JPH02291187A - Optical oscillator - Google Patents

Optical oscillator

Info

Publication number
JPH02291187A
JPH02291187A JP11242489A JP11242489A JPH02291187A JP H02291187 A JPH02291187 A JP H02291187A JP 11242489 A JP11242489 A JP 11242489A JP 11242489 A JP11242489 A JP 11242489A JP H02291187 A JPH02291187 A JP H02291187A
Authority
JP
Japan
Prior art keywords
light
optical
faces
end faces
light guide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11242489A
Other languages
Japanese (ja)
Inventor
Takashi Mori
敬 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP11242489A priority Critical patent/JPH02291187A/en
Publication of JPH02291187A publication Critical patent/JPH02291187A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0612Non-homogeneous structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light
    • H01S3/094053Fibre coupled pump, e.g. delivering pump light using a fibre or a fibre bundle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light
    • H01S3/094057Guiding of the pump light by tapered duct or homogenized light pipe, e.g. for concentrating pump light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094084Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light with pump light recycling, i.e. with reinjection of the unused pump light, e.g. by reflectors or circulators

Abstract

PURPOSE:To increase the output of an optical oscillator by a method wherein the end faces, in which light is introduced, on one side of a photoconductor are respectively formed into an inclined face or a curved face in such a way that virtual lines to pass through vertically to the end faces intersect an optical oscillation part and the end faces of a multitude of optical fibers are bonded vertically to the inclined faces or the curved faces with an optical paste or the like. CONSTITUTION:End faces 2b of a photoconductor 2 are respectively formed into an inclined face, vertical lines X-X to these inclined faces 2 are formed in such a way as to intersect an axial line O-O of an optical oscillation part 1 at the part 1 and the end faces of optical fibers 4 are bonded vertically to these inclined faces with an optical paste or the like. Similarly, inclined faces are respectively formed on the other end faces 2a as well of the conductor 2 and each reflection film 3 is formed on these inclined faces by depositing gold to contrive so as to introduce effectively lights as well reflected by the films 3 in the part 1. Moreover, the conductor 2 is formed not only the end faces 2a but also all its outer peripheral surfaces into a reflective surface 3' excepting the light introducing end parts 2b. Thereby, beams of light transmitted through the fibers 4 are fed more effectively to the part 1 and a strong laser beam can be generated.

Description

【発明の詳細な説明】 技す分■ 本発明は、光発振器、より詳細には、ラマン効果を利用
したレーザ発振器に関する。
DETAILED DESCRIPTION OF THE INVENTION Technical details ■ The present invention relates to an optical oscillator, and more particularly, to a laser oscillator that utilizes the Raman effect.

征米扶椎 単色光を物質に当て、その散乱光を観41リすると、入
射光と同じ振動数の散乱光の中に混ざって、入射光と少
し振動数の異なる弱い散乱光が見られる。
If you shine monochromatic light onto a material and observe the scattered light, you will see weak scattered light with a slightly different frequency than the incident light mixed in with the scattered light with the same frequency as the incident light.

振動数のずれは物質に特有な量で、入射光の振動数によ
らない。ラマン効果は、人射光子がそのエネルギーの一
部を散乱物質に与えたり、逆に物質からエネルギーを受
り取ったりするために起こるもので、この際、物質のエ
ネルキーiQ位間の差に等しいエネルキーのみを授受す
るので、振動数のずれから物質の準位に関する情報が1
1}られる。
The frequency deviation is an amount specific to the material and is not dependent on the frequency of the incident light. The Raman effect occurs because an incident photon gives part of its energy to a scattering material, or conversely receives energy from the material, and in this case, the energy key is equal to the difference between the energy keys iQ of the materials. Since only the energy key is given and received, information about the level of the material can be obtained from the deviation of the frequency.
1} be received.

本出願人は、先に、上述のことき光発振器において、散
乱(励起)物質に効果的に光エネルギーを与えるように
し、もって、高出力の光を得ることについて提案した。
The present applicant previously proposed that in the above-mentioned optical oscillator, light energy could be effectively given to the scattering (excited) substance, thereby obtaining high-output light.

