JPH029012B2 - - Google Patents

Info

Publication number
JPH029012B2
JPH029012B2 JP18661382A JP18661382A JPH029012B2 JP H029012 B2 JPH029012 B2 JP H029012B2 JP 18661382 A JP18661382 A JP 18661382A JP 18661382 A JP18661382 A JP 18661382A JP H029012 B2 JPH029012 B2 JP H029012B2
Authority
JP
Japan
Prior art keywords
temperature
hydrolysis
water
mass
isomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP18661382A
Other languages
Japanese (ja)
Other versions
JPS5976033A (en
Inventor
Mitsuhiro Wada
Seiji Maki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taoka Chemical Co Ltd
Original Assignee
Taoka Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taoka Chemical Co Ltd filed Critical Taoka Chemical Co Ltd
Priority to JP18661382A priority Critical patent/JPS5976033A/en
Publication of JPS5976033A publication Critical patent/JPS5976033A/en
Publication of JPH029012B2 publication Critical patent/JPH029012B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、m−アルキルヒドロキシベンゼン類
の工業的に有利な製造方法に関するものである。 アルキルベンゼンからアルキルベンゼンスルホ
ン酸を経て高純度のm−アルキルヒドロキシベン
ゼンを得る方法としては、例えば特公昭49−
33192、特公昭49−33193、特開昭49−110638等に
記載された技術として公知である。それらの内容
は次の工程から成つている。 (A) アルキルベンゼンを低温で硫酸によりスルホ
ン化して得たアルキルベンゼンスルホン酸混合
物を硫酸の存在下、150〜210℃の範囲の温度で
加熱するか、またはアルキルベンゼンを硫酸に
よつて150〜210℃の範囲の温度に保持すること
によつて、m−体含量の多いアルキルベンゼン
スルホン酸混合物を得、 (B) 該アルキルベンゼンスルホン酸混合物に水、
好ましくは水蒸気を接触させてm−体以外のア
ルキルベンゼンスルホン酸を選択的に加水分解
してアルキルベンゼンと硫酸にし、アルキルベ
ンゼンは水と共沸させて系外に除く。 (C) 加水分解を受けなかつたm−アルキルベンゼ
ンスルホン酸をアルカリ塩化し、次いで (D) 苛性的にアルカリ融解してm−アルキルヒド
ロキシベンゼンを得る。 本発明者らはかゝる従来法のアルキルベンゼン
から相当するm−アルキルヒドロベンゼンを得る
方法を研究する中で工程(B)、すなわち加水分解反
応終了直後の組成物中のアルキルベンゼンスルホ
ン酸の各異性体含有比率と、さらに工程(C)および
(D)を経て得られる相当するアルキルヒドロキシベ
ンゼンの各異性体含有比率とが異なることを知つ
た。概してm−体は低下し、p−体が増加するの
である。この現象は実験規模を大きくした場合、
殊に工業生産規模で製造する場合に顕著であるこ
とを確認した。 これらの現象について検討の結果、加水分解反
応の終つた反応マスは、高温で滞留させておく
と、m−体の局部的な加水分解による減少および
反応マス中に溶存するアルキルベンゼンが硫酸に
より再び硫酸化を受けてp−体が生成するためで
あることがわかつた。 そこで本発明者らはかゝるp−体生成を防ぐ方
法について研究し、加水分解終了後、できるだけ
早くマスの温度を降下させること、さらに有利に
は同時にマス中の硫酸濃度を急速に低下させれば
目的を達することを見出し本発明に到達した。 すなわち本発明はアルキルベンゼン、またはア
ルキルベンゼンスルホン酸混合物を、硫酸の存在
下に加熱して、m−体含量の多いアルキルベンゼ
ンスルホン酸を得、m−体以外のアルキルベンゼ
ンスルホン酸を選択的に加水分解した後、加水分
解を受けなかつたアルキルベンゼンスルホン酸を
苛性的に融解するm−アルキルヒドロキシベンゼ
ンの製造方法において、加水分解後直ちに注水し
反応物の温度を150℃以下にさせることを特徴と
する高純度m−アルキルヒドロキシベンゼンの製
造方法である。 本発明に使用するに適したアルキルベンゼンと
しては、例えばトルエン、エチルベンゼン、イソ
プロピルベンゼン、キシレン等であつて、異性化
または加水分解によつてm−体異性体の含量の多
いアルキルベンゼンスルホン酸を得ることができ
るアルキルベンゼン類である。 本発明におけるアルキルベンゼンと硫酸との反
応は、この種技術において知られた前述の特公昭
49−33192、特公昭49−33193、特開昭49−
110638、具体的には前記、工程(A)および(B)ならび
に後述する実施例に明らかにする条件下に容易に
実施することができる。 かくして得られたm−体純度の高いアルキルベ
ンゼンスルホン酸を主成分として含む加水分解反
応終了マスの温度は通常160〜180℃であるが、反
応後直ちにできるだけ早く、水を加えてマスの温
度を150℃以下に冷却させる。注水によりマスの
温度を急速に下げるためには、水温の低いものが
効果的であり、氷、氷水、あるいは反応釜の外部
等から併わせて冷却するのが望ましい。このよう
にすることによつて水量は必要以上に増加するこ
となく、生産性の低下を防ぐこともできる。注入
速度はできるだけ短時間がよく、1時間以内、好
ましくは30分以内に150℃以下の温度に下るよう
に注入する。このように加水分解終了マスに注入
して急速に温度を下げることによるm−体の加水
分解防止、およびp−体の生成防止効果は、注水
によつてマス中の硫酸濃度が適度に低下すること
による相剰効果も寄与している。従つて本発明に
おける加水分解后の注水はマスの温度を急速に下
げると同時にマス中の硫酸濃度の低下も行なわせ
るものである。 本発明において前記工程(C)および(D)、すなわち
加水分解の終つたm−体純度の高いアルキルベン
ゼンスルホン酸のアルカリ塩化およびアルカリ溶
融反応は、従来公知のよく知られた前述特公昭記
載の方法によつて実施せられる。 本発明の製造法によれば、m−体含量が97%を
超すアルキルヒドロキシベンゼンを収率よく得ら
れるようになり特に工業的規模で行なう時は、m
−体純度および収率を安定させることができ、経
済的にも有利となり、その奏する効果は大きい。 次に本発明の方法を実施例によつて説明するが
本発明はこの実施例によつて限定されるものでは
ない。 実施例 1 98%硫酸3600Kgを6000反応釜に仕込み、2544
Kgのエチルベンゼンを1時間を要して滴下する。
徐々に加熱昇温し、2時間を要し留出水を抜きな
がら200℃にする。同温度で4時間加熱撹拌し、
異性化する。次に内温を170℃迄降温し、同温度
で撹拌下に7800の水に相当する蒸気を12時間を
要して連続的に吹込み加水分解を行つた。1260Kg
のエチルベンゼンが回収された。 加水分解終了直後の反応マス中のスルホン酸の
異性体比m/pは96.5/3.5であつた。また同反
応マス中のエチルベンゼンスルホン酸を除いた水
−硫酸系における硫酸濃度は63%であつた。 加水分解反応物は反応終了後、分析および、小
実験に必要なサンプルを採取したのち、直ちに外
部から冷却を開始すると同時に、水500を30分
で注入し降温と同時に硫酸濃度を下げる。注水終
了時130℃に下つた。得られた反応マス中のスル
