiving an output from the detection means indicating completion of integration, After that, the sample (9) remains until instructions to change the sample image such as sample movement, magnification change, sample rotation, etc. are received.
A means for solving the problem is provided with a charged particle irradiation limiting means having a means for stopping charged particle irradiation to the charged particle irradiation.

〔作 用〕[For production]

オペレータが入力装置を操作すると、試料像の移動速度
、又はステージの移動速度等の試料像の変化速度に対応
して、制御装置の中央制御回路は試料像が変化している
間、残像により見にくくならない程度にフレームメモリ
の積算回数を減らし、試料像の変化が終了すると積算回
数を先に設定してあった値に戻す。
When the operator operates the input device, the central control circuit of the control device responds to the moving speed of the sample image or the speed of change of the sample image, such as the moving speed of the stage, while the sample image is changing. The number of integrations in the frame memory is reduced to such an extent that the change in the sample image is completed, and the number of integrations is returned to the previously set value.

その結果、試料像信号のS/Nが悪い場合でも操作性を
そこなうことなく積算回数を多く設定することが出来る
のでより良い試料像が得られると共に、視界移動等の操
作を行なっても残像により試料像が見にくくなることは
ない.また試料像変化が終了すると積算回数が自動的に
元に復帰するので、必要なS/Nで試料を観察すること
が出来る. 通常、人間の目は静止試料像に比較して動いている試料
像の方が像の劣化を感じにくい性質があるので、このよ
うに一時的に積算回数を変更しても殆ど試料像の劣化を
感しることはない。また、試料像変化の速度に対応して
フレームメモリの積算回数を設定するので、低速の試料
像移動の場合は積算回数をあまり減らす事がなく、その
結果、試料像の劣化も少なく常に最適の試料像の観察が
できる。
As a result, even if the S/N of the sample image signal is poor, it is possible to set a large number of integrations without impairing the operability, so a better sample image can be obtained. The sample image will not be difficult to see. Furthermore, when the sample image change is finished, the number of integrations automatically returns to the original value, so the sample can be observed with the required S/N. Normally, the human eye is less sensitive to image deterioration when a sample image is moving than when it is a stationary sample image, so even if you temporarily change the number of integrations like this, there is almost no deterioration in the sample image. I never feel it. In addition, since the number of integrations in the frame memory is set in accordance with the speed of sample image change, the number of integrations does not decrease much when moving the sample image at low speeds, and as a result, the sample image is less likely to deteriorate and is always at the optimum value. Sample images can be observed.

また、試料像が停止した場合、所定回数の積算がなされ
ると自動的に試料への荷電粒子の照射が停止するので試
料が不要なダメージを受けることがなく、オペレータは
これらの操作をまったく意識する必要がない。
In addition, when the sample image stops, the irradiation of charged particles to the sample automatically stops after a predetermined number of integrations, so the sample does not suffer unnecessary damage, and the operator is completely unaware of these operations. There's no need to.

(実施例〕 走査型電子顕微鏡を例にして第1図に本発明の実施例を
示す。
(Example) An example of the present invention is shown in FIG. 1 using a scanning electron microscope as an example.

第1図に於いて(1)は電子銃、(2)、(4)は電子
ビーム制限用アパーチャ、(3)はプランカー (5)
はX方向用偏向器、(6)はY方向用偏向器、(7)は
対物レンズ、(8)はディテクター (9)は観察試料
、(10)はステージ、(1))は電子銃制御回路、(
12)はプランキング制御回路、(13)はXY走査信
号発生回路、(14)はX方向走査信号増幅回路、(1
5)はY方向走査信号増幅回路、(16)は対物レンズ
制御回路、(17)は画像信号制御回路、(18)は画
像処理装置、(19)はCRT、(20)はステージ駆
動回路、(2l)はステージ移動、観察倍率、ローテー
ション、チルト等の入力装置、(22)は中央制御回路
である。
In Figure 1, (1) is an electron gun, (2) and (4) are electron beam limiting apertures, and (3) is a plunker (5).
is a deflector for the X direction, (6) is a deflector for the Y direction, (7) is an objective lens, (8) is a detector, (9) is an observation sample, (10) is a stage, and (1)) is an electron gun control. circuit,(
12) is a planking control circuit, (13) is an XY scanning signal generation circuit, (14) is an X direction scanning signal amplification circuit, (1
5) is a Y-direction scanning signal amplification circuit, (16) is an objective lens control circuit, (17) is an image signal control circuit, (18) is an image processing device, (19) is a CRT, (20) is a stage drive circuit, (2l) is an input device for stage movement, observation magnification, rotation, tilt, etc., and (22) is a central control circuit.

