JPH02290613A - Manufacture of hollow extruded aluminum material to be formed for vacuum - Google Patents

Manufacture of hollow extruded aluminum material to be formed for vacuum

Info

Publication number
JPH02290613A
JPH02290613A JP10979989A JP10979989A JPH02290613A JP H02290613 A JPH02290613 A JP H02290613A JP 10979989 A JP10979989 A JP 10979989A JP 10979989 A JP10979989 A JP 10979989A JP H02290613 A JPH02290613 A JP H02290613A
Authority
JP
Japan
Prior art keywords
vacuum
hollow
sealed
extrusion
extruded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10979989A
Other languages
Japanese (ja)
Inventor
Yutaka Kato
豊 加藤
Koichi Okita
広一 置田
Eizo Isoyama
礒山 永三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Altemira Co Ltd
Original Assignee
Showa Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Aluminum Corp filed Critical Showa Aluminum Corp
Priority to JP10979989A priority Critical patent/JPH02290613A/en
Publication of JPH02290613A publication Critical patent/JPH02290613A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C29/00Cooling or heating work or parts of the extrusion press; Gas treatment of work
    • B21C29/006Gas treatment of work, e.g. to prevent oxidation or to create surface effects

Abstract

PURPOSE:To decrease the adsorption and occulusion of vacuum deteriorating materials by forming so as not to bring the inner part of hollow aluminum material to be formed into contact with the atmosphere including moisture while the material is subjected to extruding and forming at the specified temperature. CONSTITUTION:A billet 2 is subjected to extrusion molding at the extruding temperatures of 300-450 deg.C, the mixed gas 26 contg. 7% oxygen and the balance argon is ejected from a jet nozzle 6, the tip opening part of the material to be formed 15 which is slightly pushed out is sealed by pressure welding with a press and a sealed end 27 is formed. A cooling and aging treatment are performed while the mixed gas 26 is sealed. At last, the hollow extruded material 15 is manufactured by cutting both the sealed ends 27, 28 by no use of oil and without air blow. Because a dense and thin oxided film is formed on the inner face, the adsorption and occulusion of the vacuum deteriorating materials is less and degassing treatment is simple.

Description

【発明の詳細な説明】 産業」二の利用分野 この発明は、たとえばシンクロトロンなどの加速器に使
用される粒子加速用バイブ、薄膜製造装置、表面分析装
置、核融合装置などの高真空装置に用いられる真空用ア
ルミニウム製中空理出型材の製造法に関する。
[Detailed Description of the Invention] Industrial Field of Application This invention is applicable to particle acceleration vibrators used in accelerators such as synchrotrons, high vacuum devices such as thin film manufacturing devices, surface analysis devices, and nuclear fusion devices. The present invention relates to a method for manufacturing a hollow extruded aluminum material for vacuum use.

この明細書において、アルミニウムとは純アルミニウム
およびその合金を含むものとする。
In this specification, aluminum includes pure aluminum and alloys thereof.

従来の技術と発明の課題 たとえば粒子加速用バイブの材料には、いままで主とし
てステンレスが使用されてきたが、最近になってアルミ
ニウムがこの用途に適していることが分かり、使用され
るようになってきている。その理由は、アルミニウムの
方がステンレスに比べて誘導放射能を生じにくくかつ生
じても減衰時間が短いこと、熱伝導性および電気伝導性
が良好であること、表面のガス放出係数が小さいこと、
軽量であること、加工性が良いことなどの点で優れてい
るからである。この粒子加速用パイプの内部は、粒子を
高速で通す必要上、高真空に保たなければならない。し
たがって、いかにしてバイブ内部を高真空にするかとい
うことが重要な課題となる。
Problems with Prior Art and Inventions For example, until now stainless steel has been mainly used as a material for particle acceleration vibrators, but recently aluminum has been found to be suitable for this purpose and is being used. It's coming. The reasons for this are that compared to stainless steel, aluminum is less likely to generate induced radiation and has a shorter decay time even if it does occur, has good thermal and electrical conductivity, and has a small surface gas release coefficient.
This is because it is excellent in terms of light weight and good workability. The inside of this particle acceleration pipe must be kept at a high vacuum in order to allow particles to pass through it at high speed. Therefore, an important issue is how to create a high vacuum inside the vibrator.

