JPH02290507A - Range finder - Google Patents

Range finder

Info

Publication number
JPH02290507A
JPH02290507A JP11704890A JP11704890A JPH02290507A JP H02290507 A JPH02290507 A JP H02290507A JP 11704890 A JP11704890 A JP 11704890A JP 11704890 A JP11704890 A JP 11704890A JP H02290507 A JPH02290507 A JP H02290507A
Authority
JP
Japan
Prior art keywords
light
distance
distance measurement
signal
distances
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11704890A
Other languages
Japanese (ja)
Other versions
JPH0543964B2 (en
Inventor
Takashi Kawabata
隆 川端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP11704890A priority Critical patent/JPH02290507A/en
Publication of JPH02290507A publication Critical patent/JPH02290507A/en
Publication of JPH0543964B2 publication Critical patent/JPH0543964B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Focusing (AREA)
  • Viewfinders (AREA)
  • Automatic Focus Adjustment (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

PURPOSE:To prevent a distance from being mismeasured and to generate a signal which suits with a focus adjustment by a short-distance preferential comparison among distance measurement results by using light receivers in common and measuring plural distances in a distance measurement visual field. CONSTITUTION:The light receivers D1 - D7 are used in common to measure plural distances with narrow-width pulse light beams pl1 - pl3 along plural distance measurement axes l1 - l3, and distance measurement display operation and automatic focusing are carried out according to the results to measure the distances without being affected by the patterns and conditions of subjects theta1 - theta3. Further, the number of the light receivers D1 - D7 on a light receiving circuit side needs to be increased slightly, a circuit, specially, a demodulation part trailing a multiplexer can be shared, and the circuit does not become large so much. Further, adjustments are nearly the same as before because light emitting devices a1 - a3 are united and the light receivers D1 - D7 are united. Thus, the plural distances in different distance measurement visual fields are measured to prevent a distance from being mismeasured, and those distance measurement results are compared preferentially as to a short distance to generate the signal which suits with the focus adjustment.

Description

【発明の詳細な説明】 本発明は、距離を測定する装置、特にカメラに好適な測
距装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a distance measuring device, particularly a distance measuring device suitable for a camera.

従来、この種の装置は、精度を保つために小さなスポッ
ト光を投光して、基線長だけ離れた所の反射光角度の検
知によって測距を行なってきた。
Conventionally, in order to maintain accuracy, this type of device has performed distance measurement by projecting a small spot light and detecting the angle of the reflected light at a distance equal to the base line length.

しかし、このように小さなスポット光においては、被写
体条件により反射光が得られない場合や、また測距視野
が狭いために、たとえば2人のポートレートで測距視野
が2人の間に入ってしまい、結果として測距不能や、誤
測距になる欠点があった。
However, with such a small spot light, reflected light may not be obtained depending on the subject conditions, and the distance measurement field of view is narrow, so for example, in a portrait of two people, the distance measurement field of view may be between the two people. As a result, distance measurement becomes impossible or incorrect distance measurement occurs.

本発明は以上の事情に鑑みなされたもので、複数の測距
軸を仮想し、該複数のそれぞれの測距軸上の物体より反
射される反射光を受光するための受光手段と、該受光手
段に応答して、前記各測距軸上の物体距離に対する距離
信号を検出するための検出手段と、該検出手段により検
出された前記それぞれの測距軸に対応する距離信号の近
距離優先的比較に基づいて焦点調節のための信号を形成
する信号形成手段とを備え、異なる測距視野に対する複
数測距を行ない誤測距を防止するとともに、それら測距
結果の近距離優先的比較により焦点調節に好適な信号を
形成する測距装置を提供しようとするものである。
The present invention has been made in view of the above circumstances, and includes a light receiving means for imagining a plurality of ranging axes and receiving reflected light reflected from an object on each of the plurality of ranging axes, and a light receiving means for receiving reflected light reflected from an object on each of the plurality of ranging axes. a detection means for detecting a distance signal corresponding to an object distance on each of the distance measurement axes in response to the detection means; and a detection means for detecting a distance signal corresponding to the object distance on each of the distance measurement axes; It is equipped with a signal forming means that forms a signal for focus adjustment based on the comparison, and prevents erroneous distance measurement by performing multiple distance measurements for different distance measurement fields of view, and also adjusts the focus by preferentially comparing the distance measurement results for short distances. It is an object of the present invention to provide a distance measuring device that forms a signal suitable for adjustment.