第3図は、本出願人が先に提案した光発振器の一例を説
明するための構成図で、図中、1は励起物質を有する円
柱状の光発振部で、該光発振部はロンド(Nd”:YA
G結品レーザロッ1〜)、或いは、内部に気体又は液体
を含むもので構成され、その一方の端面1 aは完全(
100%)反則面(該電体多層膜)に、他方の面ば、通
常、不完全(約95%)反射面(該電休多Jffl膜)
に形成されている。2は該円柱状の光発振部1の周囲を
覆う円π1状の光導体で、該先導体2の屈折率は、第4
図(a),(b)に示すように、外周部が小さく、中心
部にいくに従って大きくなっているが、その変化のしか
たは図示のものに限定されるものではない。なお、この
際、レーザロツド1−の屈折率を破線にて示すように、
光導体2の屈折率より大きくしておくと更によい。また
、該光導休2の両端面2a,2bは、凸レンズ状に形成
されており、一方の端而、例えは、2a側の外側には反
射膜23が施こされている。4は光か伝送されてくる光
ファイバーで、該光ファイハ−4を多数本イjし、各光
ファイバー4の端而(光放出端)は、光導体2の他方の
rfii 2 bに光学のり等で接着されている。
FIG. 3 is a block diagram for explaining an example of an optical oscillator previously proposed by the present applicant. In the figure, 1 is a cylindrical optical oscillator having an excited substance, and the optical oscillator is a Rondo ( Nd”:YA
G-product laser rod 1~) or one containing gas or liquid inside, one end surface 1a of which is completely (
100%) nonconforming surface (the electric multilayer film), and the other surface is usually an incomplete (approximately 95%) reflective surface (the electric multilayer film).
is formed. Reference numeral 2 denotes a circular π1-shaped light guide that covers the periphery of the cylindrical light oscillation unit 1, and the refractive index of the guide body 2 is the fourth
As shown in Figures (a) and (b), the outer circumferential portion is small and the size increases toward the center, but the manner of change is not limited to what is shown in the figures. In addition, at this time, as the refractive index of the laser rod 1- is shown by the broken line,
It is even better if the refractive index is greater than the refractive index of the light guide 2. Further, both end surfaces 2a and 2b of the light guide 2 are formed in the shape of convex lenses, and a reflective film 23 is applied to one end, for example, the outer side of 2a. Numeral 4 is an optical fiber through which light is transmitted, and there are many optical fibers 4, and the end (light emitting end) of each optical fiber 4 is attached to the other rfii 2b of the light guide 2 with optical glue or the like. It is glued.