従来、粒子加速用パイプの内部を高真空にするために、
パイプ内面を有機溶剤等により脱脂処理した後、約15
0℃で24時間程度の加熱脱ガス処理を繰返して行なっ
たり、また,この処理と組合わせて水素ガス、アルゴン
ガス、酸素ガスなどの中での放電洗浄を行なっていたが
、このような作業は長時間を要して非能率的であるうえ
に、真空度の点においてもいまだ充分に満足し得るもの
ではなかった。
Conventionally, in order to create a high vacuum inside the particle acceleration pipe,
After degreasing the inner surface of the pipe with an organic solvent, etc., approximately 15
Previously, heat degassing treatment was repeatedly performed at 0°C for about 24 hours, and in combination with this treatment, discharge cleaning was performed in hydrogen gas, argon gas, oxygen gas, etc. In addition to requiring a long time and being inefficient, the degree of vacuum was still not fully satisfactory.

粒子加速用パイプ内部の高い真空度を保持するためには
、製品になった後におけるパイプ内壁からの放出ガスを
減らすことが重要である。
In order to maintain a high degree of vacuum inside the particle acceleration pipe, it is important to reduce the amount of gas released from the inner wall of the pipe after it is made into a product.

この点につき本発明者らは実験研究を重ねた結果アルミ
ニウム製パイプの内面の皮膜状態が真空度に大きく影響
を与えることが判明した。
As a result of repeated experimental research on this point, the present inventors have found that the state of the coating on the inner surface of the aluminum pipe has a large effect on the degree of vacuum.

アルミニウムは、周知のように、非常に酸化され易い金
属であり、微量の酸素に触れただけで表面に酸化皮膜が
形成される。また、水、湿気などの水分の存在する環境
下におかれると、その表面に水和酸化皮膜が生成する。
As is well known, aluminum is a metal that is very easily oxidized, and an oxide film is formed on the surface when it comes into contact with even a trace amount of oxygen. Furthermore, when placed in an environment containing moisture such as water or humidity, a hydrated oxide film is formed on the surface.

そして永和酸化物の生成反応の温度が高い程永和酸化皮
膜の成長は著しく、高温環境ではアルミニウム表面にベ
ーマイトまたはバイアライトなどの永和酸化皮膜が形成
される。このような永和酸化皮膜の膜質は、水分の存在
しない環境で形成されるアルミニウム酸化皮膜に比べて
非常に粗で多孔質状でありかつその孔形態も複雑にいり
込んでいる。加えて膜厚も厚い。
The higher the temperature of the Eiwa oxide production reaction is, the more the Eiwa oxide film grows, and in a high temperature environment, an Eiwa oxide film such as boehmite or vialite is formed on the aluminum surface. The quality of such a permanent oxide film is much rougher and more porous than that of an aluminum oxide film formed in an environment without moisture, and the pores are also intricately shaped. In addition, the film thickness is also thick.

ところで、通常の押出加工により成形されたアルミニウ
ム製パイプの内面には、成形時水分を含んだ大気との接
触により水和酸化皮膜が生成される。しかもこの水和酸
化皮膜は、押出時高温にさらされるため、水和酸化皮膜
の生成反応が促進されて厚膜となっている。この永和酸
化皮膜の膜質は上述のとおりのものであり、かつ厚膜で
あるために皮膜に多くの水分が吸着する。しかも皮膜が
ちみつさに欠けるために、成形後においても大気中に存
在する水分、ノ1イドロカーボン、二酸化炭素および一
酸化炭素などの真空度低下物質が皮膜に吸着する。この
ような真空度低下物質は、前記ガス中における放電洗浄
時や真空引き時においてすらなお若干存在しているため
に前記同様皮膜に吸着する。しかもこれは水和酸化皮膜
が上記のようなものであるために皮膜内にいわば吸蔵さ
れた形態になる。
Incidentally, a hydrated oxide film is formed on the inner surface of an aluminum pipe formed by ordinary extrusion processing due to contact with the atmosphere containing moisture during forming. Furthermore, since this hydrated oxide film is exposed to high temperatures during extrusion, the formation reaction of the hydrated oxide film is promoted, resulting in a thick film. The film quality of this Eiwa oxide film is as described above, and since it is a thick film, a large amount of water is adsorbed to the film. Moreover, since the film lacks tightness, even after molding, vacuum-degrading substances such as moisture, hydrocarbon, carbon dioxide, and carbon monoxide present in the atmosphere are adsorbed to the film. Such substances that lower the degree of vacuum are still present to some extent even during discharge cleaning in the gas or during evacuation, and therefore are adsorbed to the film as described above. Moreover, since the hydrated oxide film is as described above, it is in the form of being occluded within the film.