以下、本発明による一実施例を、添付図面に基づいて説
明する。
An embodiment of the present invention will be described below with reference to the accompanying drawings.

第1図は本発明の一実施例に係わる測距装置の光学的な
説明図である。図中の( a + + a z ,a 
3 )はそれぞれ発光素子などの発光器で、直線上に並
べられて、各発光器(a,〜a3)はそれぞれ距離測定
のために投光される信号光としてのパルス光(pβ1〜
p I2:+ )をそれぞれ仮想された測距軸(β,〜
β3)に沿って、該測距軸(β1〜I23)上の測距対
象物体としての被写体(θ1.θ2θ3.θ,.:l)
に向けて投射する。(LA)は投光用レンズで、発光器
( a, −83 )群の前に配設される。( LD)
は受光用レンズで前記測距輔(41〜β3)上のそれぞ
れの被写体(01〜θカ)から反射されるパルス光( 
p 12 +〜p I2s )の反射光(p r r 
〜p ’66 )を受ける。
FIG. 1 is an optical explanatory diagram of a distance measuring device according to an embodiment of the present invention. ( a + + a z , a
3) are light emitters such as light emitting elements, which are arranged in a straight line, and each light emitter (a, ~a3) emits pulsed light (pβ1~a3) as a signal light projected for distance measurement.
p I2:+ ) respectively as virtual ranging axes (β, ~
Along β3), the subject (θ1.θ2θ3.θ, .:l) as the distance measurement target object on the distance measurement axis (β1 to I23)
Project towards. (LA) is a lens for projecting light, which is arranged in front of the group of light emitters (a, -83). (LD)
is a light-receiving lens, and the pulsed light (
p 12 + ~ p I2s ) reflected light (p r r
~p'66).

(D+.Dz.D3,D4.Ds.Da.Dt )はそ
れぞれ、光センサなどの受光器で、受光用レンズ(LD
)の後方に直線上に並べられて、該レンズを介して前記
パルス光(p℃1〜pI23)の反射光(pr)を受光
する。
(D+.Dz.D3, D4.Ds.Da.Dt) are light receivers such as optical sensors, and the light receiving lens (LD
) and receive the reflected light (pr) of the pulsed light (p° C. 1 to pI 23) through the lens.

そして発光器(a.〜a.)群、レンズ(LA,LD)
ならびに受光器(D,〜D?)群は、たとえば次のごと
《配置される。
and light emitter (a. to a.) group, lens (LA, LD)
The photoreceiver group (D, ~D?) is arranged as follows, for example.

レンズ(LA, LD)に近い被写体(θ1)の場合、
第1の発光器(a1)のパルス光(pj2+)による反
射光(pr+)が、第5の受光器(D5)にて主として
受光されるように配置され、同様に、第2の発光器(a
2)のパルス光(pβ2)による反射光(prz)は、
第6の受光器(Da)に、第3の発光器(a3)のパル
ス光(pI2,)による反射光(prs)は、第7の受
光器(D7)にそれぞれ主として受光されるように、配
置される。
In the case of a subject (θ1) close to the lens (LA, LD),
The fifth light receiver (D5) is arranged so that the reflected light (pr+) by the pulsed light (pj2+) of the first light emitter (a1) is mainly received by the second light emitter (a1). a
The reflected light (prz) by the pulsed light (pβ2) in 2) is
The reflected light (prs) from the pulsed light (pI2,) of the third light emitter (a3) is mainly received by the sixth light receiver (Da) and the seventh light receiver (D7), respectively. Placed.

