JPH0229056B2 - MMARUKIRUHIDOROKISHIBENZENNOSEIZOHOHO - Google Patents

MMARUKIRUHIDOROKISHIBENZENNOSEIZOHOHO

Info

Publication number
JPH0229056B2
JPH0229056B2 JP150382A JP150382A JPH0229056B2 JP H0229056 B2 JPH0229056 B2 JP H0229056B2 JP 150382 A JP150382 A JP 150382A JP 150382 A JP150382 A JP 150382A JP H0229056 B2 JPH0229056 B2 JP H0229056B2
Authority
JP
Japan
Prior art keywords
sodium sulfate
sulfuric acid
temperature
separated
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP150382A
Other languages
Japanese (ja)
Other versions
JPS58118530A (en
Inventor
Mitsuhiro Wada
Seiji Maki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taoka Chemical Co Ltd
Original Assignee
Taoka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taoka Chemical Co Ltd filed Critical Taoka Chemical Co Ltd
Priority to JP150382A priority Critical patent/JPH0229056B2/en
Priority to DE8282306320T priority patent/DE3262826D1/en
Priority to US06/444,696 priority patent/US4475002A/en
Priority to EP82306320A priority patent/EP0080880B1/en
Publication of JPS58118530A publication Critical patent/JPS58118530A/en
Publication of JPH0229056B2 publication Critical patent/JPH0229056B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、m―アルキルヒドロキシベンゼン類
の合理的かつ経済的製造方法に関するものであ
る。 アルキルベンゼンからアルキルベンゼンスルホ
ン酸を経て実質的に純粋なm―アルキルヒドロキ
シベンゼンを得る方法としては、例えば特公昭49
―33192、特公昭49―33193、特開昭49―110638等
に記載された技術として公知である。それらの内
容は次の工程から成つている。 (A) アルキルベンゼンを低温で硫酸によりスルホ
ン化して得たアルキルベンゼンスルホン酸混合
物を硫酸の存在下、150〜210℃の範囲の温度で
加熱するか、またはアルキルベンゼンを硫酸に
よつて150〜〜210℃の範囲の温度に保持するこ
とによつて、m―体含量の多いアルキルベンゼ
ンスルホン酸混合物を得、 (B) 該アルキルベンゼンスルホン酸混合物に水、
好ましくは水蒸気を接触させてm―体以外のア
ルキルベンゼンスルホン酸を選択的に加水分解
してアルキルベンゼンと硫酸にし、アルキルベ
ンゼンは水と共沸させて系外に除く。 (C) 加水分解を受けなかつたm―アルキルベンゼ
ンスルホン酸をアルカリ塩化し、次いで、 (D) 苛性的にアルカリ融解してm―アルキルヒド
ロキシベンゼンを得る。 かゝる公知方法には幾つかの問題点を有してい
る。先ず第一に、アルキルベンゼンンと硫酸との
反応の中で工程A、すなわちスルホン化および異
性化は反応温度が高い程m―体が増加するが、そ
の反対に特に190℃近辺から急激に酸化、分解が
進み、脱アルキルやタール化が現われ、スルホン
化物は黒色タール状になつて使用に堪えなくな
り、工程Bの加水分解も高温かつ長時間を要して
行なわれるのでm―体自体の加水分解や副反応が
並行的または遂次的に起りやすく、そのために最
終製品の純度や品質の低下、あるいは収率の減少
が避けられないことである。 第二の問題点としては、前述工程CおよびDす
なわち、加水分解終了物のアルカリ塩化および苛
性融解時における無機塩の存在である。アルキル
ベンゼンと硫酸との反応物に水酸化ナトリウムを
塩基性を示すまで加え、スルホン酸をアルカリ塩
化すると同時に過量の硫酸を中和せしめ、全量を
苛性融解に供するときは大量の芒硝が含まれるた
めに粘度が高くなつて撹拌できず、また後処理の
際に得られる副生亜硫酸ナトリウム中に多量の芒
硝が混入して利用価値を失う。この方法において
融解前に析出する硫酸ナトリウムを別する方法
もあるが、スルホン酸の付着損失が大きいので水
洗、濃縮、再過などの工程を伴なつて煩雑とな
る。このためにスルホン化反応中の過量の硫酸を
適宜の方法で除去している。通常行なわれる硫酸
の分離方法としてはライミングソーデイシヨン法
であつて、硫酸は石膏として除かれる。しかしな
がらこの方法は廃石膏の処分、スルホン酸塩水溶
液の濃縮等、工程やエネルギー消費の点で工業的
に不利である。近年、第1〜4級アミンと水に不
溶の有機溶媒との混合液にアルキルベンゼンスル
ホン酸を抽出する方法が提案されている。(特開
昭55―154935)この方法も希薄な有機酸を回収す
る場合は有利であるが、アルキルヒドロキシベン
ゼン製造の為には、多量のアミンと溶媒とを必要
とし、設備費等の面で、有利な方法とは云えな
い。 本発明者らは、かゝる従来法の欠点を改良する
ために詳細な研究を重ねた結果、スルホン化当初
より、仕込硫酸に対し1〜5モル%の芒硝を添加
する事により、異性化および加水分解時に於ける
前記副反応を抑制し得ることを知り先に特許出願
した。 本発明人らはその後、引き続いて周辺の研究を
進めるなかで、アルキルベンゼンのスルホン化当
初から硫酸の5モル%以上15モル%までの硫酸ナ
トリウム(芒硝)または酸性硫酸ナトリウム(酸
性芒硝)を添加しておいたものについては、1〜
5モル%の場合と同様の副反応抑制効果のあるこ
と、5モル%添加のものは加水分解終了後を80℃
以上の高温で静置させると、スルホンン酸層と硫
酸層に分層し、過剰硫酸を容易に分取除去できる
ことを知り、周辺の事情を検討して本発明を完成
させた。 本発明はアルキルベンゼンと硫酸の混合物また
はアルキルベンゼンスルホン酸と硫酸の混合物に
おいて、仕込硫酸モルの5〜15モル%の硫酸ナト
リウム(芒硝)または酸性硫酸ナトリウム(酸性
芒硝)の存在下に150〜210℃の範囲の温度で加熱
して、m―体含量の多いアルキルベンゼンスルホ
ン酸を得、m―体以外のアルキルベンゼンスルホ
ン酸を選択的に加水分解した後、加水分解反応液
を静置、分層させ、分層したアルキルベンゼンス
ルホン酸層を分取して苛性的に融解することを特
徴とするm―アルキルヒドロキシベンゼンの製造
方法である。 本発明に使用するに適してアルキルベンゼンと
しては、例えばトルエン、エチルベンゼン、イソ
プロピルベンゼン、キシレン等であつて、異性化
または加水分解によつてm―体異性体の含量の多
いアルキルベンゼンスルホン酸を得ることができ
るアルキルベンゼン類である。 本発明におけるアルキルベンゼンと硫酸との反
応はこの種技術においてよく知られた条件下に、
硫酸ナトリウム(芒硝)または酸性硫酸ナトリウ
ム(酸性芒硝)を添加存在させることによつて行
なうことができる。すなわちアルキルベンゼンに
硫酸ナトリウム(芒硝)または酸性硫酸ナトリウ
ム(酸性芒硝)を添加し50〜150℃の温度におい
て硫酸と反応させると、p―体含量の多いアルキ
ルベンゼンスルホン酸が得られる。該アルキルベ
ンゼンスルホン酸を、硫酸の存在下、好ましくは
スルホン酸と硫酸とのモル比2:1程度におい
て、150〜210℃の範囲の温度、好ましくは180〜
210℃の温度で加熱処理すると該アルキルベンゼ
ンスルホン酸の異性化が行なわれ、p―体とm―
体が等モル程度乃至はm―体含量が多くなる。別
法としてアルキルベンゼンに硫酸ナトリウム(芒
硝)または酸性硫酸ナトリウム(酸性芒硝)を添
加し、150〜210℃の範囲の温度において過量の硫
酸と反応させてp―体とm―体とが等モル乃至は
m―体含量が多いスルホン酸混合物が生成する。 次に得られたスルホン化乃至異性化反応混合物
に120〜180℃の範囲の温度、好ましくは150〜170
℃の範囲の温度で水の添加または水蒸気蒸留を行
なうと、選択的加水分解を受けてp―アルキルベ
ンゼンスルホン酸はアルキルベンゼンと硫酸にな
り、アルキルベンゼンは水と共沸により系外に留
去され、追加の供給原料として再使用されるか、
または出発原料として使用される。 次に得られた加水分解反応液を好ましくは80〜
170℃の範囲の温度で30分乃至1時間程度静置し
て分層させる。分層したスルホン酸層と硫酸層を
分離する。この場合の分層の離易、分離効率は、
スルホン化当初に存在させた硫酸ナトリウム(芒
硝)または酸性トリウム(酸性芒硝)の添加量、
加水分解後の反応液のm―体含量および温度等に
左右される。本発明における目的の第1はアルキ
ルベンゼンと硫酸との高温反応中のスルホン酸の
安定化にあり、このための硫酸ナトリウム(芒
硝)または酸性ナトリウム(酸性芒硝)の添加量
は、仕込み硫酸1〜15モル%である。1モル%以
下では酸化、分解などの副反応を抑制することが
出来ない。15モル%以上になると加水分解反応も
抑制されてp―体の含量が増加するようになる。
このような副反応の抑制効果を有する硫酸ナトリ
ウム(芒硝)または酸性硫酸ナトリウム(酸性芒
硝)の添加量も、本発明第2の目的である加水分
解終了液の静置分層についてはさらに制限されね
ばならない。すなわち硫酸ナトリウム(芒硝)ま
たは酸性硫酸ナトリウム(酸性芒硝)4モル%以
下であつたものについては80℃以上では分層しな
いので硫酸層を分離することができない。80℃以
下の温度に降下静置させると分層するが境界が不
明瞭であり、冷却時間等について工業的不利を免
れない。従つて本発明における硫酸ナトリウム
(芒硝)または酸性硫酸ナトリウム(酸性芒硝)
の添加量は実質的効果のある5〜15モル%とする
ものである。分離された硫酸層に溶解するスルホ
ン酸は、1重量%以下であり、同層に溶解してい
る硫酸ナトリウム(芒硝)または酸性ナトリウム
(酸性芒硝)は、常温で析出する為、容易に別
分離する事が出来、次回に再使用される。硫酸ナ
トリウム(芒硝)または酸性ナトリウム(酸性芒
硝)を別分離した液は高濃度の硫酸として、
他用途に使用可能である。またかゝる硫酸ナトリ
ウム(芒硝)または酸性硫酸ナトリウム(酸性芒
硝)添加の効果は硫酸ナトリウム(芒硝)または
酸性硫酸ナトリウム(酸性芒硝)の添加をスルホ
ン化の当初から行なつておくだけでなく、スルホ
ン化後、異性化前に行なつてもよく、加水分解時
の安定性だけを目的とするならば加水分解直前に
添加することによつても効果は変らない。また、
硫酸ナトリウム(芒硝)または酸性硫酸ナトリウ
ム(酸性芒硝)添加によるスルホン酸層と硫酸層