電子統(1)から射出され、アパーチャ(2)、(4)
を通り抜けた電子ビームは偏向器(5)、(6)でX,
Y方向に偏向された後、対物レンズ(7)で収束されて
観察試料(9)に照射される.この時、観察試料(9)
から発生する2次電子あるいは反射電子はディテクタ(
8)に入り電気信号に変換され、画像信号制御回路(1
7)で所定のレベルまで増幅された後、画像処理装置(
18)に入りディジタル値に変換され、装置内のフレー
ムメモリに記録される.試料像信号が連続して入ってく
る場合に画像処理装ff(1B)は、中央制御回路(2
2)からの指示により過去に取込まれた複数回の試料像
信号を積算し平均化して画像処理装置(18)内のフレ
ームメモリに記憶する。フレームメモリに記録された試
料像データは、CRT(19)の同期速度に対応した速
さで読み出され、画像処理装置(l8)内のD/Aコン
バータでアナログ信号に変換されてCRT (1 9)
に送られ試料像として表示される.一方、xY走査信号
発生回路(l3)は電子顕微鏡のx,Y方向偏向器(5
)、(6)をドライブする走査信号X,Yを発生しこれ
らの信号を、X方向走査信号増幅回路(14)、Y方向
走査信号増幅回路(l5)に送る。走査信号X,Yは、
増幅器(14)、(15)で、中央制御回路(22)の
指示により電子顕微鏡の観察倍率に応じた振幅に増幅さ
れ、偏向器(5)、(6)に駆動する.この一連の動作
により走査型電子顕微鏡を操作するオペレータは、希望
する倍率で試料像をCRT(19)で観察することがで
きる。
It is emitted from the electronic system (1), and the aperture (2), (4)
The electron beam that has passed through is deflected by the deflectors (5) and (6)
After being deflected in the Y direction, it is focused by the objective lens (7) and irradiated onto the observation sample (9). At this time, observation sample (9)
Secondary electrons or reflected electrons generated from the detector (
8), is converted into an electrical signal, and is sent to the image signal control circuit (1
After being amplified to a predetermined level in step 7), the image processing device (
18), is converted into a digital value, and is recorded in the frame memory within the device. When sample image signals are continuously input, the image processing device ff (1B) uses the central control circuit (2
2), the sample image signals captured a plurality of times in the past are integrated, averaged, and stored in the frame memory in the image processing device (18). The sample image data recorded in the frame memory is read out at a speed corresponding to the synchronous speed of the CRT (19), converted to an analog signal by the D/A converter in the image processing device (18), and then transferred to the CRT (19). 9)
and displayed as a sample image. On the other hand, the xY scanning signal generation circuit (13) is connected to the x and Y direction deflector (5) of the electron microscope.
), (6) are generated, and these signals are sent to an X direction scanning signal amplification circuit (14) and a Y direction scanning signal amplification circuit (15). The scanning signals X, Y are
The amplifiers (14) and (15) amplify the amplitude according to the observation magnification of the electron microscope according to instructions from the central control circuit (22), and drive the deflectors (5) and (6). Through this series of operations, the operator operating the scanning electron microscope can observe the sample image on the CRT (19) at a desired magnification.

本発明の作用を、ステージを移動しながら試料上の必要
な位置を捜す場合を例にとってフローチャートで示すと
、第2図のようになる。以降、第1図、第2図に従って
本発明の説明をする。
The operation of the present invention is illustrated in a flowchart as shown in FIG. 2, taking as an example a case in which a required position on a sample is searched for while moving the stage. Hereinafter, the present invention will be explained according to FIGS. 1 and 2.