レンズ(LA, LD)からやや遠い被写体(02)の
場合は、第1の発光器(a1)のパルス光(p℃,)に
よる反射光(priが、第4の受光器(D4)に主とし
て受光され、同様に、第2の発光器(a2)のパルス光
(pβ2)による反射光(priは、第5の受光器(D
6)に、第3の発光器(a3)のパルス光(pI2.3
)による反射光(priは、第6の受光器(D6)にそ
れぞれ主として受光されるように配置される。
In the case of a subject (02) that is a little far from the lens (LA, LD), the reflected light (pri) from the pulsed light (p°C, ) of the first light emitter (a1) is mainly transmitted to the fourth light receiver (D4). Similarly, the reflected light (pri) by the pulsed light (pβ2) of the second light emitter (a2) is reflected by the fifth light receiver (D
6), the pulsed light (pI2.3) of the third light emitter (a3)
) is arranged so that the reflected light (pri) is mainly received by the sixth light receiver (D6).

レンズ(LA, LD)から遠い被写体(θ3)の場合
は、第1の発光器(a1)のパルス光(pβl)による
反射光(pr7)が、主として第3の受光器(D,)に
て受光され、第2の発光器(a2)のパルス光(pβ2
)による反射光(pre)は、第4の受光器(D4)に
、第3の発光器(a,)のパルス光(pI2s )によ
る反射光(pr9)は、第5の受光器(D5)にそれぞ
れ主として受光されるように配置される。
In the case of a subject (θ3) far from the lens (LA, LD), the reflected light (pr7) from the pulsed light (pβl) of the first light emitter (a1) is mainly reflected by the third light receiver (D,). The pulsed light (pβ2) of the second light emitter (a2) is received.
) is transmitted to the fourth light receiver (D4), and reflected light (pr9) by the pulsed light (pI2s) of the third light emitter (a,) is transmitted to the fifth light receiver (D5). They are arranged so that they mainly receive light.

無限遠、の被写体(θ.)の場合は、第1の発光器(a
.)のパルス光(pj2+)による反射光(proo)
は、主として第1の受光器(D1)にて受光され、第2
の発光器(a2)のパルス光(1)I22)による反射
光は、第2の受光器(D2)に、第3の発光器(a,)
のパルス光(pβ3)による反射光は、第3の受光器(
D3)にそれぞれ主として受光されるように配置される
.なお、図示しなかったが、無限遠の被写体(θoo)
よりも近く、そして遠い被写体(θ3)よりもさらに遠
い被写体(θ4)の場合は、第1の発光器(a,)のパ
ルス光(pI2+)による反射光が、主として第2の受
光器(D2)にて受光され、第2の発光器(a2)のパ
ルス光(p12z )による反射光は、第3の受光器(
D3)に、第3の発光器(a3)のパルス光(p℃,)
による反射光は、第4の受光器(D4)にそれぞれ主と
して受光されるように配置される。
In the case of a subject (θ.) at infinity, the first light emitter (a
.. ) reflected light (proo) by pulsed light (pj2+)
is mainly received by the first photoreceiver (D1), and the second
The reflected light from the pulsed light (1) I22) of the light emitter (a2) is transmitted to the second light receiver (D2) and the third light emitter (a,).
The reflected light from the pulsed light (pβ3) is transmitted to the third light receiver (
D3) are arranged so that the light is mainly received. Although not shown, an object at infinity (θoo)
In the case of an object (θ4) that is closer and further away than the object (θ3), the reflected light from the pulsed light (pI2+) of the first light emitter (a,) is mainly reflected by the second light receiver (D2). ), and the reflected light from the pulsed light (p12z) of the second light emitter (a2) is reflected by the third light receiver (
D3), the pulsed light (p°C, ) of the third light emitter (a3)
The fourth light receiver (D4) is arranged so that the reflected light is mainly received by the fourth light receiver (D4).

したがって、第1図の実施例では、被写体(θ,〜θエ
)の遠近距離ゾーンが、受光器(D,〜D?)群の受光
位置により5段階に分けられて判別されることになる。
Therefore, in the embodiment shown in FIG. 1, the far and near distance zones of the subject (θ, ~θD) are determined in five stages depending on the light receiving position of the light receiver (D, ~D?) group. .