その結果これの脱離が困難な状態となり、真空引きを行
なってもなかなか除去できない。したがって、これが粒
子加速用パイプの真空度向上阻害の原因になっている。
As a result, it becomes difficult to remove it, and it is difficult to remove it even by vacuuming. Therefore, this is a cause of hindering the improvement of the degree of vacuum in the particle acceleration pipe.

また押出成形後のアルミニウム製パイプの機械的強度を
高めるために、高温加熱後、水冷および空冷などの焼入
れ処理が行なわれるが、このさいにも押出成形時に形成
された上述の永和酸化皮膜はさらに成長するとともにす
でに吸若されている真空度低下物質は皮膜に内蔵される
形となる。
In addition, in order to increase the mechanical strength of aluminum pipes after extrusion, quenching treatments such as water cooling and air cooling are performed after high-temperature heating. As it grows, the vacuum-lowering substances that have already been sucked become incorporated into the film.

そこで、上記問題点を解決した真空用アルミニウム製中
空押出型材の製造法として、押出されつつある中空型材
の中空部内を、水分を含んだ人気と接触しないような雰
囲気に保ちつつアルミニウム製中空押出型材を押出成形
し、中空部内面に酸化皮膜を形成する方法が提案された
Therefore, as a manufacturing method for vacuum extrusion aluminum hollow extrusion moldings that solves the above problems, the aluminum hollow extrusion molding material is manufactured while maintaining the inside of the hollow part of the hollow molding material being extruded in an atmosphere that does not come into contact with moisture. A method was proposed in which an oxide film was formed on the inner surface of the hollow part by extrusion molding.

この方法において、水分を含んだ大気と接触しないよう
な雰囲気に保つ方法としては、中空部内に酸素混合不活
性ガスを供給する方法(特公昭59−19769号)、
中空部内に不純物としての酸素を含む不活性ガスを倶給
する方法(特公昭61−37005号)、中空部内を真
空引きする方法(特公昭61−37006号)、中空部
内に乾燥空気または純酸素を供給する方法(特開昭63
−313612号)などがある。
In this method, methods for maintaining an atmosphere that does not come into contact with the moisture-containing atmosphere include a method of supplying an oxygen-mixed inert gas into the hollow space (Japanese Patent Publication No. 59-19769);
A method of supplying an inert gas containing oxygen as an impurity into the hollow part (Japanese Patent Publication No. 61-37005), a method of vacuuming the inside of the hollow part (Japanese Patent Publication No. 61-37006), a method of supplying dry air or pure oxygen into the hollow part. Method of supplying
-313612).

しかしながら、上記いずれの方法においても、押出成形
時の押出温度は500℃程度であり、酸化物の一部が結
晶化するので、成形された中空押出型材の中空部内面に
形成された酸化皮膜は非結晶質皮膜の一部が結晶化した
状態となり、ちみつな皮膜が形成されなくなることがあ
る。
However, in any of the above methods, the extrusion temperature during extrusion molding is about 500°C, and a part of the oxide crystallizes, so the oxide film formed on the inner surface of the hollow part of the hollow extruded molded material is Part of the amorphous film may become crystallized, and a honey film may not be formed.

したがって、真空度低下物質が吸着、吸蔵しやすくなり
、製造された中空型材の中空部内面の放出ガス係数は1
 0””37orr拳p / s a c−のオーダー
となる。これは、たとえば粒子加速パイプとしては未だ
満足すべき値ではない。
Therefore, substances that reduce the degree of vacuum are easily adsorbed and occluded, and the released gas coefficient on the inner surface of the hollow part of the manufactured hollow molded material is 1.
The order is 0""37orr fist p/sac-. This is still not a satisfactory value for a particle acceleration pipe, for example.

この発明の目的は、上記の問題を解決し、内部を真空に
保つことが要求される粒子加速用パイブなどの用途に適
した真空用アルミニウム製中空押出型材を製造する方法
を提供することにある。
An object of the present invention is to solve the above-mentioned problems and provide a method for manufacturing a hollow extruded aluminum profile for vacuum use, which is suitable for applications such as particle acceleration pipes that require the interior to be kept in a vacuum. .