オペレータが試料(9)上の観察したい位置を探す為、
入力装置(2l)を操作すると(第2図のステップ10
1)、中央制御回路(22)は入力装置(21)からの
視野移動の方向と速さと観察倍率を読み込み(ステップ
102)、それに応じたステージ移動速度を設定し(ス
テップ103)、ステージ駆動回路(20)に信号を送
ってステージ(10)を移動する。また、同時に観察倍
率と設定されたステージ移動速度とから、CRT(19
)での試料像の移動、あるいは倍率変更にともなう試料
像の拡大、縮小やローテーションによる試料像の回転な
どの速度(V)を計算し(ステンプ104)、その速度
に対して積算に拠る残像効果の影響をあまり受けない適
正な画像処理装!(1B)の積算回数(Nv)を決定す
る。
In order for the operator to search for the desired position on the sample (9),
When the input device (2l) is operated (step 10 in Fig. 2)
1), the central control circuit (22) reads the direction and speed of visual field movement and observation magnification from the input device (21) (step 102), sets the stage movement speed accordingly (step 103), and controls the stage drive circuit. (20) to move the stage (10). At the same time, from the observation magnification and the set stage movement speed, the CRT (19
), or the speed (V) of the rotation of the sample image due to enlargement, reduction, or rotation of the sample image due to a change in magnification (step 104), and calculate the afterimage effect based on the integration with respect to the speed. Appropriate image processing equipment that is not affected by much! (1B) Determine the number of integrations (Nv).

もしその時、設定されている積算回数(No)がさきに
割出した積算回数(Nv)よりも多ければ(No)> 
(Nv) 、試料像を変化させている間だけ画像処理袋
置(18)の積算回数を計算から割出した値(Nv)に
変更する(ステップ105). 試料像の変化が終了した時点で積算回数を予め設定され
ていた値(NO)に戻して積算を開始し(ステップ10
6)、取込んだ試料像の回数が積算値(No)、または
(No)の何倍か(KXNO)になった所で(ステップ
107)、プランキング制御回路(12)にプランキン
グ信号を送って電子ビームの照射を停止させる(ステソ
プ108)。これは試料に不要なダメージを与えないよ
うにする為で、Kは1以上の適正な値に予め設定してお
<,Kの値が小さいとステージ停止直前の試料(9)の
残像が残るし、逆にKの値が大きすぎると試料(9)へ
の電子ビームの照射量が増えてしまうことになるので、
試料(9)のダメージの受け具合を配慮してKの値を決
定すると良い。
At that time, if the set number of integrations (No) is greater than the number of integrations (Nv) determined earlier (No)>
(Nv), the cumulative number of image processing bags (18) is changed to the calculated value (Nv) only while the sample image is being changed (step 105). When the sample image has finished changing, the number of integrations is returned to the preset value (NO) and integration is started (step 10).
6) When the number of captured sample images reaches the integrated value (No) or several times (KXNO) of (No) (step 107), a planking signal is sent to the planking control circuit (12). to stop the electron beam irradiation (step 108). This is to prevent unnecessary damage to the sample, so set K in advance to an appropriate value of 1 or more. If the value of K is small, an afterimage of the sample (9) immediately before the stage stops will remain. On the other hand, if the value of K is too large, the amount of electron beam irradiation to the sample (9) will increase.
It is preferable to determine the value of K by taking into consideration the degree of damage to the sample (9).

試料像の変化が終了した時点で残像の残っている画像処
理装置(18)内のフレームメモリを、一旦完全に消却
した後に改めて積算を開始するようにしても良く、その
場合にはKは常に1で良い。
When the change in the sample image is completed, the frame memory in the image processing device (18) in which the afterimage remains may be completely erased and then the integration may be started again. In that case, K is always 1 is fine.

電子ビームの試料(9)への照射停止後、試料像の移動
指示が有った場合(ステップ1)0)、試料(9)への
照射を開始する(ステンブ1l1). また試料観察を終了する時は終了スイッチをONにすれ
ばよい(ステップ109)。
After stopping the irradiation of the sample (9) with the electron beam, if there is an instruction to move the sample image (step 1) 0), the irradiation of the sample (9) is started (step 1l1). Furthermore, to end the sample observation, the end switch may be turned on (step 109).

〔発明の効果〕〔Effect of the invention〕

以上のように本発明によれば、オペレータは試料像を移
動する度に、残像を考慮して画像処理装置の積算回数の
変更をする必要がなくなる.また、大きな観察試料の特
定の一部を探す場合のような頻繁に試料を移動する場合
においても、操作性が格段に向上するのみならず、試料
像の移動を考慮する必要がなく、静止像で観察する時に
最適なS/Nが得られるように、画像処理装置の積算回
数を設定することが出来る。
As described above, according to the present invention, the operator does not have to change the number of integrations of the image processing device in consideration of afterimages every time the sample image is moved. In addition, even when the sample is frequently moved, such as when searching for a specific part of a large observation sample, not only is operability greatly improved, but there is no need to consider the movement of the sample image, and it is possible to use a static image instead. The number of integrations of the image processing device can be set so that the optimum S/N can be obtained when observing the image.