第2図は、第1図の発光器( a l”a 3)群の駆
動および受光器(D.〜D,)群の受光信号の処理を行
なうための回路構成の一実施例を示すブロック回路図で
ある.なお、第2図中第1図と同一の構成には同一の符
号が付してある。第2図において、(Ml)は、発光器
(a1〜a3)群用の駆動回路で、たとえばパルス電力
(pp)を供給する。(DMI )はデマルチブレクサ
で、たとえば駆動回路(M】)からのパルス電力(pp
)を、順次に、第1,第2,第3の発光器(a,.a2
,a3)に振り分けて出力する。(CS)はデマルチプ
レクサ(DMI )から出力される同期用の制御信号で
ある。なお、各発光器(a1.〜a,)は、パルス電力
(pp)が、デマルチプレクサ(DMI )から与えら
れると、パルス光(p℃1〜pI2,)をそれぞれ発光
し、投射する。
FIG. 2 is a block diagram showing an example of a circuit configuration for driving the light emitter (a l"a 3) group and processing the light reception signal of the light receiver (D. to D,) group in FIG. 1. 2 is a circuit diagram. In FIG. 2, the same components as in FIG. 1 are given the same reference numerals. In FIG. The circuit supplies, for example, pulsed power (pp). (DMI) is a demultiplexer that supplies pulsed power (pp) from, for example, the drive circuit (M).
), sequentially the first, second and third light emitters (a, .a2
, a3) and output them. (CS) is a synchronization control signal output from the demultiplexer (DMI). Note that each light emitter (a1. to a,) emits and projects pulsed light (p°C1 to pI2,) when pulsed power (pp) is applied from the demultiplexer (DMI).

(AI−A?)は増幅器群で、各受光器(DI −Dt
 )の各後段に接続されて、それぞれの検出信号(ds
)を増幅して出力する。
(AI-A?) is an amplifier group, and each photoreceiver (DI-Dt
) is connected to each subsequent stage of the detection signal (ds
) is amplified and output.

(MX,−MX.)はマルチブレクサ群で、各マルチブ
レクサ( M X I〜MX,)は7つの増幅器(A.
−A,)のうちの3つの増幅器から検出信号(ds)を
それぞれ入力し、被写体距離が同一距離とみなされる距
離であるにもかかわらす測距軸(41〜β3)が異なる
ことによって生じる第1図にて説明したごとき受光器(
DI〜D,)群の受光状態のずれを補正する。つまり、
第1のマルチブレクサ(MX+)は、第1,第2,第3
の増幅器( A I, A 1、 A 3 )からの各
検出信号(ds)をそれぞれ入力し、第2のマルチプレ
クサ(Mx2)は、第2.第3,第4の増幅器(A2.
A3.A4 )からの各検出信号(ds)をそれぞれ入
力する。同様にして、第3のマルチブレクサ(MXiは
、第3.第4,第5の増幅器(A 3, A 4. A
 a )からの各検出信号(d s )をそれぞれ入力
し、第4のマルチブレクサ(MX.)は、第4,第5,
第6の増幅器(A 4i A a, A s )からの
各検出信号(ds)をそれぞれ入力し、第5のマルチブ
レクサ(MXS)は、第5,第6.第7の増幅器(A 
s, A a. A t )からの各検出信号(ds)
をそれぞれ入力する.そしてさらに各マルチブレクサ(
 M X r〜MXs)は、その入力端子■,■.■が
デマルチブレクサ(DMI )からの制御信号(CS)
の入力に同期して切り換えられる。つまり、デマルチブ
レクサ(DM1)の出力端子■.■.■が、■一■一■
一■・・・・・・と切り換えられるのに対応して、各マ
ルチプレクサ(MX+〜MX.)の入力端子■.■.■
が、■一■一■一■・・・・・・と切り換えられる。
(MX, -MX.) is a group of multiplexers, and each multiplexer (MXI~MX,) has seven amplifiers (A.
- A, ), the detection signals (ds) are input from three amplifiers, respectively, and the detection signal (ds) is detected due to the fact that the distance measurement axes (41 to β3) are different even though the subject distances are considered to be the same distance. A photoreceiver as explained in Figure 1 (
DI to D,) corrects the deviation in the light receiving state of the groups. In other words,
The first multiplexer (MX+) has the first, second and third
The second multiplexer (Mx2) inputs each detection signal (ds) from the amplifiers (A I, A 1, A 3 ) of the second multiplexer (Mx2). The third and fourth amplifiers (A2.
A3. Input each detection signal (ds) from A4). Similarly, the third multiplexer (MXi is the third, fourth, and fifth amplifier (A 3, A 4, A
The fourth multiplexer (MX.) receives each detection signal (ds) from the fourth, fifth,
Each detection signal (ds) from the sixth amplifier (A 4i A a, A s ) is inputted to the fifth multiplexer (MXS). The seventh amplifier (A
s, A a. Each detection signal (ds) from A t )
Enter each. And each multiplexer (
MXr to MXs) are the input terminals ■, ■. ■ is the control signal (CS) from the demultiplexer (DMI)
can be switched in synchronization with the input. In other words, the output terminal of the demultiplexer (DM1) ■. ■. ■But ■1■1■
The input terminals of each multiplexer (MX+ to MX.) correspond to the input terminals of the multiplexers (MX+ to MX.). ■. ■
is switched as ■1■1■1■...