問題点を解決するための手段 この発明による真空用アルミニウム製中空押出型材の製
造法は、押出されつつある中空型材の中空部内を、水分
を含んだ大気と接触しないような雰囲気に保ちつつアル
ミニウム製中空押出型材を押出成形し、中空部内面に酸
化皮膜を形成するにあたり、押出温度を300〜450
℃として押出成形することを特徴とするものである。
Means for Solving the Problems The method of manufacturing a hollow extruded aluminum profile for vacuum use according to the present invention is to maintain the inside of the hollow part of the hollow profile being extruded in an atmosphere that prevents it from coming into contact with the moisture-containing atmosphere, When extruding the hollow extruded material and forming an oxide film on the inner surface of the hollow part, the extrusion temperature is set at 300 to 450.
It is characterized by extrusion molding at ℃.

上記において、押出温度を300〜450℃に限定した
のは、300℃未満であるとアルミニウムの押出成形を
行うことができず、450℃を越えると結晶化した酸化
物が生成するからである。
In the above, the extrusion temperature was limited to 300 to 450°C because if it is less than 300°C, aluminum cannot be extruded, and if it exceeds 450°C, crystallized oxides will be produced.

押出型材を製造するビレットとしては、通常の押出成形
に使用されるJISAIOOO系、JIS A6000
系などからなるものが用いられるが、押出性および機械
的強度の点から、JIS A6061およびJISA6
063などのA/−Mg−Si系合金からなるものが好
ましい。また、上記ビレットとして純アルミニウム製芯
材と上記A/−Mg−St系合金製皮材とからなるもの
を用いることが一層好ましい。
The billets used to manufacture extrusion molding materials include JISAIOOO series and JIS A6000, which are used for ordinary extrusion molding.
From the viewpoint of extrudability and mechanical strength, JIS A6061 and JISA6
It is preferable to use an A/-Mg-Si alloy such as 063. Further, it is more preferable to use a billet made of a pure aluminum core material and the A/-Mg-St alloy skin material.

押出されつつある中空型材の中空部内を、水分を含んだ
大気と接触しないような雰囲気に保つJj法としては、
次に述べるような公知の方法を適用できる。
The Jj method maintains the inside of the hollow part of the hollow material being extruded in an atmosphere that does not come into contact with the moisture-containing atmosphere.
Known methods such as those described below can be applied.

その1は、アルミニウム製中空押出型材を押出成形する
にあたり、当初より酸素0.5〜30容量96、とくに
1〜10容量%、残部不活性ガスよりなる混合ガスを、
押出されつつある型Hの中空部内に供給しながら行う方
法である。
First, when extruding aluminum hollow extrusion moldings, a mixed gas consisting of 0.5 to 30 volumes of oxygen, especially 1 to 10% by volume, and the balance of inert gas is used from the beginning.
This method is carried out while feeding the material into the hollow part of the mold H which is being extruded.

この場合、わずか押出された後の型材の先端開口部を密
封し、その後も混合ガスの洪給を継続し、所定長さ押出
した後、型材を切断するとともに切断端を密封する方法
と、型材の先端開口部を密封することなく行なう方法と
がある。前者の場合、両密封端部は、押出成形後、中空
押■型材の使用場所へ送られてから切断開口してもよい
し、送る前の段階で切断開口してもよい。
In this case, there is a method of sealing the opening at the tip of the mold material after it has been slightly extruded, continuing to supply mixed gas, extruding it for a predetermined length, cutting the mold material, and sealing the cut end. There is a method in which the tip opening is not sealed. In the former case, both sealed ends may be cut and opened after being sent to the place where the hollow stamped material is used after extrusion molding, or may be cut and opened at a stage before being sent.

不活性ガスとしてはアルゴン、ヘリウムが一般的である
Argon and helium are commonly used as inert gases.

その2は、上記その1の方法において、混合ガスの代わ
りに不純物としての酸素を含む不活性ガスを用いる方法
である。現在工業的に得られる不活性ガスの純度はほほ
99.99%であり、微二の酸素が不純物として必ず含
まれている。この方法においても、不活性ガスとしては
アルゴン、ヘリウムが一般的である。
The second method is to use an inert gas containing oxygen as an impurity instead of the mixed gas in the method of the first method. The purity of the inert gas currently available industrially is approximately 99.99%, and it always contains a small amount of oxygen as an impurity. Also in this method, argon and helium are commonly used as the inert gas.