ホン酸の異性体比m/p=95.5/4.5であつた。
マス中の硫酸濃度は56%であつた。反応液に47%
苛性ソーダを加えてPH8まで中和、80℃で熱時芒
硝を別し、母液を1709Kgの苛性ソーダと250Kg
の苛性カリを6000溶融釜に330℃の温度で加熱
溶融している混合物中に滴下する。滴下後330℃
から340℃に昇温し、340℃で1時間撹拌保持し
た。得られた融解反応物を6000の水に溶解し、
35%塩酸でPH7.2に中和される。生成したフエノ
ール類を分層、分離、蒸留を行なつて純度93.8%
の粗m−エチルフエールを得た。分留により97.7
%純度のm−エチルフエノールを得た。収率は消
費エチルベンゼンに対して63%であつた。 比較例 1 実施例1の加水分解終了直後に反応マスから1/
1000スケールでサンプルを採取し、注入せずに外
側からの冷却のみで4時間を要して130℃まで温
度を下げた。得られた反応マス中のスルホン酸の
異性体比m/p=91.5/8.5であつた。以下実施
例1と同様にして純度90.5%の粗m−エチルフエ
ノールを得た。分留により純度94.1%のm−エチ
ルフエノールを得た。 実施例 2〜4 実施例1の加水分解終了直後に反応マスからそ
れぞれ1/1000スケールで採取したサンプルに表1
に示す硫酸濃度(マス中の水−硫酸系での濃度)
になるように水を加え、表1に示す温度を保つよ
う外部から調節して、4時間保持した。マス中の
スルホン酸組成中、m−およびp−エチルベンゼ
ンスルホン酸の値を測定しm−体とp−体との相
対比率をm/p比として求め表1に示した。さら
に実施例1に準じて後処理して得たm−エチルフ
エノールの純度を表1に示した。 比較例 2−4 実施例1の加水分解終了直後に反応マスからそ
れぞれ1/1000スケールで採取したサンプルを水を
加えないで表1に示す温度を外部から調節しなが
ら4時間保持した。 実施例2〜4に従つてマス中のm/p比を求め
表1に示した。さらに実施例1に準じて後処理し
て得たm−エチルフエノールの純度を表1に示し
た。
The present invention relates to an industrially advantageous method for producing m-alkylhydroxybenzenes. As a method for obtaining highly pure m-alkylhydroxybenzene from alkylbenzene via alkylbenzene sulfonic acid, for example,
33192, Japanese Patent Publication No. 49-33193, Japanese Patent Application Laid-open No. 49-110638, etc. Their content consists of the following steps: (A) The alkylbenzene sulfonic acid mixture obtained by sulfonating alkylbenzene with sulfuric acid at low temperature is heated in the presence of sulfuric acid at a temperature in the range of 150 to 210°C, or the alkylbenzene is sulfonated with sulfuric acid to a temperature in the range of 150 to 210°C. (B) By maintaining the alkylbenzenesulfonic acid mixture at a temperature of
Preferably, alkylbenzene sulfonic acids other than the m-form are selectively hydrolyzed by contact with water vapor to produce alkylbenzene and sulfuric acid, and the alkylbenzene is azeotroped with water and removed from the system. (C) The m-alkylbenzenesulfonic acid that has not undergone hydrolysis is converted into an alkali salt, and then (D) is melted in a caustic manner to obtain m-alkylhydroxybenzene. While researching a method for obtaining the corresponding m-alkylhydrobenzene from alkylbenzene using the conventional method, the present inventors conducted step (B), that is, each isomer of the alkylbenzene sulfonic acid in the composition immediately after the hydrolysis reaction. body content ratio and further process (C) and
It was found that the content ratio of each isomer of the corresponding alkylhydroxybenzene obtained through (D) is different. In general, m-isomers decrease and p-isomers increase. This phenomenon occurs when the scale of the experiment is increased.
It has been confirmed that this is particularly noticeable when manufacturing on an industrial scale. As a result of studying these phenomena, it was found that if the reaction mass after the hydrolysis reaction is allowed to stay at high temperature, the m-isomer is reduced by local hydrolysis and the alkylbenzene dissolved in the reaction mass is re-sulfated by sulfuric acid. It was found that this is due to the formation of p-isomer upon oxidation. Therefore, the present inventors researched a method for preventing the formation of such p-forms, and found that the temperature of the mass was lowered as soon as possible after the hydrolysis was completed, and more advantageously, the sulfuric acid concentration in the mass was rapidly lowered at the same time. The inventors have discovered that the object can be achieved by doing so, and have arrived at the present invention. That is, the present