したがって、たとえば第1図において、発光器(at〜
aS)群より投射されたパルス光(pβ1〜pβ,)が
いずれも被写体距離が同一距離とみなされる近い被写体
(θl)にて反射された場合、前述したようにそれらの
反射光(pr+〜prs)はそれぞれ異なる受光器(D
,〜D,)にて受光されるが、第1の発光器(a,)に
よるパルス光(pI2.,)の反射光(pr+)の信号
は、第1の発光器(a,)の発光に同期して第5の受光
器(D,)から第5のマルチプレクサ(MXs)に取り
込まれ、また、第2の発光器(a2)によるパルス光(
pβ2)の反射光(pry)の信号は、第2の発光器(
a2)の発光に同期して第6の受光器(D6)から第5
のマルチブレクサ(MXS )に取り込まれ、さらに、
第3の発光器(a,)によるパルス光Cpl2s )の
反射光(pr3)の信号は、第3の発光器(a3)の発
光に同期して第7の受光器(D7)から第5のマルチブ
レクサ(MX!)に取り込まれる。
Thus, for example, in FIG.
When the pulsed lights (pβ1 to pβ,) projected from the aS) group are all reflected by a close subject (θl) whose subject distance is considered to be the same distance, as described above, those reflected lights (pr+ to prs ) are different receivers (D
, ~D,), but the signal of the reflected light (pr+) of the pulsed light (pI2.,) by the first light emitter (a,) is the light emitted by the first light emitter (a,). The pulsed light (
The signal of the reflected light (pry) of pβ2) is transmitted to the second light emitter (
a2) synchronizes with the light emission from the sixth receiver (D6) to the fifth receiver (D6).
It is incorporated into the multiplexer (MXS) of
The signal of the reflected light (pr3) of the pulsed light Cpl2s) by the third light emitter (a,) is transmitted from the seventh light receiver (D7) to the fifth light receiver (D7) in synchronization with the light emission of the third light emitter (a3). Incorporated into multiple plexer (MX!).

他の距離の被写体についても同様に、被写体距離が同一
距離とみなされる異なる測距軸(ρ1〜f23)上の被
写体からの反射光は受光器(D.〜D7)上では異なる
位置にて受光されるが、それらの信号はいずれも同一の
マルチブレクサ(M X r NM X s )に取り
込まれることになる。
Similarly, for objects at other distances, the reflected light from objects on different ranging axes (ρ1 to f23) that are considered to be the same distance is received at different positions on the receiver (D. to D7). However, all of those signals are taken into the same multiplexer (M x r NM x s ).