との分層分離効果は加水分解反応終了液について
は優れた効果を発現するが、スルホン化または異
性化終了液においては分層せず、従つて硫酸を分
離することもできない。このことは硫酸ナトリウ
ム(芒硝)または酸性硫酸ナトリウム(酸性芒
硝)添加による分層効果は、反応液中の異性体組
成との関連において認められるものであると考え
られる。すなわち、o―またはp―アルキルベン
ゼンスルホン酸やそれらの比率の高い混合スルホ
ン酸と硫酸との混液では硫酸ナトリウム(芒硝)
または酸性硫酸ナトリウム(酸性芒硝)を添加し
ても分層せず、m―体含量が特定比率以上になる
と硫酸ナトリウム(芒硝)または酸性硫酸ナトリ
ウム(酸性芒硝)添加による分層効果が発現する
のである。 加水分解後、80〜170℃の温度で静置、分層、
分離したアルキルベンゼンスルホン酸は、この技
術においてよく知られた条件下、例えば水酸化ナ
トリウムでアルカリ塩化し、水酸化ナトリウムに
よつて苛性融解されて、所望のm―アルキルヒド
ロキシベンゼンを得る。本発明の方法において加
水分解反応液から分離したスルホン酸層は、分離
しない場合に比較し、遊離硫酸量が、半量以下に
もなされているので、アルカリ塩とする場合、ア
ルカリの使用量が減り、経済面で有利である。
又、中和したスルホン酸塩は、生成無機塩を除く
ことなくそのまゝ、苛性物と融解することもで
き、スルホン酸塩と生成無機塩とを分離する場合
でも、無機塩量が少ないので、濃縮を必要とせ
ず、非常に容易に分離でき、従前公知の他方法に
比べ有利である。 本発明の製造方法によつて、200℃以上の高温
でもアルキルベンゼンスルホン酸の酸化分解を顕
著に抑制し、その結果、高温かつ長時間のスルホ
ン化、異性化、加水分解反応が可能になり、m―
体含量が98%を超すヒドロキシベンゼンを収率よ
く、しかも経済性高く得られるようになつた。 以下に本発明方法を実施例によつて説明するが
本発明はこの実施例によつて限定されるものでは
ない。 実施1〜4 比較例1〜2 無水芒硝の存在下、エチルベンゼンを硫酸でス
ルホン化、異性化、加水分解し、過剰硫酸を分離
し、中和、アルカリ融解しm―エチルフエノール
を合成し、各工程ごとに反応物の組成を確認し、
芒硝の添加量との関係を調べた。 1四ツ口フラスコに98%硫酸を600g仕込み、
撹拌しながら表に示す対硫酸モル%相当量の無
水芒硝を加える。次いでエチルベンゼン424gを
30分を要して注加し、徐々に加熱省昇温する。2
時間を要し留出水を抜きながら200℃にする。同
温度で4時間加熱撹拌し異性化する。スルホン化
物の組成を求め表に示した。表中の組成比率は
重量%で表わした。BSAはベンゼンスルホン酸、
TSAはトルエンスルホン酸、ESAはエチルベン
ゼンスルホン酸の略である。
The present invention relates to a rational and economical method for producing m-alkylhydroxybenzenes. As a method for obtaining substantially pure m-alkylhydroxybenzene from alkylbenzene via alkylbenzene sulfonic acid, for example,
-33192, Japanese Patent Publication No. 49-33193, Japanese Patent Application Laid-Open No. 49-110638, etc. Their content consists of the following steps: (A) An alkylbenzene sulfonic acid mixture obtained by sulfonating an alkylbenzene with sulfuric acid at low temperature is heated in the presence of sulfuric acid at a temperature in the range of 150 to 210°C, or an alkylbenzene is sulfonated with sulfuric acid to a temperature in the range of 150 to 210°C. (B) adding water to the alkylbenzenesulfonic acid mixture,
Preferably, alkylbenzene sulfonic acids other than the m-form are selectively hydrolyzed by contact with water vapor to produce alkylbenzene and sulfuric acid, and the alkylbenzene is azeotroped with water and removed from the system. (C) The m-alkylbenzenesulfonic acid that has not undergone hydrolysis is converted into an alkali salt, and then (D) it is melted in a caustic manner to obtain m-alkylhydroxybenzene. Such known methods have several problems. First of all, in step A of the reaction between alkylbenzene and sulfuric acid, that is, sulfonation and isomerization, the higher the reaction temperature, the more the m-isomer becomes. As decomposition progresses, dealkylation and tar formation appear, and the sulfonated product becomes a black tar, making it unusable. Hydrolysis in step B also takes a long time at high temperatures, so hydrolysis of the m-isomer itself is difficult. and side reactions are likely to occur in parallel or sequentially, which inevitably leads to a decrease in the purity and quality of the final product or a decrease in yield. The second problem is the presence of inorganic salts in steps C and D, that is, the alkaline salting of the hydrolyzed product and the caustic melting. Add sodium hydroxide to the reaction product of alkylbenzene and sulfuric acid until it becomes basic, convert the sulfonic acid into an alkaline salt, and at the same time neutralize the excess sulfuric acid. The viscosity becomes so high that it cannot be stirred, and a large amount of Glauber's salt is mixed into the by-product sodium sulfite obtained during post-processing, thereby losing its utility value. In this method, there is a method in which the precipitated sodium sulfate is separated before melting, but the loss of adhesion of sulfonic acid is large and the process is complicated, involving steps such as washing with water, concentration, and refiltration. For this purpose, excess sulfuric acid during the sulfonation reaction is removed by an appropriate method. A commonly used method for separating sulfuric acid is the liming sodation method, in which sulfuric acid is removed as gypsum. However, this method is industrially disadvantageous in terms of process and energy consumption, such as disposal of waste gypsum and concentration of sulfonate aqueous solution. In recent years, a method has been proposed in which alkylbenzenesulfonic acid is extracted with a mixture of a primary to quaternary amine and a water-insoluble organic solvent. (Japanese Patent Application Laid-Open No. 55-154935) Although this method is advantageous when recovering dilute organic acids, it requires a large amount of amine and solvent to produce alkylhydroxybenzene, and is expensive in terms of equipment costs. , cannot be said to be an advantageous method. As a result of repeated detailed research in order to improve the drawbacks of the conventional method, the present inventors discovered that from the beginning of sulfonation, by adding 1 to 5 mol% of Glauber's salt to the sulfuric acid used, the isomerization process was improved. After discovering that the side reactions mentioned above during hydrolysis could be suppressed, he applied for a patent. Subsequently, as the inventors continued to conduct related research, they added sodium sulfate (mirabilite) or acidic sodium sulfate (acidic sodium sulfate) from 5 mol% to 15 mol% of sulfuric acid from the beginning of sulfonation of alkylbenzene. As for the things you kept, 1~