従って、各光ファイバー4を通して伝送されてきた光は
、光導体2の端面2}〕で反射されることなく、全て該
先導体2内に導入される。光導体2内に導入された光は
、該先導体2が前述のように中心部での屈折率が外周部
での屈折率より大きく形成されているので、該先導体2
内を伝搬していく間に中心側へ曲げらオし、最終的には
、光発振部1内に導入される。光発振部1−内に導入さ
れなかった光は、光導休2の他方の端面2a側において
反射膜3によって反射されるが、この時、該反射膜3の
反射面が凸レンズ状に形成されているので、該反射膜3
によって反射された光は、中心部へ向いやすくなり、そ
れに前述のごとき光導体2の屈折率が中心部側で高いこ
とが加わって、より効果的に光発振部]内に導入される
。斯様にして光発振部1内に導入された光は、該光発振
部1−内の励起物質を励振して、該物質のエネルギー準
位間の差に等しいエネルキーを授受し、周知のごとくし
て、不完全反射而」b側から、その差に対応する波長の
光を発する。なお、上述のごとき光発振器によると、非
常な熱エネルギーを発生する可能性があるので、この熱
を除去するために冷却が必要であり、最も簡単には冷風
を送ることにより冷却することができろ。しかし、図示
の例は、この冷却をより効果的に、しかも人体の保護を
も兼ねて行うようにしたもので、図中、5は耐熱性の高
い透明体の月料(例えば、バイレノクスカラス)から成
る筐体で、該筐体5内に前述のごとき光発振器を支持ア
ーム6等によって所定の間隙をもって収納し、該間隙内
に冷却気体又は液体を流すようにし、これによって、光
発振器の冷却を効果的に行うようにしている。なお、こ
の場合、筺休5の内周部を反射面7に形成しておく時は
、光発振部から漏れた光が外部へ漏れるようなことはな
く、付近にいる人達を漏光から保護することができる。
Therefore, all of the light transmitted through each optical fiber 4 is introduced into the guide body 2 without being reflected by the end surface 2 of the light guide 2. The light introduced into the light guide 2 is transmitted through the light guide 2 because the guide body 2 is formed so that the refractive index at the center is larger than the refractive index at the outer periphery.
While propagating inside, it bends towards the center and is finally introduced into the optical oscillation section 1. The light that is not introduced into the light oscillation part 1- is reflected by the reflective film 3 on the other end surface 2a side of the light guide 2, but at this time, the reflective surface of the reflective film 3 is formed in the shape of a convex lens. Therefore, the reflective film 3
The light reflected by the light beam is more easily directed towards the center, and in addition to the above-mentioned fact that the refractive index of the light guide 2 is higher on the center side, the light is more effectively introduced into the light oscillation section. The light introduced into the light oscillation section 1 in this manner excites the excited substance within the light oscillation section 1-, giving and receiving an energy key equal to the difference between the energy levels of the substance, and as is well-known. Then, through incomplete reflection, light with a wavelength corresponding to the difference is emitted from the b side. Note that the optical oscillator described above can generate a large amount of thermal energy, so cooling is necessary to remove this heat, and the easiest way to cool it is by blowing cold air. reactor. However, in the illustrated example, this cooling is performed more effectively and also to protect the human body. ), an optical oscillator as described above is housed in the housing 5 with a predetermined gap provided by a support arm 6, etc., and a cooling gas or liquid is allowed to flow into the gap, whereby the optical oscillator is cooled. Cooling is done effectively. In this case, when the inner peripheral part of the housing 5 is formed into a reflective surface 7, the light leaked from the light oscillation part will not leak outside, and people in the vicinity will be protected from light leakage. be able to.

前述の各光ファイバー4には、本出願人が既に種々提案
しているように、人」一光或いは太陽光をレンス等によ
って集束して任:0、所望の波長の光を導入することか
可能であり、以下に説明するようにして各光ファイハ−
4内へ所望波長の光を導入する。
As the applicant has already proposed in various ways, it is possible to introduce light of a desired wavelength into each of the above-mentioned optical fibers 4 by focusing human light or sunlight with a lens or the like. and each optical fiber is connected as explained below.
4. Light of a desired wavelength is introduced into

第5図は、本出願人が先に提案した太陽光収集装置の一
例を示す全体斜視図で、図中、21は筒状の基体部、2
2は透明のドーム状頭部で、これらによって太陽光収集
装置用のカプセル20を構成し、使用状態においては、
該カプセル内に図示のように太陽光収集装置」0が収容
されている。
FIG. 5 is an overall perspective view showing an example of a sunlight collecting device previously proposed by the present applicant, in which 21 is a cylindrical base portion;
2 is a transparent dome-shaped head, which constitutes a capsule 20 for a solar collector; in use,
A solar light collecting device "0" is housed in the capsule as shown in the figure.

この太陽光収集装置10は、太陽光を集束するための1
枚又は数枚又は多数枚のIノンズ11,太陽の方向を検
出するための太陽光方向センサ↓2,これらを−・体的
に保持する支持枠体13,該支持枠休13を回動するた
めの第1−の回転軸1 4、第1の該回転軸14を回転
する第1のモータ15、前記レンズ11乃至モータ15
を支持する支持腕1−6、及び[前記第1の回転軸と直
交ずるように配設された第2の回転軸17、該第2の回
転軸17を回転する第2のモータ(図示せず)等を有し
、而記太陽光方向センサ1−2によって太陽の方向を検
出し、その検出信号によってIノンズ11が常に太陽の
方向を向くように前記第1及び第2のモタを制御し、レ
ンズ1 1によって集束された太陽光を該レンズ11−
の焦点位置にその受光端が配設された光ファイバー(第
3図に示した光ファイバー4)に導入し、該光ファイバ
ーを通して光発振器に伝達するようにしている。
This sunlight collecting device 10 includes a
or several or multiple I-nons 11, a sunlight direction sensor ↓2 for detecting the direction of the sun, a support frame 13 that physically holds these, and a rotation of the support frame 13. a first rotary shaft 14 for the purpose of rotation, a first motor 15 for rotating the first rotary shaft 14, and a first motor 15 for rotating the first rotary shaft 14;
a second rotating shaft 17 disposed perpendicular to the first rotating shaft, and a second motor (not shown) that rotates the second rotating shaft 17. The solar direction sensor 1-2 detects the direction of the sun, and the detection signal controls the first and second motors so that the I-nons 11 always faces the direction of the sun. The sunlight focused by the lens 11 is transferred to the lens 11-
The light is introduced into an optical fiber (optical fiber 4 shown in FIG. 3) whose light-receiving end is disposed at the focal position of the light beam, and is transmitted to the optical oscillator through the optical fiber.