これにより、各マルチプレクサ( M X l〜MX.
)の出力は、それぞれ測距軸(β1〜β3)の違いによ
る受光状態のずれを補正した絶対距離に対応する遠距離
から近距離を5段階のゾーンに分けた被写体までの距離
信号を表わすことになる.つまり、各マルチブレクサ(
MX.〜MX.)の出力は、それぞれ第1図にて示した
5段階の距離ゾーンの遠距離から近距離の被写体距離に
対応する。
This allows each multiplexer (M X l to MX.
The output of ) represents the distance signal to the subject divided into five zones from long distance to short distance corresponding to the absolute distance corrected for the deviation in the light reception state due to the difference in the distance measurement axes (β1 to β3). become. That is, each multiplexer (
MX. ~MX. The outputs of ) correspond to the object distances from long distance to short distance in the five distance zones shown in FIG. 1, respectively.

( D A +〜DAM)はそれぞれ同期検波器および
所望のスレッショルドレベルが与えられたコンパレー夕
からなる検出回路群で、各マルチブレクサ(MXI〜M
XS)の後段にそれぞれ接続されて、該マルチプレクサ
(MXI−MXs)からの検知信号(ds’)をそれぞ
れその同期検波器で駆動回路(Ml)からの出力により
同期検波し、そして、検波後の信号レベルをコンパレー
夕によりスレッショルドレベルに対して比較し、スレツ
ショルド゛レベルを超えた場合、つまりマルチブレクサ
(Mxl−Mxs)から被写体距離信号が出力されてい
る場合のみ、ハイレベルの検出信号(dts)を出力す
る. (F F l−F F s )は記憶用のフリツブフロ
ツブ群で、各検出回路( D A l〜DAa)の後段
に接続され、ハイレベルの検出信号(dts)が入力さ
れるとセットされて、ハイレベルの距離信号(d+〜a
S)を出力する.なお、各フリツブフロップ( F F
 l−F F s )は、図示省略の手段から出力され
るリセット信号(puc )によりリセットされる. (PEI)はブライオリテイ機能を有するエンコーダで
、フリップフロツブ(F F l”F F s )群の
後段に接続され、前記遠近5段階の遠近距離ゾーンに対
応する距離信号(d+〜da)のいずれかを入力して、
該距離信号に対応する距離データ(dd)を出力する。
(DA+~DAM) is a detection circuit group consisting of a synchronous detector and a comparator given a desired threshold level, and each multiplexer (MXI~M
The detection signals (ds') from the multiplexers (MXI-MXs) are synchronously detected by the output from the drive circuit (Ml) using their respective synchronous detectors, and the The signal level is compared with the threshold level by a comparator, and only when the threshold level is exceeded, that is, when the subject distance signal is output from the multiplexer (Mxl-Mxs), a high level detection signal (dts) is output. Output. (F F l - F F s ) is a group of frits for storage, which is connected to the latter stage of each detection circuit (DA l to DAa), and is set when a high level detection signal (dts) is input. High level distance signal (d+~a
S) is output. In addition, each fritub flop (FF
l-F F s ) is reset by a reset signal (puc) output from means not shown. (PEI) is an encoder having a priority function, which is connected to the rear stage of the flip-flop group (FF l"F Enter the
Distance data (dd) corresponding to the distance signal is output.

この距離データ(dd)は、ディジタルでもアナログで
もよい。たとえば、距離信号(dI)は、最遠ゾーンに
対応する.言い換えると、第1図の無限遠の被写体(θ
i)。)の場合に、距離信号(d1)がエンコーダ(P
EI)に入力され、該エンコーダ(PEI )から無限
遠の距離データ(dd)が出力される.そして、距離信
号(ds )は、最近ゾーンに対応し、同様にこの場合
、エンコーダ(PEI )から最近距離を示す距離デー
タ(dd)が出力される。
This distance data (dd) may be digital or analog. For example, the distance signal (dI) corresponds to the farthest zone. In other words, the subject at infinity (θ
i). ), the distance signal (d1) is transmitted to the encoder (P
EI), and infinite distance data (dd) is output from the encoder (PEI). The distance signal (ds) corresponds to the nearest zone, and similarly in this case, the encoder (PEI) outputs distance data (dd) indicating the nearest distance.