その3は、上記その1の方法において、混合ガスの代わ
りに乾燥空気または純酸素を用いる方法である。乾燥空
気は、たとえば大気をコンブレッサで圧縮して、乾燥剤
が入れられた除湿器内を通過させることなどにより得ら
れる。この方法において乾燥剤としては公知のものを使
用することができるが、その中でも合成ゼオライトを用
いることが好ましい。また、乾燥空気の露点は、−30
℃以下であることが好ましく、一50℃以下であること
が望ましい。純酸素は、純度1 0 0 96の酸素で
あり、これは水分を含まない。
The third method is to use dry air or pure oxygen instead of the mixed gas in the method of the first method. Dry air can be obtained, for example, by compressing atmospheric air with a compressor and passing it through a dehumidifier containing a desiccant. In this method, any known desiccant can be used, but among them, it is preferable to use synthetic zeolite. Also, the dew point of dry air is -30
The temperature is preferably below 0.degree. C., and desirably below -50.degree. Pure oxygen is oxygen with a purity of 1 0 0 96, which does not contain water.

その4は、上記その1の方法において、押出されつつあ
る型材の中空部内を真空にする方法である。この場合、
押出成形時中空部内に何も共給しない方法と、中空部内
を真空引きする方法とがある。後者の場合、型材の中空
部から少なくとも押出当初のみ真空引きし、押出直後の
型+」の先端開口部を密封し、所定長さ押出した後、型
材を切断するとともに切断端を密封する。
The fourth method is to create a vacuum in the hollow part of the molded material that is being extruded in the method of No. 1 above. in this case,
There is a method in which nothing is co-supplied into the hollow part during extrusion molding, and a method in which the inside of the hollow part is evacuated. In the latter case, the hollow part of the mold is evacuated at least only at the beginning of extrusion, the opening at the tip of the mold immediately after extrusion is sealed, and after extrusion for a predetermined length, the mold is cut and the cut ends are sealed.

真空引きは、押出当初のみならず押出工程中継続的に行
なってもよい。この方法では、中空部内に残存した酸素
により酸化皮膜が形成される。
Vacuuming may be performed not only at the beginning of extrusion but also continuously during the extrusion process. In this method, an oxide film is formed by oxygen remaining in the hollow portion.

上記いずれの方法によっても、型材の中空部内而に永和
酸化皮膜が生成することはなく、厚さ20〜30人程度
のちみつな酸化皮膜が得られる。
In any of the above methods, a permanent oxide film is not formed inside the hollow part of the mold, and a honey oxide film with a thickness of about 20 to 30 mm is obtained.

なお、この発明の方法によって得られた中空押出型材は
、粒子加速用パイプに限らず高真空を保つ必要がある装
置に用いることができる。
Note that the hollow extruded material obtained by the method of the present invention can be used not only for particle acceleration pipes but also for devices that need to maintain a high vacuum.

作   用 押出温度が300〜450℃の範囲内であれば、押出成
形時に結晶化された酸化物は生成せず、形成された酸化
皮膜は非結晶状態の酸化物のみからなる。
Function When the extrusion temperature is within the range of 300 to 450°C, no crystallized oxide is produced during extrusion molding, and the formed oxide film consists only of amorphous oxides.

実  施  例 この発明の実施例を、以下図面を参照して説明する。Example Embodiments of the invention will be described below with reference to the drawings.

第1図には押出機が示されており、同図において、(1
)はコンテナ、(2)はコンテナ(1)内のアルミニウ
ム・ビレット、(3)(4)はビレット(2)を押圧す
るダミー・ブロックおよびステム、(5)は中央にガス
噴射口(6)を有するボート・ホール・ダイス雄型、(
7)は同雌型、(8)はダイ・ホルダ、(9) (10
)は雄型(5)およびダイ・ホルダ(8)に形成せられ
たガス通路、(l1)はダイ・ホルダ(8)に設けられ
た混合ガス供給口、(12)は混合ガス容器で、これに
取付けられた導管(l3)が混合ガス供給口(l1)に
接続せられている。(l4)はボルスタである。
FIG. 1 shows an extruder, in which (1
) is the container, (2) is the aluminum billet inside the container (1), (3) and (4) are the dummy blocks and stems that press the billet (2), and (5) is the gas injection port (6) in the center. Boat hole die male type with (
7) is the same female type, (8) is the die holder, (9) (10
) is a gas passage formed in the male mold (5) and die holder (8), (l1) is a mixed gas supply port provided in the die holder (8), (12) is a mixed gas container, A conduit (l3) attached to this is connected to a mixed gas supply port (l1). (l4) is a bolster.