第6図は、前記光ファイハ−4に太陽光の可視光成分に
相当する光を導入するための−例を説明するための図で
、図中、11はフレネルレンズ等のレンズ系(第5図に
示したレンズ11に相当)、4はレンス」1によって隼
束された太陽光か専大され、導入さ汎た太陽光を伝達す
るための光ファイバーであるが、太陽光をレンス系によ
って隼束した場合、その太陽像は、中心部はほほ目色光
になり、その周辺部はその焦点位置に合った波長の光成
分を多く含むようになる。
FIG. 6 is a diagram for explaining an example of introducing light corresponding to the visible light component of sunlight into the optical fiber 4. In the figure, 11 is a lens system such as a Fresnel lens (5th (corresponding to the lens 11 shown in the figure), and 4 is an optical fiber for transmitting the sunlight focused and introduced by the lens 1. In this case, the central part of the solar image will be bright-colored light, and the peripheral part will contain many light components with wavelengths that match the focal position.

すなわち、太陽光をレンズ系によって隼束した場合、そ
の焦点位置および太陽像の大きさは光の波長によって異
なり、例えは、波長か短い青色系統の光はP、の位11
“′゜tに直径I),の太陽像を、緑色系紐の光はP2
の位置に直径D2の太陽像を、また赤色系統の光はP3
の位置に直径I)3の太陽像を結ぶ。
In other words, when sunlight is focused by a lens system, the focal point position and the size of the solar image differ depending on the wavelength of the light.For example, blue light with a short wavelength is
The image of the sun with diameter I) at '゜t, the light of the green string is P2
A sun image with a diameter of D2 is placed at the position, and the red light is placed at P3.
A sun image with a diameter of I) 3 is set at the position.

従って、図示の場合、P,の位置に光導体ケーブルの受
光端面を配置すれば、青色成分の光を周辺部に多く含ん
だ太陽光を収集することができ、P?の位置に配置すれ
ば緑色系統の光成分を周辺部に多く含んだ太陽光を、ま
た、P3の位置に配置すれば赤色系統の光成分を周辺部
に多く含んだ太陽光を収集することができ、その時、光
導体ケーブルの直径を収集しようとする光成分に合わせ
て、例えは、青色系統の時はD,、緑色系統の時は■〕
2、赤色系統の時はD,としておけば光導体ケーブルの
使用址を少くして最も効率的に所望の光成分を多址に含
んだ太陽光を収集することができ、図示のように、光導
体ケーブルの受光端而の直径を大きくしてD。とじてお
けば、全ての波長成分を含んだ、つまり可視光成分の光
を収集するようにすることかできる。
Therefore, in the case shown in the figure, if the light-receiving end face of the optical conductor cable is placed at the position P, sunlight containing a large amount of blue component light in the periphery can be collected, and P? If you place it at position P3, you can collect sunlight that contains a lot of green light components in the periphery, and if you place it in position P3, you can collect sunlight that contains a lot of red light components in the periphery. At that time, adjust the diameter of the optical conductor cable to match the light component you are trying to collect, for example, D for blue color and ■ for green color.]
2. If you set it to D for the red system, you can reduce the amount of light guide cable used and collect sunlight containing the desired light components most efficiently, as shown in the figure. Increase the diameter of the light receiving end of the optical conductor cable. If it is closed, it can collect light that includes all wavelength components, that is, visible light components.