It should have the same side reaction suppressing effect as the case of 5 mol%, and the 5 mol% addition should be heated to 80℃ after hydrolysis.
It was discovered that when the product was allowed to stand still at the above-mentioned high temperature, it would separate into a sulfonic acid layer and a sulfuric acid layer, and the excess sulfuric acid could be easily separated and removed, and after studying the surrounding circumstances, the present invention was completed. In the present invention, a mixture of alkylbenzene and sulfuric acid or a mixture of alkylbenzenesulfonic acid and sulfuric acid is heated at 150 to 210°C in the presence of sodium sulfate (Granite) or acidic sodium sulfate (Granite) in an amount of 5 to 15 mol% based on the mole of sulfuric acid charged. After heating at a temperature within a range to obtain an alkylbenzenesulfonic acid with a high m-form content and selectively hydrolyzing alkylbenzenesulfonic acids other than the m-form, the hydrolysis reaction solution is allowed to stand, separated into layers, and separated. This is a method for producing m-alkylhydroxybenzene, which is characterized by separating the layered alkylbenzenesulfonic acid layer and causticly melting it. Examples of alkylbenzenes suitable for use in the present invention include toluene, ethylbenzene, isopropylbenzene, xylene, etc., and alkylbenzene sulfonic acids with a high content of m-isomer can be obtained by isomerization or hydrolysis. It is an alkylbenzene that can be produced. The reaction of alkylbenzene and sulfuric acid in the present invention is carried out under conditions well known in this type of technology.
This can be carried out by adding sodium sulfate (mirabilite) or acidic sodium sulfate (acidic sodium sulfate). That is, when sodium sulfate (Granite) or acidic sodium sulfate (Acidic sodium sulfate) is added to alkylbenzene and the mixture is reacted with sulfuric acid at a temperature of 50 to 150°C, an alkylbenzene sulfonic acid with a high p-isomer content can be obtained. The alkylbenzenesulfonic acid is heated in the presence of sulfuric acid, preferably at a molar ratio of sulfonic acid to sulfuric acid of about 2:1, at a temperature in the range of 150-210°C, preferably 180-210°C.
When heat treated at a temperature of 210°C, the alkylbenzenesulfonic acid is isomerized, resulting in p- and m-
The m-isomer content is about equimolar or the m-isomer content increases. Alternatively, sodium sulfate or acidic sodium sulfate (acidic sodium sulfate) is added to alkylbenzene, and the mixture is reacted with an excess amount of sulfuric acid at a temperature in the range of 150 to 210°C, so that the p- and m-isomers are equimolar or A sulfonic acid mixture with a high m-isomer content is produced. The resulting sulfonation or isomerization reaction mixture is then heated to a temperature in the range of 120 to 180°C, preferably 150 to 170°C.
When water is added or steam distilled at a temperature in the range of reused as feedstock for
or used as a starting material. Next, the obtained hydrolysis reaction solution is preferably 80 to 80%
Leave to stand at a temperature in the range of 170°C for about 30 minutes to 1 hour to separate the layers. Separate the separated sulfonic acid layer and sulfuric acid layer. In this case, the ease of separating the layers and the separation efficiency are:
Addition amount of sodium sulfate (mirabilite) or acidic thorium (acidic mirabilite) present at the beginning of sulfonation,
It depends on the m-isomer content and temperature of the reaction solution after hydrolysis. The first objective of the present invention is to stabilize sulfonic acid during the high-temperature reaction between alkylbenzene and sulfuric acid, and for this purpose, the amount of sodium sulfate (mirabilite) or acidic sodium (acidic sodium sulfate) added is 1 to 15 It is mole%. If the amount is less than 1 mol %, side reactions such as oxidation and decomposition cannot be suppressed. When the amount exceeds 15 mol%, the hydrolysis reaction is also suppressed and the content of p-isomer increases.
The amount of sodium sulfate (mirabilite) or acidic sodium sulfate (acidic sodium sulfate), which has the effect of suppressing such side reactions, is also limited for the static separation of the hydrolyzed solution, which is the second objective of the present invention. Must be. In other words, if the sodium sulfate (mirabilite) or acidic sodium sulfate (acidic sodium sulfate) is less than 4 mol%, the sulfuric acid layer cannot be separated because the layers do not separate at temperatures above 80°C. If it is lowered to a temperature of 80°C or lower and allowed to stand still, it will separate into layers, but the boundaries will be unclear and there will be industrial disadvantages in terms of cooling time, etc. Therefore, sodium sulfate (mirabilite) or acidic sodium sulfate (acidic sodium sulfate) in the present invention