なお、距離信号(d1〜da)の複数が、エンコーダ(
PEI)に入力された場合は、該エンコーダ(PEI)
の優先機能が働いて、近距離を示す方の距離信号(ct
.〜dl1)が選択され、該距離信号(d.〜ds)に
対応する前記距離データ(dd)が出力される。
Note that a plurality of distance signals (d1 to da) are encoded by the encoder (
PEI), the corresponding encoder (PEI)
The priority function works and the distance signal (ct
.. ~dl1) is selected, and the distance data (dd) corresponding to the distance signal (d.~ds) is output.

なお、MOS形フォトセンサーのように受光器(D.〜
D?)自身に、蓄積効果があって選択的に読み出しので
きるセンサーを利用する場合、実施例中のマルチブレク
サ( M X t〜MXS )をセンサー内に構成して
初段の増幅器(AI −A? )を省略することもでき
る. 以上、説明したように、本実施例によれば受光器(D.
〜D7)[含む初段の増幅器(Al〜A,)]を共用し
て、複数の測距軸(β1〜β3)に沿った狭幅のパルス
光( p 12 l〜p (1 3)による複数測距を
行ない、その結果より、測距表示や自動焦点を行なうこ
とで、被写体(01〜θエ)のパターンや条件に左右さ
れにくい測距が可能になる. しかも、受光回路側の受光器(DI〜D,)数は少しし
か増えないし、回路、特にマルチブレクサ( M X 
l〜MXI1)以降の復調部が共用でき、回路はあまり
大きくならないメリットがある。
In addition, like a MOS photo sensor, the light receiver (D.~
D? ) When using a sensor that has an accumulation effect and can be selectively read out, the multiplexer (MXt~MXS) in the embodiment is configured in the sensor and the first stage amplifier (AI-A?) is used. It can also be omitted. As explained above, according to this embodiment, the light receiver (D.
~D7) [Including first-stage amplifiers (Al~A, By measuring the distance and using the results to display the distance measurement and autofocus, it becomes possible to measure the distance without being influenced by the pattern or conditions of the subject (01 to θD). (DI~D,) The number increases only a little, and the circuit, especially the multiplexer (M
There is an advantage that the demodulators from 1 to MXI1) onward can be shared, and the circuit does not become too large.

また、複数の発光器(a+〜as)の一体化や、受光器
(DI−’D?)の一体化により、調整も従来とほとん
ど変わらないメリットがある。
Further, by integrating a plurality of light emitters (a+ to as) and integrating a light receiver (DI-'D?), there is an advantage that adjustment is almost the same as in the past.

以上説明したように本発明によれば、異なる測距視野に
対する複数測距を行ない誤測距を防止するとともに.、
それら測距結果の近距離優先的比較により焦点調節に好
適な信号を形成する測距装置を提供することができ、そ
の有効性は極めて高いものである.
As described above, according to the present invention, multiple distance measurements are performed for different distance measurement fields of view, and erroneous distance measurements are prevented. ,
By comparing these distance measurement results with priority given to short distances, it is possible to provide a distance measurement device that forms a signal suitable for focus adjustment, and its effectiveness is extremely high.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係わる測距装置の光学的な
説明図、第2図は同上実施例のブロック回路図である。 01〜θ,・・・被写体、 81〜a,・・・発光器、 β,〜β,・・・測距軸、 pβ1〜p 12 s・・・パルス光、D,〜D,・・
・受光器、 pr  ・・・ 反射光、 MX.〜M X s・・・マルチプレクサ。
FIG. 1 is an optical explanatory diagram of a distance measuring device according to an embodiment of the present invention, and FIG. 2 is a block circuit diagram of the same embodiment. 01~θ,...Subject, 81~a,...Light emitter, β,~β,...Distance measuring axis, pβ1~p12s...Pulse light, D,~D,...
・Photoreceiver, pr...Reflected light, MX. ~Mxs...Multiplexer.