第33図に示した光ファイバー4には、第5図及び第6
図に示したようにして太陽光又は人工光源の所望の光成
分の光例えば太陽光の可視光全体を含む光又は青色成分
を多量に含む光、或いは赤色成分を多量に含む光等が導
入され、斯様にして光ファイバー4内に導入された光か
光発振器の励起光として使用される。而して、本発明は
、主として、宇宙空間において例えば通信衛星等におい
て使用することを目的としてなされたものであり、特に
、エネルギー源の貴重な宇宙空間において太陽光の効果
的な利用を図ったものである。すなわち、宇宙空間にお
いては、昼夜の別はなく、また雲等によって太陽光が遮
きられることがないので、常時、安定して太陽光を利用
することができ、本発明による光発振器を利用するのに
最も適しており、該光発振器を使用して地上からの信号
を中継したり、或いは、通信衛星、宇宙飛行船等からの
情+lI!を地−1−に送信したり、或いは、宇宙船内
外において機械加],時のり断等に使用するレーザ光源
として使用することができる。
The optical fiber 4 shown in FIG.
As shown in the figure, light of a desired light component of sunlight or an artificial light source, such as light containing all visible light of sunlight, light containing a large amount of blue component, or light containing a large amount of red component, etc., is introduced. The light thus introduced into the optical fiber 4 is used as excitation light for an optical oscillator. Therefore, the present invention was made primarily for use in outer space, for example in communication satellites, etc., and in particular aimed at effectively utilizing sunlight in outer space, which is a valuable source of energy. It is something. That is, in outer space, there is no difference between day and night, and sunlight is not blocked by clouds, etc., so sunlight can be used stably at all times, and the optical oscillator according to the present invention can be used. It is most suitable for relaying signals from the ground using the optical oscillator, or for transmitting information from communication satellites, spacecraft, etc. It can be used as a laser light source for transmitting to the ground, or for mechanical processing, time cutting, etc. inside and outside the spacecraft.

−■−−−−−的 本発明は、七,述のごとき光発振器を更に改良し,て、
より効果的にかつまたより強力な光を発振することので
きる光発振器を提供することを目的としてなされたもの
である。
−■−------The present invention further improves the optical oscillator as described above in 7.
The purpose of this invention is to provide an optical oscillator that can oscillate light more effectively and more powerfully.

引−−コ戊 第1図は、本発明による光発振器の一実施例を説明する
ための要部構成図で、図中、第3図に示した光発振器と
同様の作用をする部分は第3図の場合と同−・の参照番
号を付してある。
Figure 1 is a block diagram of main parts for explaining one embodiment of the optical oscillator according to the present invention. The same reference numbers as in Figure 3 are given.

而して、本発明においては、光導体2の端而2bは傾斜
面に形成されて、この傾斜面2bに対する垂直線X −
 Xが光発振部]において該光発振部上の軸線0−○と
交差のように形成されており、この傾斜面に垂直に光フ
ァイバー4の端而が光学のり等により接着されている。
Therefore, in the present invention, the end 2b of the light guide 2 is formed as an inclined surface, and the perpendicular line X − to this inclined surface 2b is
In the optical oscillation section, X is formed to intersect with the axis 0--O on the optical oscillation section, and the end of the optical fiber 4 is adhered perpendicularly to this inclined surface using optical glue or the like.

同様に、光導体の他方の端面2aも傾斜面に形成され、
この傾斜面に反射膜、ITましく、金蒸着による反射膜
3が形成され、該反射膜;3によって反射された光をも
効果的に光発振部1内に導入するようになっている。
Similarly, the other end surface 2a of the light guide is also formed as an inclined surface,
A reflective film, such as IT-like reflective film 3 made of gold vapor deposition, is formed on this inclined surface, and the light reflected by the reflective film 3 is also effectively introduced into the light oscillation section 1.

更には、該光導休2は、t’NJ F+己端而2aばか
りでなく、前記ソ6導入端部2}〕を除いて全ての外周
面を反射面3′とすることも可能で、このようにすると
、光導体2内に一旦導入された光をより効果的に使用す
ることができ、また、光が外部へ漏れる心配もない。
Furthermore, it is also possible to make the entire outer peripheral surface of the light guide 2 a reflective surface 3', excluding not only the t'NJ F+self end 2a but also the aforementioned 6 introduction end 2}. In this way, the light once introduced into the light guide 2 can be used more effectively, and there is no fear that the light will leak to the outside.