The amount of addition should be 5 to 15 mol % to have a substantial effect. The amount of sulfonic acid dissolved in the separated sulfuric acid layer is 1% by weight or less, and the sodium sulfate (mirabilite) or acidic sodium (acidic sodium sulfate) dissolved in the same layer precipitates at room temperature, so it can be easily separated. can be used again next time. The liquid from which sodium sulfate (mirabilite) or acidic sodium (acidic sodium sulfate) is separated is treated as highly concentrated sulfuric acid.
Can be used for other purposes. In addition, the effects of adding sodium sulfate (mirabilite) or acidic sodium sulfate (acidic sodium sulfate) can be obtained not only by adding sodium sulfate (mirabilite) or acidic sodium sulfate (acidic sodium sulfate) from the beginning of sulfonation. It may be added after sulfonation and before isomerization, and if the only objective is stability during hydrolysis, the effect will not change even if it is added immediately before hydrolysis. Also,
The layer separation effect between the sulfonic acid layer and the sulfuric acid layer due to the addition of sodium sulfate (mirabilite) or acidic sodium sulfate (acidic sodium sulfate) has an excellent effect on the hydrolysis reaction finished liquid, but it is effective for the sulfonation or isomerization finished liquid. In this case, there is no layer separation, and therefore sulfuric acid cannot be separated. This suggests that the layer-separating effect caused by the addition of sodium sulfate (mirabilite) or acidic sodium sulfate (acidic sodium sulfate) is recognized in relation to the isomer composition in the reaction solution. In other words, in the case of a mixture of o- or p-alkylbenzenesulfonic acid or a mixed sulfonic acid with a high ratio of these and sulfuric acid, sodium sulfate (mirabilite) is used.
Or, even if acidic sodium sulfate (acidic sodium sulfate) is added, layer separation does not occur, and when the m-form content exceeds a certain ratio, a layering effect will occur due to the addition of sodium sulfate (mirabilite) or acidic sodium sulfate (acidic sodium sulfate). be. After hydrolysis, leave it at a temperature of 80 to 170℃, separate the layers,
The separated alkylbenzene sulfonic acid is alkali salified with, for example, sodium hydroxide and causticized with sodium hydroxide under conditions well known in the art to yield the desired m-alkylhydroxybenzene. In the method of the present invention, the amount of free sulfuric acid in the sulfonic acid layer separated from the hydrolysis reaction solution is less than half of that in the case of no separation, so when making it into an alkali salt, the amount of alkali used is reduced. , it is economically advantageous.
In addition, the neutralized sulfonate can be directly melted with caustic material without removing the formed inorganic salt, and even when the sulfonate and the formed inorganic salt are separated, the amount of inorganic salt is small. It does not require concentration and can be separated very easily, which is advantageous compared to other previously known methods. The production method of the present invention significantly suppresses the oxidative decomposition of alkylbenzenesulfonic acids even at high temperatures of 200°C or higher, making it possible to carry out sulfonation, isomerization, and hydrolysis reactions at high temperatures and over long periods of time. ―
Hydroxybenzene with a body content of over 98% can now be obtained in good yield and economically. The method of the present invention will be explained below with reference to Examples, but the present invention is not limited to these Examples. Examples 1 to 4 Comparative Examples 1 to 2 In the presence of anhydrous sodium sulfate, ethylbenzene was sulfonated with sulfuric acid, isomerized, and hydrolyzed, excess sulfuric acid was separated, neutralized, and melted with alkali to synthesize m-ethylphenol. Check the composition of reactants at each step,
The relationship with the amount of mirabilite added was investigated. Pour 600g of 98% sulfuric acid into a four-necked flask,
While stirring, add anhydrous sodium sulfate in an amount equivalent to the molar percentage of sulfuric acid shown in the table. Next, add 424g of ethylbenzene.
Pour over 30 minutes and gradually raise the temperature. 2
It takes time to remove the distilled water and raise the temperature to 200℃. The mixture is heated and stirred at the same temperature for 4 hours for isomerization. The composition of the sulfonated product was determined and shown in the table. The composition ratios in the table are expressed in weight %. BSA is benzenesulfonic acid,
TSA stands for toluenesulfonic acid and ESA stands for ethylbenzenesulfonic acid.