invention heats an alkylbenzene or an alkylbenzenesulfonic acid mixture in the presence of sulfuric acid to obtain an alkylbenzenesulfonic acid with a high m-isomer content, and then selectively hydrolyzes alkylbenzenesulfonic acids other than the m-isomer. , a method for producing m-alkylhydroxybenzene in which an alkylbenzene sulfonic acid that has not undergone hydrolysis is causticly melted, which is characterized in that water is poured immediately after hydrolysis to bring the temperature of the reactant to 150°C or less. - A method for producing alkylhydroxybenzene. Examples of alkylbenzenes suitable for use in the present invention include toluene, ethylbenzene, isopropylbenzene, xylene, etc., and alkylbenzene sulfonic acids with a high content of m-isomer can be obtained by isomerization or hydrolysis. It is an alkylbenzene that can be produced. The reaction of alkylbenzene and sulfuric acid in the present invention is carried out by
49-33192, Japanese Patent Publication 1973-33193, Japanese Patent Publication 1977-
110638, specifically, it can be easily carried out under the conditions clarified in the above steps (A) and (B) and the Examples described below. The temperature of the hydrolyzed reaction-completed mass containing alkylbenzenesulfonic acid with high m-isomer purity as the main component obtained in this way is usually 160 to 180°C, but the temperature of the mass is raised to 150°C by adding water as soon as possible after the reaction. Cool to below °C. In order to rapidly lower the temperature of the mass by pouring water, it is effective to use water with a low temperature, and it is desirable to cool the mass with ice, ice water, or from the outside of the reaction vessel. By doing so, the amount of water does not increase more than necessary, and it is also possible to prevent a decrease in productivity. The injection rate should be as short as possible, and the injection should be performed so that the temperature drops to 150°C or less within one hour, preferably within 30 minutes. In this way, the effect of preventing the hydrolysis of m-isomer and the formation of p-isomer by injecting into the mass after hydrolysis and rapidly lowering the temperature is that the sulfuric acid concentration in the mass is moderately reduced by water injection. The reciprocal effects of this are also contributing. Therefore, in the present invention, water injection after hydrolysis rapidly lowers the temperature of the mass and simultaneously lowers the sulfuric acid concentration in the mass. In the present invention, the steps (C) and (D), that is, the alkaline chlorination and alkali melting reactions of the hydrolyzed alkylbenzenesulfonic acid with high m-isomer purity, are carried out by the conventionally well-known method described in the above-mentioned Japanese Patent Publication No. carried out by. According to the production method of the present invention, alkylhydroxybenzene having an m-isomer content of more than 97% can be obtained in good yield, and especially when carried out on an industrial scale,
- It is possible to stabilize the purity and yield of the compound, which is economically advantageous, and has great effects. Next, the method of the present invention will be explained with reference to Examples, but the present invention is not limited to these Examples. Example 1 3,600 kg of 98% sulfuric acid was charged into a 6,000 reaction vessel, and 2,544
Kg of ethylbenzene is added dropwise over a period of 1 hour.
Gradually raise the temperature to 200°C over a period of 2 hours while removing distilled water. Heat and stir at the same temperature for 4 hours,