第2図は、本発明の他の実施例を説明するための構成図
で、図中、第1図に示した実施例と同様の作用をする場
合には、第」−図の場合と同一の参照番号が付してある
。面して、この実施例は、光導体の端面2t1,2bが
曲線に形成されていること、光発振部」−の両端側に設
けられる反射膜1 a +1bが該光発振部】と別体に
形成されていること、Qスイッチ8を有すること、及び
、螢光結晶板9を有すること等を除いて第1図に示した
ものと回しであり、その作用もまた第」図に示した実施
例と実質的に同じであるが、逆に、第1図に示した実施
例においても反射膜1a,−1bを光発振部1と別体に
することも可能であり、また、Qスイッチ8を設けたり
、螢光&’i品板9を設けたりすることも可能である。
FIG. 2 is a configuration diagram for explaining another embodiment of the present invention. In the figure, when the same function as the embodiment shown in FIG. Reference numbers are given. In this embodiment, the end surfaces 2t1 and 2b of the light guide are formed into curved lines, and the reflective films 1a and 1b provided on both ends of the light oscillation section are separate from the light oscillation section. The structure is the same as that shown in Fig. 1, except that it is formed in the same manner as the above, has a Q switch 8, and has a fluorescent crystal plate 9, etc., and its operation is also as shown in Fig. 1. Although it is substantially the same as the embodiment shown in FIG. 8 or a fluorescent &'i product plate 9.

而して、Qスイノチを用いれは、パルス状の強力なレー
ザ光を発生することかでき、また、螢光結晶板を用いる
ことにより、レーザ光に色をつけて光路を目視すること
が可能となる。
Therefore, by using Q Suinochi, it is possible to generate a powerful pulsed laser beam, and by using a fluorescent crystal plate, it is possible to color the laser beam and visually observe the optical path. Become.

なお、第1図及び第2図に示した実施例においては、冷
却手段について何ら示していないが、−1−記実施例は
、光発振部1にN a I: Y A G結品1ノーザ
ロッ1−を用いることを想定しており、YAGレーザを
用いた場合、それ程の温度士昇はなく、光心体として必
すしもパイレックスガラスを使用する必要はなく、通常
の光学ガラスを用いてもよいためである。
Although the embodiments shown in FIGS. 1 and 2 do not show any cooling means, in the embodiment described in -1- 1- is assumed to be used, and when a YAG laser is used, there is no significant temperature rise, and it is not necessary to use Pyrex glass as the optical center; even if ordinary optical glass is used. It is for good.

防−−−−−−−−界− 以−1−の説明から明らかなように、本発明によると、
光ファイバーを通して伝送されてきた光をより効果的に
光発振部に供給することができ、より効果的にかつより
強力なレーザ光を発生することができる。
Prevention---------- Field As is clear from the explanation below-1-, according to the present invention,
The light transmitted through the optical fiber can be more effectively supplied to the light oscillation unit, and more effective and more powerful laser light can be generated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2同は、それぞれ本発明による光発振器の
実施例を説明ずるための要部摺成図、第3図は、本出願
人が先に提案した光発振部の−例を説明するための構成
図、第4図は、本発明の実施例に使用する光導体の屈折
率の分布を示す図、第5図は、本発明の実施に使用して
好適な太陽光収集装置の−例を示す図、第6図は、光フ
ァイバー内に所望の波長成分の光を導入するための動作
〃;〔理を説明するための図である。 1・光発振部、2・光導体、3・反射膜、4・光ファイ
バー
Figures 1 and 2 are schematic diagrams of essential parts for explaining an embodiment of an optical oscillator according to the present invention, respectively, and Figure 3 is an illustration of an example of an optical oscillator previously proposed by the applicant. FIG. 4 is a diagram showing the refractive index distribution of a light guide used in an embodiment of the present invention, and FIG. 5 is a diagram showing a solar collector suitable for implementing the present invention. - An example diagram, FIG. 6, is a diagram for explaining the operation for introducing light of a desired wavelength component into an optical fiber. 1. Optical oscillator, 2. Light guide, 3. Reflective film, 4. Optical fiber.