【表】 次に異性化反応物の内温を170℃迄降温する。
同温度を保持しながら撹拌下に、1100mlの水を等
速度で10時間を要して連続的に滴下して加水分解
を行なう。得られた反応マスを150℃の温度で30
分間静置し、分層したスルホン酸層と硫酸層を分
離する。スルホン酸層のスルホン酸組成と硫酸の
カツト率を表に示した。表中の組成比率は重量
%で表わした。BSA、TSA、ESAの略号は表
と同じである。ただし芒硝無添加の場合と、芒硝
2モル%添加の場合は、加水分解反応液を80℃ま
で降温、静置しても分層しなかつたので硫酸カツ
ト率は0とした。
[Table] Next, lower the internal temperature of the isomerization reaction product to 170°C.
While maintaining the same temperature and stirring, 1100 ml of water was continuously added dropwise at the same rate over a period of 10 hours to carry out hydrolysis. The resulting reaction mass was heated at a temperature of 150 °C for 30
Leave to stand for a minute to separate the sulfonic acid layer and sulfuric acid layer. The sulfonic acid composition of the sulfonic acid layer and the sulfuric acid cut rate are shown in the table. The composition ratios in the table are expressed in weight %. The abbreviations of BSA, TSA, and ESA are the same as in the table. However, in the case of no addition of mirabilite and in the case of addition of 2 mol % of mirabilite, the sulfuric acid cut rate was set as 0 because no layer separation occurred even when the temperature of the hydrolyzed reaction solution was lowered to 80° C. and allowed to stand.