Become isomerized. Next, the internal temperature was lowered to 170°C, and at the same temperature, while stirring, steam equivalent to 7,800 ml of water was continuously blown in for 12 hours to perform hydrolysis. 1260Kg
of ethylbenzene was recovered. The isomer ratio m/p of sulfonic acid in the reaction mass immediately after completion of hydrolysis was 96.5/3.5. The sulfuric acid concentration in the water-sulfuric acid system excluding ethylbenzenesulfonic acid in the same reaction mass was 63%. After the completion of the reaction, the hydrolyzed reaction product is analyzed and samples necessary for small experiments are collected. Immediately, external cooling is started, and at the same time, 500 g of water is injected every 30 minutes to lower the temperature and simultaneously reduce the sulfuric acid concentration. At the end of water injection, the temperature had dropped to 130℃. The isomer ratio of sulfonic acid in the obtained reaction mass was m/p=95.5/4.5.
The sulfuric acid concentration in the trout was 56%. 47% in reaction solution
Neutralize to pH 8 by adding caustic soda, heat at 80℃, separate the mirabilite, and mix the mother liquor with 1709 kg of caustic soda and 250 kg.
of caustic potash is added dropwise into the molten mixture heated at a temperature of 330°C in a 6000°C melting pot. 330℃ after dropping
The temperature was raised to 340°C, and the mixture was kept stirring at 340°C for 1 hour. The resulting melted reaction product was dissolved in 6000 ml of water,
Neutralize to PH7.2 with 35% hydrochloric acid. The generated phenols are separated into layers, separated, and distilled to achieve a purity of 93.8%.
Crude m-ethyl phere was obtained. 97.7 by fractional distillation
% purity m-ethylphenol was obtained. The yield was 63% based on consumed ethylbenzene. Comparative Example 1 Immediately after the hydrolysis in Example 1, 1/2
A sample was taken on a 1000 scale, and the temperature was lowered to 130°C in 4 hours using only external cooling without injection. The isomer ratio of sulfonic acid in the obtained reaction mass was m/p=91.5/8.5. Thereafter, crude m-ethylphenol with a purity of 90.5% was obtained in the same manner as in Example 1. By fractional distillation, m-ethylphenol with a purity of 94.1% was obtained. Examples 2 to 4 Table 1 was added to each sample taken on a 1/1000 scale from the reaction mass immediately after the hydrolysis in Example 1 was completed.
Sulfuric acid concentration shown in (concentration in water-sulfuric acid system in mass)
Water was added so that the temperature was as shown in Table 1, and the temperature was adjusted externally to maintain the temperature shown in Table 1 for 4 hours. Among the sulfonic acid compositions in the mass, the values of m- and p-ethylbenzenesulfonic acid were measured, and the relative ratios of m-form and p-form were determined as m/p ratios and are shown in Table 1. Furthermore, the purity of m-ethylphenol obtained by post-treatment according to Example 1 is shown in Table 1. Comparative Example 2-4 Immediately after the completion of the hydrolysis in Example 1, samples were taken on a 1/1000 scale from the reaction mass and were maintained at the temperature shown in Table 1 for 4 hours without adding water while controlling the temperature from the outside. The m/p ratio in the mass was determined according to Examples 2 to 4 and is shown in Table 1. Furthermore, the purity of m-ethylphenol obtained by post-treatment according to Example 1 is shown in Table 1.