Claims (1)

【特許請求の範囲】 1、励起物質を有する円柱状の光発振部と、該発振部の
周囲に配設された光導体とを有し、該光導体は屈折率が
周辺部に対して中心部が大きく形成されている光発振器
において、前記光導体の前記光が導入される前記一方の
端面が、該端面を垂直に通る仮想線が前記光発振部と交
差するように傾斜した面又は曲面に形成され、該傾斜面
又は曲面に対して直面に多数本の光ファイバーの端面が
光学のり等で接着されていることを特徴とする光発振器
。 2、前記光導体は、少なくとも、前記光ファイバーが接
着されている側と反対側の端面が反射面に形成されてい
ることを特徴とする請求項第1項に記載の光発振器。 3、前記反射面が金蒸着面であることを特徴とする請求
項第2項に記載の光発振器。
[Claims] 1. It has a cylindrical light oscillation part containing an excited substance and a light guide arranged around the oscillation part, and the light guide has a refractive index centered with respect to the peripheral part. In an optical oscillator having a large section, the one end surface of the light guide through which the light is introduced is a sloped or curved surface such that a virtual line passing perpendicularly through the end surface intersects the optical oscillation section. 1. An optical oscillator characterized in that the end faces of a large number of optical fibers are bonded to the inclined or curved surface using optical glue or the like. 2. The optical oscillator according to claim 1, wherein at least an end surface of the optical guide opposite to the side to which the optical fiber is bonded is formed as a reflective surface. 3. The optical oscillator according to claim 2, wherein the reflective surface is a gold-deposited surface.
JP11242489A 1989-05-01 1989-05-01 Optical oscillator Pending JPH02291187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11242489A JPH02291187A (en) 1989-05-01 1989-05-01 Optical oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11242489A JPH02291187A (en) 1989-05-01 1989-05-01 Optical oscillator

Publications (1)

Publication Number Publication Date
JPH02291187A true JPH02291187A (en) 1990-11-30

Family

ID=14586298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11242489A Pending JPH02291187A (en) 1989-05-01 1989-05-01 Optical oscillator

Country Status (1)

Country Link
JP (1) JPH02291187A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853322A (en) * 1981-09-26 1983-03-29 Toshiba Corp Speed controlling device of motor used for oiler
JPS60115274A (en) * 1983-09-30 1985-06-21 ザ・ボ−ド・オブ・トラステイ−ズ・オブ・ザ・レランド・スタンフオ−ド・ジユニア・ユニバ−シテイ Fiber optical device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5853322A (en) * 1981-09-26 1983-03-29 Toshiba Corp Speed controlling device of motor used for oiler
JPS60115274A (en) * 1983-09-30 1985-06-21 ザ・ボ−ド・オブ・トラステイ−ズ・オブ・ザ・レランド・スタンフオ−ド・ジユニア・ユニバ−シテイ Fiber optical device

Similar Documents

Publication Publication Date Title
EP0142026A2 (en) Method for constructing microlens ends for optical fibres, particularly for biomedical and/or surgical use, and device for implementing the method
US5751871A (en) Method for coupling of semiconductor lasers into optical fibers
RU2204155C2 (en) Optical insulator
CN1987543A (en) Optical fiber cable
EP0185360B1 (en) Optical-fibre coupler
CN112596168B (en) Vortex light beam generating method and device based on annular spiral fiber grating resonator
JP5472833B2 (en) Reflector and optical structure
JPH02291187A (en) Optical oscillator
CA1229510A (en) Optical filter device
US6112004A (en) Emission microscopy system and method
GB2201527A (en) - Fibre optic coupling device
JPH02224375A (en) Solar cell module
JPH02281775A (en) Optical oscillator
CN213843590U (en) Annular spiral fiber grating resonator and vortex light beam generating device
JP2000258247A (en) Ultraviolet ray detector
JPH02303082A (en) Optical oscillator
JPH02304990A (en) Light oscillator
KR930011823B1 (en) Optical wave length convertical apparatus
US4118676A (en) Method and apparatus for driving an optical waveguide with conherent radiation
JP2006086375A (en) Optical resonator
JPH02307283A (en) Optical oscillator
JPS59147303A (en) Optical radiator
CN214044336U (en) Semiconductor laser
Tugendhaft et al. Directional multimode fiber couplers in the mid-infrared
JPH07140350A (en) Light transmission device