【表】【table】

【表】 続いて分離されたスルホン酸層に50%苛性カリ
溶液を加えてPH8まで中和し、得れたスラリーを
330℃に溶融している282gの苛性ソーダと42gの
苛性カリの混合物中に滴下する。滴下後、内容物
物の温度を330℃から340℃に昇温し、340℃で60
分撹拌した。得られた融解反応物を1000mlの水に
溶解し、35%塩酸でPH7.2に中和する。 生成したフエノール類をエーテルで抽出、蒸留
を行ない、さらに分留し、フエノール組成とエチ
ルフエノールの収率を求め表に示した。収率は
消費エチルベンゼンに対して求めた。組成比率は
重量%で表わし、PHはフエノール、CRはクレゾ
ール、EPはエチルフエノールを示す。
[Table] Next, 50% caustic potassium solution was added to the separated sulfonic acid layer to neutralize it to pH 8, and the resulting slurry was
Drop into a mixture of 282 g of caustic soda and 42 g of caustic potash melting at 330°C. After dropping, the temperature of the contents was raised from 330℃ to 340℃, and the temperature was increased to 60℃ at 340℃.
Stir for 1 minute. The resulting molten reaction product is dissolved in 1000 ml of water and neutralized to pH 7.2 with 35% hydrochloric acid. The produced phenols were extracted with ether, distilled and further fractionated, and the phenol composition and ethylphenol yield were determined and shown in the table. Yields were determined relative to ethylbenzene consumed. The composition ratio is expressed in weight %; PH indicates phenol, CR indicates cresol, and EP indicates ethylphenol.