【表】 実施例1〜4および比較例1〜4の結果から、
加水分解終了後、加水分解反応時の温度のまゝ及
至若干低目の温度で保持すればm−体の加水分解
はさらに進み、一方p−体が相当量増えている
が、水を注がなくても急に温度を下げるだけでも
副反応を抑制できることがわかる(比較例4)。
しかし比較例1のように130℃まで温度を下げる
のに長時間かゝつては全く効果がなく。それに反
して加水分解終了后、水を加えれば150℃でも、
充分効果を示すことが明らかである。 実施例 5 トルエン1509Kgを3000反応釜に仕込み、撹拌
しながら、98%硫酸3270Kgを1時間で滴下し、2
時間をかけて190℃迄昇温する。185〜190℃で4
時間撹拌して異性化を行う。次に、160℃に降温
し、160〜165℃の温度を保ち、水3000に相当す
る水蒸気を一定速度で10時間を要して連続的に吹
込む。加水分解を受けたp−トルエンスルホン酸
は、トルエンと硫酸にもどり、水との共沸により
トルエンは系外に留出する。回収されたトルエン
は741Kgであつた。 加水分解終了マス中のm−トルエンスルホン酸
とp−トルエンスルホン酸の比率を求めると
96.3/3.2であつた。 一方加水分解反応終了マスは直ちに外部から冷
却を開始すると共に水250を30分で注入し、降
温と同時に硫酸濃度を下げた。注水終了時温度は
120℃に下つた。マス中のm/p比は96.4/3.6で
加水分解終了時と殆んど変化がない。 次いで冷却マスを47%苛性ソーダで中和し、実
施例1に従つてアルカリ融解および後処理を行い
純度97.5%のm−クレゾール584Kgを得た。 比較例 5 実施例5と同時にスルホン化、異性化、加水分
解を行つた後、外部冷却のみで冷却し内温を130
℃以下にする。冷却時間は3時間を要した。得ら
れた反応物を実施例5と同様に処理して純度94%
のm−クレゾール574Kgを得た。 実施例 6 98%硫酸1700Kgを3000反応釜に仕込み、撹拌
しながらメタキシレン1100Kgを滴下、2.5時間を
要して180℃迄昇温する。その後175〜180℃で3
時間保温し異性化を行う。150℃まで降温し、水
700に相当する水蒸気を同温度で3時間かけて
連続的に吹込み加水分解を行つた。加水分解によ
り水蒸気と共に留出するメタキシレンは水と分離
して270Kg回収された。加水分解後冷却を開始す
ると共に水200を30分で注入した。注入後温度
は120℃に下つた。47%苛性ソーダで中和し実施
例1に従つてアルカリ融解および後処理を行い純
度96%の3.5−キシレノール697Kgを得た。 比較例 6 実施例6において加水分解後外冷のみで冷却し
たところ120℃に冷却するのに3時間を要した。
その後は実施例6と同様に処理して純度94%の
3.5−キシレノール687Kgを得た。
[Table] From the results of Examples 1 to 4 and Comparative Examples 1 to 4,
After the hydrolysis is completed, if the temperature is kept at the same temperature as during the hydrolysis reaction or slightly lower, the hydrolysis of the m-isomer will proceed further, while the p-isomer will increase considerably, but if water is poured It can be seen that side reactions can be suppressed by simply lowering the temperature suddenly (Comparative Example 4).
However, as in Comparative Example 1, there is no effect at all in lowering the temperature to 130°C for a long time. On the other hand, if you add water after hydrolysis, even at 150℃,
It is clear that it is sufficiently effective. Example 5 1509 kg of toluene was charged into a 3000 reaction vessel, and while stirring, 3270 kg of 98% sulfuric acid was added dropwise over 1 hour.
Heat up to 190℃ over time. 4 at 185-190℃
Isomerization is carried out by stirring for hours. Next, the temperature is lowered to 160°C, the temperature is maintained at 160 to 165°C, and steam equivalent to 3000 ml of water is continuously blown in at a constant rate over a period of 10 hours. The hydrolyzed p-toluenesulfonic acid returns to toluene and sulfuric acid, and toluene is distilled out of the system by azeotroping with water. The amount of toluene recovered was 741Kg. When calculating the ratio of m-toluenesulfonic acid and p-toluenesulfonic acid in the mass after hydrolysis,
It was 96.3/3.2. On the other hand, the mass after the hydrolysis reaction was immediately started to be cooled from the outside, and 250 g of water was injected over 30 minutes to lower the sulfuric acid concentration at the same time as the temperature was lowered. The temperature at the end of water injection is
The temperature dropped to 120℃. The m/p ratio in the mass was 96.4/3.6, almost unchanged from the time at the end of hydrolysis. The cooled mass was then neutralized with 47% caustic soda and subjected to alkali melting and post-treatment according to Example 1 to obtain 584 kg of m-cresol with a purity of 97.5%. Comparative Example 5 After sulfonation, isomerization, and hydrolysis were performed simultaneously with Example 5, the internal temperature was reduced to 130°C by cooling only with external cooling.
Keep temperature below ℃. Cooling time required 3 hours. The obtained reaction product was treated in the same manner as in Example 5 to obtain a purity of 94%.
574 kg of m-cresol was obtained. Example 6 1700 kg of 98% sulfuric acid was charged into a 3000 reaction vessel, 1100 kg of meta-xylene was added dropwise with stirring, and the temperature was raised to 180°C over a period of 2.5 hours. Then 3 at 175-180℃
Keep warm for a while to perform isomerization. Temperature drops to 150℃, water
Hydrolysis was carried out by continuously blowing water vapor equivalent to 700 ml of water at the same temperature for 3 hours. Meta-xylene, which was distilled out along with water vapor through hydrolysis, was separated from water and recovered in an amount of 270 kg. After hydrolysis, cooling was started and 200 g of water was injected over 30 minutes. After injection the temperature dropped to 120°C. The mixture was neutralized with 47% caustic soda and subjected to alkaline melting and post-treatment according to Example 1 to obtain 697 kg of 3.5-xylenol with a purity of 96%. Comparative Example 6 In Example 6, when the sample was cooled only by external cooling after hydrolysis, it took 3 hours to cool to 120°C.
After that, it was treated in the same manner as in Example 6 to obtain a purity of 94%.
687 kg of 3.5-xylenol was obtained.