第1図の押出機により、第2図および第3図に示されて
いるような横断面を有する粒子加速用パイプに用いられ
る中空押出型材(15) (1G)が押出成形されるの
である。もちろん両者を成形するダイスは成形されるべ
き型材(15)(1(i)のそれぞれに合致した形状の
ものが用いられる。所定長さの両押出型材(15)(1
B)が交互に連結せられて無端状の粒子加速用のバイブ
(図示略)が組立てられるのである。両図において、(
17)(18)は横断面楕円形の粒子流通中空部(粒子
加速用パイプに組込時一以下同様) 、(19)はこれ
に隣接する横断面方形の真空引き用中空部、(20)は
両中空部(17)(Ig)間の隔壁で、これには所定間
隔おきに連通孔があけられる。(21)(22)は粒子
流通中空部(17) (1g)の一側に設けられた横断
面小円形の冷却水流通中空部、(23) (24)およ
び(25)は粒子流通中空部(17) (1g)および
真空用中空部(l9)のそれぞれ一側に設けられた加熱
脱ガス処理用シーズ線取付用溝である。
The extruder shown in FIG. 1 extrudes a hollow extruded material (15) (1G) used for a particle acceleration pipe having a cross section as shown in FIGS. 2 and 3. Of course, the dies for molding both are used in shapes that match the molding materials (15) (1(i)) to be molded. Both extrusion molding materials (15) (1
B) are connected alternately to assemble an endless particle acceleration vibe (not shown). In both figures, (
17) (18) is a particle distribution hollow part with an elliptical cross section (same as below when incorporated into a particle acceleration pipe), (19) is an adjacent hollow part for evacuation with a rectangular cross section, (20) is a partition wall between the two hollow parts (17) (Ig), in which communication holes are bored at predetermined intervals. (21) and (22) are particle circulation hollows (17) and cooling water circulation hollows with a small circular cross section provided on one side of (1g); (23), (24) and (25) are particle circulation hollows. (17) Grooves for attaching sheathed wires for heating and degassing treatment provided on one side of each of (1g) and the vacuum hollow section (19).

以下に、上記中空押出型材(15)を製造する具体的な
実施例について述べる。
A specific example of manufacturing the hollow extruded material (15) will be described below.

実施例1 まずダイスを苛性洗浄した後JISA6063のビレッ
ト(2)を押出温度350℃、押出速度10m/1nで
押出した。このさい潤滑油は使用しなかった。前記押出
と同時に混合ガス容器(l2)より酸素7容量%、残部
アルゴンよりなる混合ガス(2B)を導管(13)、通
路(10) (9)を経て噴出口(6)より圧力2〜3
 kg / c一で噴出し、押出されつつある型材(I
5)の中空部内に供給した。
Example 1 First, a die was washed with caustic, and then a JISA6063 billet (2) was extruded at an extrusion temperature of 350° C. and an extrusion speed of 10 m/1n. No lubricant was used at this time. Simultaneously with the extrusion, a mixed gas (2B) consisting of 7% by volume oxygen and the balance argon is supplied from the mixed gas container (l2) through the conduit (13) and the passage (10) (9) to the jet port (6) at a pressure of 2 to 3 vol.
kg/c and is being extruded (I
5) was supplied into the hollow part.

そして僅か押出された後の型材(l5)の先端開口部を
プレスで圧接して密封し、第1図に示されているような
一方の密封端部(27)を形成した。
After being slightly extruded, the opening at the tip of the molded material (15) was pressed and sealed using a press to form one sealed end (27) as shown in FIG.

その後も混合ガス(2B)の供給を継続し、所定長さ押
出した後、型材(l5)をシャーで切断すると同時に切
断端を密封し、他方の密封端部(28)を形成した(第
4図参照)。その後混合ガス(26)を密封したままの
型材(l5)を250℃まで強制空冷し、続いて自然冷
却した後引張り矯正した。
Thereafter, the mixed gas (2B) was continued to be supplied and after being extruded for a predetermined length, the mold material (l5) was cut with a shear and at the same time the cut end was sealed to form the other sealed end (28) (the fourth (see figure). Thereafter, the mold material (15) with the mixed gas (26) sealed therein was forcedly air cooled to 250° C., then naturally cooled, and then stretched and straightened.