【表】 これらの実験結果からわかるように、エチルベ
ンゼンに芒硝を添加しスルホン化すると、無添加
の場合に比較してベンゼンスルホン酸、トルエン
スルホン酸および不明成分が少なく、エチルフエ
ノールの純度および収率も高い。すなわちエチル
ベンゼンの高温スルホン化において、仕込硫酸に
対して2〜〜15モル%の芒硝を存在させておく
と、芒硝がエチルベンゼンスルホン酸の安定性に
寄与し、副反応を抑制していることが明らかであ
る。 しかしながら、芒硝添加量が2モル%では副反
応の抑制効果は認られるものの加水分解終了時に
静置させても分層せず、硫酸を分離することがで
きなかつた。芒硝は仕込み硫酸に対して4モル%
使用ぐらいから次第に加水分解後の分層、分離を
容易にならしめ、副反応も抑制される。しかし15
モル%を超えると加水分解反応も抑制されるよう
になりp―体の組成比が高まつてくるし、スルホ
ン酸層と硫酸層との境界面が不明瞭となり分離も
困難になる。 実施例 5 98%硫酸1200gを2四ツ口フラスコに仕込
み、撹拌しながら無水芒硝102g(添加率6モル
%)を加え、エチルベンゼンの424gを30分を要
して注加した。徐々に加熱昇温し、2時間を要し
留出水を抜きながら200℃にした。同温度で4時
間保温し異性化した。反応物を170℃迄降温し、
同温度で撹拌下に2000gの水を等速度で10時間を
要して注入し、加水分解を終了させた。得られた
反応マスを150℃近辺で30分間静置するとスルホ
ン酸層と硫酸層に分層したので硫酸層を分離除去
した。(854gであつた)分取された1074gのスル
ホン城層は50%苛性カリ溶液でPH7.8まで中和し、
563gの苛性ソーダと83gの苛性カリを2溶融釜
に330℃の温度で加熱溶融している混融物中に滴
下した。滴下後内容物の温度を340℃に昇温し、
同温度で60分撹拌保持した。次いで融解反応物を
2000mlの水に溶解し、35%塩酸でPH7.2に中和、
生成したフエノール類をエーテルで抽出、蒸留を
行なつて粗m―エチルフノール348gを得た。対
消費エチルベンゼン収率71%。分留精製m―エチ
ルフエノールの純度は98.2%であつた。 実施例 6 98%硫酸1090gを1のフラスコに仕込み、撹
忰拌しながら無水芒硝103g(添加率6.7%)を加え
る。トルエンの503gを30分を要して注加した。
徐々に加熱昇温し2時間をかけて195℃に昇温し、
そのまゝ同温度で4時間加熱撹拌して異性化を行
つた。次いで165℃迄昇降温後、同温度を保ちな
がら水1000gを一定速度で10時間を要し連続的に
滴下した。加水分解により水蒸気と共に留出する
回収トルエンは216gであつた。加水分解後反応
マスを150℃で30分間静置すると二層に分層し、
695gの硫酸層と1040gのスルホン酸層に分離出来
た。スルホン酸層は50%苛性カリ溶液で中和後、
実施例5の方法に準じて苛性融解、後処理後分留
により純度98%のm―クレゾール242gを得た。 実施例 7 98%硫酸1700gを3フラスコに仕込み、撹拌
しながら無水芒硝120g(添加率5%)を加え、更
にm―キシレン1100gを滴下、2.5時間を要して
180℃迄昇温し、175〜180℃で3時間保温し異性
化を行なつた。150℃迄降温し、水700gを同温度
で3時間かけて連続的に滴下し、反応物を1時間
静置する事により2334gのスルホン酸層と760gの
60%濃度の硫酸層を分離した。回収メタキシレン
は270gであつた。スルホン酸層を実施例5の方
法に準じて中和後、苛性融解、後処理を行つて
3,5―キシレノール707gを得た。純度97%で
あつた。 実施例 8 98%硫酸1200gを2四ツ口フラスコに仕込み
撹拌しながら、酸性硫酸ナトリウム102g(添加率
7.1モル%)を加え、エチルベンゼン424gを滴下
し、2時間を要して留出水を抜きながら200℃に
昇温した。200℃の温度を保ち、4時間撹拌、異
性化した。次に170℃まで降温し、同温度で撹拌
下に2000mlの水を等速度で10時間を要して注入
し、加水分解を終了させた。得られた反応物マス
を150℃近辺で30分静置するとスルホンン酸層と
硫酸層に分層したので硫酸層を分離除去した。分
取された1074gのスルホン酸層は50%苛性カリ溶
液でPH7.8まで中和し、実施例5に準じてアルカ
リ融解、後処理を行なつて、粗m―エチルフエノ
ールを得た。次に分留し、フエノール、クレゾー
ル、o―エチルフエノール主成分の初留をカツト
することにより98.2%のm―エチルフエノールを
得た。
[Table] As can be seen from these experimental results, when sulfonate is added to ethylbenzene, benzenesulfonic acid, toluenesulfonic acid, and unknown components are reduced compared to the case without addition, and the purity and yield of ethylphenol are reduced. It's also expensive. In other words, it is clear that in high-temperature sulfonation of ethylbenzene, when 2 to 15 mol% of Glauber's salt is present relative to the charged sulfuric acid, Glauber's sulfate contributes to the stability of ethylbenzenesulfonic acid and suppresses side reactions. It is. However, when the amount of Glauber's salt added was 2 mol %, although the effect of suppressing side reactions was observed, no layer separation occurred even if the mixture was allowed to stand at the end of hydrolysis, and sulfuric acid could not be separated. Glauber's salt is 4 mol% based on the sulfuric acid used.
From the time of use, phase separation and separation after hydrolysis become easier, and side reactions are also suppressed. But 15
If it exceeds mol %, the hydrolysis reaction will also be suppressed and the composition ratio of the p-isomer will increase, and the interface between the sulfonic acid layer and the sulfuric acid layer will become unclear and separation will become difficult. Example 5 1200 g of 98% sulfuric acid was placed in a 2-4 neck flask, 102 g of anhydrous sodium sulfate (addition rate: 6 mol %) was added while stirring, and 424 g of ethylbenzene was added over 30 minutes. The temperature was gradually increased to 200°C over a period of 2 hours while distilled water was removed. The mixture was kept at the same temperature for 4 hours for isomerization. The temperature of the reaction mixture was lowered to 170°C,
At the same temperature and with stirring, 2000 g of water was injected at a constant rate over 10 hours to complete the hydrolysis. When the obtained reaction mass was allowed to stand at around 150°C for 30 minutes, it was separated into a sulfonic acid layer and a sulfuric acid layer, and the sulfuric acid layer was separated and removed. 1074g of the separated sulfone layer (854g) was neutralized to pH 7.8 with 50% caustic potassium solution.
563 g of caustic soda and 83 g of caustic potash were dropped into two melting pots into a mixture heated and melted at a temperature of 330°C. After dropping, raise the temperature of the contents to 340℃,
The mixture was stirred and maintained at the same temperature for 60 minutes. Then melt the reactant
Dissolved in 2000ml of water and neutralized to PH7.2 with 35% hydrochloric acid.
The produced phenols were extracted with ether and distilled to obtain 348 g of crude m-ethylphenol. Yield of ethylbenzene based on consumption: 71%. The purity of fractionated m-ethylphenol was 98.2%. Example 6 1090 g of 98% sulfuric acid was placed in flask 1, and 103 g of anhydrous sodium sulfate (addition rate 6.7%) was added while stirring. 503g of toluene was added over 30 minutes.
The temperature was gradually increased to 195℃ over 2 hours.
The mixture was heated and stirred at the same temperature for 4 hours to perform isomerization. Next, the temperature was raised to 165°C, and 1000 g of water was continuously added dropwise at a constant rate over a period of 10 hours while maintaining the same temperature. 216 g of recovered toluene was distilled out together with water vapor by hydrolysis. After hydrolysis, the reaction mass is left standing at 150℃ for 30 minutes, and it separates into two layers.
It was possible to separate 695g of sulfuric acid layer and 1040g of sulfonic acid layer. After neutralizing the sulfonic acid layer with 50% caustic potassium solution,
Following the method of Example 5, 242 g of m-cresol with a purity of 98% was obtained by caustic melting, post-treatment, and fractional distillation. Example 7 1700g of 98% sulfuric acid was placed in 3 flasks, 120g of anhydrous sodium sulfate (addition rate 5%) was added while stirring, and 1100g of m-xylene was added dropwise over a period of 2.5 hours.
The temperature was raised to 180°C and kept at 175-180°C for 3 hours to perform isomerization. The temperature was lowered to 150℃, 700g of water was continuously added dropwise over 3 hours at the same temperature, and the reaction product was allowed to stand for 1 hour to form a 2334g sulfonic acid layer and 760g of water.
A 60% concentrated sulfuric acid layer was separated. The amount of meta-xylene recovered was 270g. The sulfonic acid layer was neutralized in accordance with the method of Example 5, followed by caustic melting and post-treatment to obtain 707 g of 3,5-xylenol. The purity was 97%. Example 8 1200g of 98% sulfuric acid was charged into a 2-four neck flask, and while stirring, 102g of acidic sodium sulfate (addition rate
7.1 mol %) was added thereto, 424 g of ethylbenzene was added dropwise, and the temperature was raised to 200°C over 2 hours while removing distilled water. The temperature was maintained at 200°C and the mixture was stirred for 4 hours for isomerization. Next, the temperature was lowered to 170°C, and at the same temperature, 2000 ml of water was injected at a uniform rate over 10 hours while stirring to complete the hydrolysis. When the obtained reaction mass was allowed to stand at around 150°C for 30 minutes, it was separated into a sulfonic acid layer and a sulfuric acid layer, and the sulfuric acid layer was separated and removed. The separated 1074 g of sulfonic acid layer was neutralized to pH 7.8 with a 50% caustic potassium solution, and subjected to alkaline melting and post-treatment in accordance with Example 5 to obtain crude m-ethylphenol. Next, fractional distillation was performed to remove the initial distillation of phenol, cresol, and o-ethylphenol as main components, yielding 98.2% m-ethylphenol.