Claims (1)

【特許請求の範囲】[Claims] 1、複数の測距軸を仮想し、該複数のそれぞれの測距軸
上の物体より反射される反射光を受光するための受光手
段と、該受光手段に応答して、前記各測距軸上の物体距
離に対する距離信号を検出するための検出手段と、該検
出手段により検出された前記それぞれの測距軸に対応す
る距離信号の近距離優先的比較に基づいて焦点調節のた
めの信号を形成する信号形成手段とを備えたことを特徴
とする測距装置。
1. A light receiving means for imagining a plurality of distance measuring axes and receiving reflected light reflected from an object on each of the plurality of distance measuring axes; a detection means for detecting a distance signal for the object distance above; and a signal for focus adjustment based on a short distance preferential comparison of the distance signals corresponding to the respective distance measurement axes detected by the detection means. A distance measuring device comprising a signal forming means for forming a signal.
JP11704890A 1990-05-07 1990-05-07 Range finder Granted JPH02290507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11704890A JPH02290507A (en) 1990-05-07 1990-05-07 Range finder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11704890A JPH02290507A (en) 1990-05-07 1990-05-07 Range finder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP57083971A Division JPS58201015A (en) 1982-05-20 1982-05-20 Distance measuring device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP5017805A Division JP2659894B2 (en) 1993-01-11 1993-01-11 Focus adjustment signal forming device

Publications (2)

Publication Number Publication Date
JPH02290507A true JPH02290507A (en) 1990-11-30
JPH0543964B2 JPH0543964B2 (en) 1993-07-05

Family

ID=14702139

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11704890A Granted JPH02290507A (en) 1990-05-07 1990-05-07 Range finder

Country Status (1)

Country Link
JP (1) JPH02290507A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2728084A1 (en) * 1994-12-08 1996-06-14 Samsung Aerospace Ind DEVICE AND METHOD FOR DISPLAYING AN AUTOMATIC TUNING OPERATION
US9316495B2 (en) 2012-09-13 2016-04-19 Ricoh Company, Ltd. Distance measurement apparatus

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201015A (en) * 1982-05-20 1983-11-22 Canon Inc Distance measuring device
JPH032245A (en) * 1989-05-30 1991-01-08 Daicel Chem Ind Ltd Styrene-based resin composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58201015A (en) * 1982-05-20 1983-11-22 Canon Inc Distance measuring device
JPH032245A (en) * 1989-05-30 1991-01-08 Daicel Chem Ind Ltd Styrene-based resin composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2728084A1 (en) * 1994-12-08 1996-06-14 Samsung Aerospace Ind DEVICE AND METHOD FOR DISPLAYING AN AUTOMATIC TUNING OPERATION
US9316495B2 (en) 2012-09-13 2016-04-19 Ricoh Company, Ltd. Distance measurement apparatus

Also Published As

Publication number Publication date
JPH0543964B2 (en) 1993-07-05

Similar Documents

Publication Publication Date Title
JPH032245B2 (en)
JPH07280563A (en) Car-to-car distance detector
JPS6036905A (en) Distance measuring apparatus
JP3078069B2 (en) Distance measuring device
EP0654690B1 (en) Active-type automatic focusing apparatus
JPH02290507A (en) Range finder
JP2659894B2 (en) Focus adjustment signal forming device
JPS5834313A (en) Active type distance measuring device
US4459003A (en) Zone-type range-detecting devices for cameras
JPS58113839A (en) Detector for dew point
GB2272125A (en) Distance measurement
JP2889102B2 (en) Distance measuring device
JPS631918A (en) Distance detector
JP2753215B2 (en) Focus adjustment signal forming device
JP2888492B2 (en) Distance information output device
JP3142960B2 (en) Distance measuring device
JPH0792377A (en) Range finder
KR950005035Y1 (en) Distance counting apparauts for auto focus camera
JP2901747B2 (en) Distance measuring device
JPS5993409A (en) Focusing error detector
JPH03200940A (en) Range finder for camera
JPH0342531A (en) Infrared measuring instrument
JPH0457962B2 (en)
JPH1125821A (en) Optical sensor device
JPS55124002A (en) Optical position detector