その結果、試料像の静止、変動にかかわらず、良質の試
料像を得ることが出来る. さらに、荷電粒子線の連続照射でダメージを受けやすい
試料に対しても、不要な荷電粒子線の照射を制限するこ
とにより、荷電粒子線照射の影響を最小限にすることが
出来る。
As a result, a high-quality sample image can be obtained regardless of whether the sample image is stationary or fluctuating. Furthermore, by limiting unnecessary charged particle beam irradiation on a sample that is likely to be damaged by continuous charged particle beam irradiation, the influence of charged particle beam irradiation can be minimized.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を電子顕微鏡に適用したー実施例のブロ
ック図、 第2図は本発明の作用を示すフローチャートである。 [主要部分の符号の説明] 12・・・プランキング制御回路 17・・・画像信号制御回路 18・・・画像処理装置 19・・・CRT 20・・・ステージ駆動回路 21・・・人力装置 22・・・中央制御回路
FIG. 1 is a block diagram of an embodiment in which the present invention is applied to an electron microscope, and FIG. 2 is a flow chart showing the operation of the present invention. [Description of symbols of main parts] 12... Planking control circuit 17... Image signal control circuit 18... Image processing device 19... CRT 20... Stage drive circuit 21... Human power device 22 ...Central control circuit

Claims (3)

【特許請求の範囲】[Claims] (1)荷電粒子線で観察試料を2次元的に走査する荷電
粒子光学系と、前記荷電粒子線の走査により前記試料か
ら得られる情報を電気信号に変換して後、増幅して出力
する検出部材と、該検出部材の出力をデジタル値に変換
した後、複数回積算蓄積可能なフレームメモリを有する
画像処理装置と、該画像処理装置のフレームメモリに蓄
えられた試料像を表示する表示器と、前記試料を載置し
XY方向に移動可能なステージを有する試料移動装置と
、前記荷電粒子光学系と前記検出部材と前記画像処理装
置と前記試料移動装置とを制御する制御装置と、該制御
装置に前記試料像の移動や、観察倍率の変更、画像回転
等の指示をする入力装置とを備えた荷電粒子線装置にお
いて、 前記制御装置は、前記表示器に表示される試料像の変化
に対応させて、前記画像処理装置のフレームメモリの積
算回数を自動的に設定する手段と、前記試料への荷電粒
子の照射を自動的に制御する手段とを有することを特徴
とする荷電粒子線装置。
(1) A charged particle optical system that two-dimensionally scans an observation sample with a charged particle beam, and a detection system that converts information obtained from the sample by scanning the charged particle beam into an electrical signal, then amplifies and outputs the signal. a member, an image processing device having a frame memory capable of accumulating multiple times after converting the output of the detection member into a digital value, and a display device displaying a sample image stored in the frame memory of the image processing device. , a sample moving device having a stage on which the sample is placed and movable in XY directions, a control device controlling the charged particle optical system, the detection member, the image processing device, and the sample moving device; In the charged particle beam device, the device is equipped with an input device for instructing the device to move the sample image, change the observation magnification, rotate the image, etc., wherein the control device responds to changes in the sample image displayed on the display. A charged particle beam device correspondingly comprising means for automatically setting the number of integrations in the frame memory of the image processing device and means for automatically controlling irradiation of the sample with charged particles. .
(2)前記画像処理装置のフレームメモリの積算回数設
定手段は、前記入力装置に指示された前記試料像の変化
の速度、又は前記ステージの移動速度から前記フレーム
メモリの積算回数を自動的に設定する手段を有すること
を特徴とする請求項(1)記載の荷電粒子線装置。
(2) The frame memory accumulation number setting means of the image processing device automatically sets the accumulation number of the frame memory from the speed of change of the sample image instructed by the input device or the movement speed of the stage. The charged particle beam device according to claim 1, further comprising means for.
(3)前記荷電粒子の照射制御手段は、前記試料像の停
止時、前記フレームメモリが予め設定された積算回数又
は該積算回数の所定倍数に達したことを検出する手段と
、該検出手段よりの積算完了の出力を受けて前記試料へ
の荷電粒子照射を停止させる手段と、前記入力装置から
の試料像の移動指示により自動的に荷電粒子の照射を開
始する手段と、を有することを特徴とする請求項(1)
記載の荷電粒子装置。
(3) The charged particle irradiation control means includes means for detecting that the frame memory has reached a preset number of integrations or a predetermined multiple of the number of integrations when the sample image is stopped; means for stopping charged particle irradiation on the sample upon receiving an output indicating completion of integration; and means for automatically starting charged particle irradiation in response to an instruction to move the sample image from the input device. Claim (1)
Charged particle device as described.
JP1060348A 1989-02-21 1989-03-13 Charged particle beam equipment Expired - Lifetime JP2787299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1060348A JP2787299B2 (en) 1989-02-21 1989-03-13 Charged particle beam equipment