Claims (1)

【特許請求の範囲】 1 アルキルベンゼンと硫酸の混合物またはアル
キルベンゼンスルホン酸と硫酸の混合物におい
て、仕込硫酸モルの5〜15モル%の硫酸ナトリウ
ムまたは酸性硫酸ナトリウムの存在下に150〜210
℃の範囲の温度で加熱して、m―体含量の多いア
ルキルベンゼンスルホン酸を得、m―体以外のア
ルキルベンゼンスルホン酸を選択的に加水分解し
た後、加水分解反応液を静置、分層させ、分層し
たアルキルベンゼンスルホン酸層を分取して苛性
的に融解することを特徴とするm―アルキルヒド
ロキシベンゼンの製造方法。 2 加水分解反応液を静置、分層させ、分層した
アルキルベンゼンスルホン酸層を分取する工程が
80〜170℃の範囲の温度で行われることを特徴と
する特許請求の範囲第1項記載の製造方法。
[Claims] 1. In a mixture of alkylbenzene and sulfuric acid or a mixture of alkylbenzenesulfonic acid and sulfuric acid, in the presence of sodium sulfate or acidic sodium sulfate in an amount of 5 to 15 mol% based on the mol of sulfuric acid charged, 150 to 210
After heating at a temperature in the range of °C to obtain an alkylbenzenesulfonic acid with a high m-form content and selectively hydrolyzing alkylbenzenesulfonic acids other than the m-form, the hydrolysis reaction solution is allowed to stand still and separated into layers. A method for producing m-alkylhydroxybenzene, which comprises separating the separated alkylbenzenesulfonic acid layer and causticly melting the separated alkylbenzenesulfonic acid layer. 2. The step of allowing the hydrolysis reaction solution to stand still, separating the layers, and separating the separated alkylbenzenesulfonic acid layer.
The manufacturing method according to claim 1, characterized in that it is carried out at a temperature in the range of 80 to 170°C.
JP150382A 1981-11-27 1982-01-07 MMARUKIRUHIDOROKISHIBENZENNOSEIZOHOHO Expired - Lifetime JPH0229056B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP150382A JPH0229056B2 (en) 1982-01-07 1982-01-07 MMARUKIRUHIDOROKISHIBENZENNOSEIZOHOHO
DE8282306320T DE3262826D1 (en) 1981-11-27 1982-11-26 Process for preparing m-alkylhydroxybenzene
US06/444,696 US4475002A (en) 1981-11-27 1982-11-26 Process for preparing m-alkylhydroxybenzene
EP82306320A EP0080880B1 (en) 1981-11-27 1982-11-26 Process for preparing m-alkylhydroxybenzene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP150382A JPH0229056B2 (en) 1982-01-07 1982-01-07 MMARUKIRUHIDOROKISHIBENZENNOSEIZOHOHO

Publications (2)

Publication Number Publication Date
JPS58118530A JPS58118530A (en) 1983-07-14
JPH0229056B2 true JPH0229056B2 (en) 1990-06-27

Family

ID=11503268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP150382A Expired - Lifetime JPH0229056B2 (en) 1981-11-27 1982-01-07 MMARUKIRUHIDOROKISHIBENZENNOSEIZOHOHO

Country Status (1)

Country Link
JP (1) JPH0229056B2 (en)

Also Published As

Publication number Publication date
JPS58118530A (en) 1983-07-14

Similar Documents

Publication Publication Date Title
US4937387A (en) Processes for preparing diaryl sulfones
US2523707A (en) Production of hydroxytoluenes
JPH0229056B2 (en) MMARUKIRUHIDOROKISHIBENZENNOSEIZOHOHO
JPH0229057B2 (en) MMARUKIRUHIDOROKISHIBENZENNOSEIZOHOHO
US2718526A (en) Production of alkyl aromatic sulfonic acids and the alkylate therefor
JPS5943935B2 (en) Method for producing 4,4'-dihydroxydiphenyl
JPH083130A (en) Production of 4-fluorothiophenol
JPS5925779B2 (en) Isomerization method for stereoisomeric alicyclic diamines
EP0080880B1 (en) Process for preparing m-alkylhydroxybenzene
JPH029012B2 (en)
JPH0234928B2 (en) MMARUKIRUHIDOROKISHIBENZENNOSEIZOHOHO
JPH0234929B2 (en)
US4242275A (en) Process for the preparation of isomer-free toluene-4-sulfonic acid
US4739116A (en) Preparation of arylsulfonamides
US4713489A (en) Preparation of N-substituted arylsulfonamides
JP2815071B2 (en) Method for producing dichlorodiphenyl sulfone
SU556725A3 (en) The method of obtaining a mixture of benzenedisulphonic acid and benzene monosulphonic acid or toluene monosulphonic acid
JPS58932A (en) Manufacture of 2-(2,4-dichlorophenoxy)-phenylacetic acid
US2835708A (en) Process for the manufacture of resorcinol
US2007327A (en) Process for the preparation of phenol
JPH02167243A (en) Production of veratral and other similar alkyl aryl
SU40359A1 (en) Method for producing phenolphthalein
JPS61218564A (en) Improvement of n-acyl-acyloxy aromatic amine
JP2001058968A (en) Production of 1,3-di(2-parahydroxyphenyl-2-propyl)benzene
US731139A (en) Sulfo-acid of aromatic aldehyde and process of making same.