Claims (1)

【特許請求の範囲】[Claims] 1 アルキルベンゼン、またはアルキルベンゼン
スルホン酸混合物を、硫酸の存在下に加熱して、
m−体含量の多いアルキルベンゼンスルホン酸を
得、m−体以外のアルキルベンゼンスルホン酸を
選択的に加水分解した後、加水分解を受けなかつ
たアルキルベンゼンスルホン酸を苛性的に融解す
るm−アルキルヒドロキシベンゼンの製造方法に
おいて、加水分解後直ちに注水し、反応物の温度
を150℃以下にさせることを特徴とする高純度m
−アルキルヒドロキシベンゼンの製造方法。
1 Heating an alkylbenzene or an alkylbenzene sulfonic acid mixture in the presence of sulfuric acid,
After obtaining an alkylbenzenesulfonic acid with a high content of the m-isomer and selectively hydrolyzing the alkylbenzenesulfonic acid other than the m-isomer, the alkylbenzenesulfonic acid that has not undergone hydrolysis is causticly melted to produce m-alkylhydroxybenzene. In the production method, water is poured immediately after hydrolysis to bring the temperature of the reactant to 150°C or less.
-A method for producing alkylhydroxybenzene.
JP18661382A 1982-10-22 1982-10-22 Preparation of m-alkylhydroxybenzene in high purity Granted JPS5976033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18661382A JPS5976033A (en) 1982-10-22 1982-10-22 Preparation of m-alkylhydroxybenzene in high purity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18661382A JPS5976033A (en) 1982-10-22 1982-10-22 Preparation of m-alkylhydroxybenzene in high purity