つぎにそのままの状態で180℃で6時間時効処理を行
ない、最後に型材(l5)の両密封端部(27)(28
)を油を用いずかつエヤー・ブローなしで切断し、所定
寸法の中空理出型材を製造した。
Next, aging treatment is performed at 180°C for 6 hours in that state, and finally both sealed ends (27) (28
) was cut without using oil or air blowing to produce a hollow die-cut material of a predetermined size.

上記押出型材の内面にはちみつでかつ薄い酸化皮膜が形
成されていた。そして、これを150゜Cで24時間脱
ガス処理し、20時間経過後の真空度をlF1定したと
ころ、放出ガス係数は7X 1 0−” Tor『・l
 / s − cdであった。
A thin honey oxide film was formed on the inner surface of the extruded material. Then, this was degassed at 150°C for 24 hours, and the degree of vacuum after 20 hours was set to 1F1, and the released gas coefficient was 7X 1 0-"Tor"・l
/s-cd.

実施例2 また、上記実施N1においてJISA6063のビレッ
ト(2)の代わりにJISAIN99からなるビレット
を使用し、かつ時効処理を行なわず、他は上記と同様な
方法で中空押出型祠を製造した。この押出型材の内面に
はちみつでかつ薄い酸化皮膜が形成されており、これを
150℃で24時間脱ガス処理し、20時間経過後の真
空度をΔPI定したところ、放出ガス係数は5×1 0
−” Torr* //s −c一以下であった。
Example 2 In addition, a hollow extrusion type mill was manufactured in the same manner as described above except that in the above Example N1, a billet made of JISAIN99 was used instead of the billet (2) of JISA6063, and the aging treatment was not performed. A thin honey oxide film is formed on the inner surface of this extruded material, and when this is degassed at 150°C for 24 hours and the degree of vacuum after 20 hours is determined as ΔPI, the released gas coefficient is 5 × 1 0
-” Torr* //s −c or less.

比較のために、押出温度を500℃とした他は上記実施
例1と同様な方法で中空押出型材を製造した。そして、
これを150゜Cで24時間脱ガス処理し、20時間経
過後の真空度を測定したところ、放出ガス係数は2 X
 1 0−13Torr・ρ/s−cシであった。
For comparison, a hollow extrusion mold material was manufactured in the same manner as in Example 1 above, except that the extrusion temperature was 500°C. and,
When this was degassed at 150°C for 24 hours and the degree of vacuum was measured after 20 hours, the released gas coefficient was 2
It was 10-13Torr・ρ/s−c.

さらに、比較のために、押出温度を500℃とした他は
上記実施例2と同様な方法で中空押出型材を製造した。
Furthermore, for comparison, a hollow extrusion mold material was manufactured in the same manner as in Example 2 above, except that the extrusion temperature was 500°C.

そして、これを150℃で24時間脱ガス処理し、20
時間経過後の真空度を測定したところ、放出ガス係数は
IX103TOrrI+1/s#cシであった。
Then, this was degassed at 150°C for 24 hours, and
When the degree of vacuum was measured after the elapse of time, the released gas coefficient was IX103TOrrI+1/s#c.

発明の効果 この発明の真空用アルミニウム製中空押出型+4の製造
法によれば、製造されたアルミニウム」空押出型材の中
空部内面に形成された酸化皮膜は非結晶状態の酸化物の
みからなるので、従来の結晶化された酸化物の混在した
酸化皮膜に比べて真空度低下物質の吸着、吸蔵は著しく
少なく、かつ吸岩吸蔵されていても脱ガス処理により簡
単にこれを除去することができる。したがって、真空度
低下物質が型材内に放出される量が非常に少なくなり、
高真空度を保つことができるし、従来のように真空度を
高めるための面倒な作業を省略ないし軽減することがで
きる。
Effects of the Invention According to the manufacturing method of vacuum aluminum hollow extrusion mold +4 of the present invention, the oxide film formed on the inner surface of the hollow part of the manufactured aluminum hollow extrusion mold material consists only of amorphous oxides. Compared to conventional oxide films mixed with crystallized oxides, adsorption and occlusion of vacuum-lowering substances are significantly less, and even if rock occlusion is present, it can be easily removed by degassing treatment. . Therefore, the amount of vacuum deterioration substances released into the mold material is extremely small.
A high degree of vacuum can be maintained, and the troublesome work required to increase the degree of vacuum, which is conventional, can be omitted or reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