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP4126589 1989-02-21
JP1-41265 1989-02-21
JP1060348A JP2787299B2 (en) 1989-02-21 1989-03-13 Charged particle beam equipment

Publications (2)

Publication Number Publication Date
JPH02291649A true JPH02291649A (en) 1990-12-03
JP2787299B2 JP2787299B2 (en) 1998-08-13

Family

ID=26380827

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1060348A Expired - Lifetime JP2787299B2 (en) 1989-02-21 1989-03-13 Charged particle beam equipment

Country Status (1)

Country Link
JP (1) JP2787299B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006219A (en) * 2002-04-11 2004-01-08 Keyence Corp Electron microscope, operating method of electron microscope, operation program of electron microscope and recording medium capable of reading by computer
US7425702B2 (en) 2003-05-09 2008-09-16 Hitachi High-Technologies Corporation Charged particle beam apparatus
WO2012014363A1 (en) * 2010-07-28 2012-02-02 株式会社 日立ハイテクノロジーズ Device for setting image acquisition conditions, and computer program

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004006219A (en) * 2002-04-11 2004-01-08 Keyence Corp Electron microscope, operating method of electron microscope, operation program of electron microscope and recording medium capable of reading by computer
US7425702B2 (en) 2003-05-09 2008-09-16 Hitachi High-Technologies Corporation Charged particle beam apparatus
US7714289B2 (en) 2003-05-09 2010-05-11 Hitachi High-Technologies Corporation Charged particle beam apparatus
WO2012014363A1 (en) * 2010-07-28 2012-02-02 株式会社 日立ハイテクノロジーズ Device for setting image acquisition conditions, and computer program
JP2012028283A (en) * 2010-07-28 2012-02-09 Hitachi High-Technologies Corp Image acquisition condition setting device and computer program
US9230182B2 (en) 2010-07-28 2016-01-05 Hitachi High-Technologies Corporation Device for setting image acquisition conditions, and computer program

Also Published As

Publication number Publication date
JP2787299B2 (en) 1998-08-13

Similar Documents

Publication Publication Date Title
JP3230911B2 (en) Scanning electron microscope and image forming method thereof
JPH103875A (en) Scanning electron microscope
JP2787299B2 (en) Charged particle beam equipment
JP6716026B2 (en) Charged particle beam device and condition setting method in charged particle beam device
JPH07262950A (en) Scanning electron microscope
JP2775812B2 (en) Charged particle beam equipment
JP2838799B2 (en) Charged particle beam equipment
JPH02220341A (en) Charged particle beam device
JPH0729536A (en) Scanning electron microscope
JP2001006588A (en) Scanning electron microscope
JPS63307652A (en) Focus detection device for electron microscope
JPH07130321A (en) Scanning electron microscope
JP3375035B2 (en) TV camera system for electron microscope
JPH05325860A (en) Method for photographing image in scanning electron microscope
JPS5914222B2 (en) Magnification control device for scanning electron microscopes, etc.
JPH06273118A (en) Method for measuring dimension and adjusting image
JP2736356B2 (en) Sample observation device
JPH0992196A (en) Scanning ion microscope
JPH0139394Y2 (en)
JPH01151146A (en) Scan type electron microscope
JP3470726B2 (en) Charged particle beam equipment
JPH0139393Y2 (en)
JPH06124678A (en) Charged particle microscope
JPH0425803Y2 (en)
JPH0935673A (en) Focusing ion beam device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090605

Year of fee payment: 11