Publications (2)

Publication Number Publication Date
JPS5976033A JPS5976033A (en) 1984-04-28
JPH029012B2 true JPH029012B2 (en) 1990-02-28

Family

ID=16191636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18661382A Granted JPS5976033A (en) 1982-10-22 1982-10-22 Preparation of m-alkylhydroxybenzene in high purity

Country Status (1)

Country Link
JP (1) JPS5976033A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0840960A (en) 1994-07-28 1996-02-13 Kemira Agro Oy Selective desulfonation method
EP3303276B1 (en) 2015-05-28 2023-04-12 Katholieke Universiteit Leuven Production of 3-alkylphenols
CN105906481A (en) * 2016-05-12 2016-08-31 金能科技股份有限公司 P-cresol preparation method and equipment

Also Published As

Publication number Publication date
JPS5976033A (en) 1984-04-28

Similar Documents

Publication Publication Date Title
US1830859A (en) Process for separating meta-cresol from phenolic mixtures
US3932542A (en) Process for preparation of 2,5-dibromo-p-xylene
US4461915A (en) Purification of bisphenol-A
JPS6340775B2 (en)
US3579537A (en) Process for separation of sultones from alkenyl sulfonic acids
JPH029012B2 (en)
US4267389A (en) Process for separating para-cresol from a mixture of methylated and ethylated phenols
US1817304A (en) Flaked phthalic anhydride
JPH0229057B2 (en) MMARUKIRUHIDOROKISHIBENZENNOSEIZOHOHO
JPS5943935B2 (en) Method for producing 4,4'-dihydroxydiphenyl
EP0080880B1 (en) Process for preparing m-alkylhydroxybenzene
EP0694516B1 (en) Process of selective desulfonation
US4242275A (en) Process for the preparation of isomer-free toluene-4-sulfonic acid
US4394526A (en) Para-cresol halide salt complex useful for separating para-cresol from meta-cresol
JPS58109435A (en) Preparation of m-alkylhydroxybenzene
US2637639A (en) 2-methylchlorophenoxyacetate herbicides
US2748161A (en) Method of forming phthalaldehydic acid from pentachloroxylene
US2932672A (en) Chemical process for preparing trichloro-bis (chlorophenyl) ethane
US4302403A (en) Process for reacting sulfuric acid and an aromatic hydrocarbon to purify a disulfonic acid product of an aromatic hydrocarbon
JP3957127B2 (en) Method for producing bisphenol A
JPS58157760A (en) Preparation of m-xylene-4-sulfonic acid
JPH01500672A (en) Improvement of manufacturing method of diarylsulfones
JPS643175B2 (en)
SU556725A3 (en) The method of obtaining a mixture of benzenedisulphonic acid and benzene monosulphonic acid or toluene monosulphonic acid
JP2956960B2 (en) Method for producing m-hydroxyalkylbenzene