図面はこの発明の実施例を示すもので、第1図は押出成
形途上を示す縦断面図、第2図は第1図の■−■線にそ
う断面図、第3図は粒子加速用パイプをつくるさい第2
図の型材と組合わせて用いられる他の型材の第2図相当
断面図、第4図は混合ガス密封状態の型材の縦断面図で
ある。 (15) (1G)・・・中空押出型祠。 以  上
The drawings show an embodiment of the present invention. Fig. 1 is a longitudinal sectional view showing the extrusion process in progress, Fig. 2 is a sectional view taken along the line ■-■ in Fig. 1, and Fig. 3 is a particle acceleration pipe. The second step in making
2 is a sectional view corresponding to FIG. 2 of another mold material used in combination with the mold material shown in the figure, and FIG. 4 is a longitudinal sectional view of the mold material in a mixed gas sealed state. (15) (1G)...Hollow extrusion type shrine. that's all

Claims (1)

【特許請求の範囲】[Claims]  押出されつつある中空型材の中空部内を、水分を含ん
だ大気と接触しないような雰囲気に保ちつつアルミニウ
ム製中空押出型材を押出成形し、中空部内面に酸化皮膜
を形成するにあたり、押出温度を300〜450℃とし
て押出成形することを特徴とする真空用アルミニウム製
中空押出型材の製造法。
An aluminum hollow extruded material is extruded while maintaining the inside of the hollow part of the hollow part being extruded in an atmosphere that does not come into contact with the moisture-containing atmosphere, and in order to form an oxide film on the inner surface of the hollow part, the extrusion temperature is set to 300°C. A method for producing a vacuum extrusion aluminum hollow extrusion molding material, which comprises extrusion molding at a temperature of ~450°C.
JP10979989A 1989-04-28 1989-04-28 Manufacture of hollow extruded aluminum material to be formed for vacuum Pending JPH02290613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10979989A JPH02290613A (en) 1989-04-28 1989-04-28 Manufacture of hollow extruded aluminum material to be formed for vacuum

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10979989A JPH02290613A (en) 1989-04-28 1989-04-28 Manufacture of hollow extruded aluminum material to be formed for vacuum

Publications (1)

Publication Number Publication Date
JPH02290613A true JPH02290613A (en) 1990-11-30

Family

ID=14519513

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10979989A Pending JPH02290613A (en) 1989-04-28 1989-04-28 Manufacture of hollow extruded aluminum material to be formed for vacuum

Country Status (1)

Country Link
JP (1) JPH02290613A (en)

Similar Documents

Publication Publication Date Title
JP2898437B2 (en) Method for producing foamable metal body
FI77833C (en) FOERFARANDE OCH ANORDNING FOER ATT TILLVERKA IHAOLIGA GLASFOEREMAOL.
JPS5919769B2 (en) Manufacturing method for hollow extruded aluminum sections for vacuum use
EP0189674A2 (en) Formation of porous bodies
JPS63313612A (en) Manufacture of hollow extrusion shape made of aluminium for vacuum
JPH01283335A (en) Aluminum alloy for vacuum
JPH0347615A (en) Manufacture of curved and extruded hollow aluminum material to be formed for vacuum
JPH02290613A (en) Manufacture of hollow extruded aluminum material to be formed for vacuum
JPS6137004B2 (en)
EP0231032B1 (en) Process for producing hollow extrudate for use in vacuum
JPH0221328B2 (en)
JPS59137113A (en) Hollow extruded shape material made of aluminum for vacuum use
JPS59130624A (en) Production of hollow extruded shape made of aluminum for vacuum
JPS59130625A (en) Production of hollow extruded shape made of aluminum for vacuum
JPS6137003B2 (en)
JPS631135B2 (en)
JPS60128258A (en) Production of aluminum material for vacuum
JPH07106380B2 (en) Manufacturing method of aluminum hollow extrusion for vacuum
JPS6224815A (en) Production of aluminum material for vacuum
JPH03165920A (en) Manufacture of hollow extrusion material to be formed for vacuum made of a1 or a1 alloy
JPH0763753B2 (en) Atmosphere adjustment pipe connection device in the hollow part of the mold material to the extrusion processing device for manufacturing the hollow extrusion mold material
JPH03165919A (en) Hollow extrusion material to be formed made of a1 or a1 alloy for vacuum
JPH03165921A (en) Manufacture of hollow extrusion material to be formed for vacuum made of a1 or a1 alloy
JPS61126921A (en) Production of aluminum made hollow extrusion shape material
JPH07101475A (en) Device made of heat-insulating synthetic resin and manufacture thereof