JPH02290239A - Fluidizing reaction device for magnetic micronized powder - Google Patents

Fluidizing reaction device for magnetic micronized powder

Info

Publication number
JPH02290239A
JPH02290239A JP10783789A JP10783789A JPH02290239A JP H02290239 A JPH02290239 A JP H02290239A JP 10783789 A JP10783789 A JP 10783789A JP 10783789 A JP10783789 A JP 10783789A JP H02290239 A JPH02290239 A JP H02290239A
Authority
JP
Japan
Prior art keywords
powder
reaction tube
reaction
magnetic
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10783789A
Other languages
Japanese (ja)
Inventor
Noboru Sakamoto
登 坂本
Naoki Yamamoto
直樹 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP10783789A priority Critical patent/JPH02290239A/en
Publication of JPH02290239A publication Critical patent/JPH02290239A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)

Abstract

PURPOSE:To flow micronized powder uniformly by applying alternate current with different phases to a plurality of stages of electromagnets provided on the outside of the upper section of a reaction tube in a device feeding fluid from the bottom sectton of reaction tube and floating and flowing powder the powder in the tube. CONSTITUTION:Fluid (example: air) is fed from the bottom section of a reaction tube 1 to float and flow power (example: iron powder) in the tube 1. At that time, a plurality of stages of electromagnets 3 are provided on the outside of the upper section of reaction tube 1, and alternate current with different phases is applied to the electromagnets 3 in the respective stages. As a result, micronized powder of 10mu or less of grain diameter can be flowed uniformly, and the desired reaction can be carried out without sintering.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、粒径が10μm以下の磁性体超微粉を流動化
しうる反応装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a reaction device capable of fluidizing ultrafine magnetic powder having a particle size of 10 μm or less.

〔従来の技術] 粉体の流動化反応装置は一般に反応管の下部から流体を
送入して反応管内の粉体を流動化させており、反応管下
部には粉体の支持のための分散板が設けられ、上方には
流出した粉体を回収するサイクロン、フィルター等が必
要により設けられている。このような流動化反応装置が
流動化しうる粉体は粒径が10μm以上のものである(
粉体工学協会編r粉体工学使覧J678頁、1987年
)。一方、反応管に振動を与えることによって粉体の流
動性を改良してより微粒子の粉体を流動化する技術は知
られている。
[Prior art] Powder fluidization reactors generally fluidize the powder in the reaction tube by feeding fluid from the bottom of the reaction tube, and there is a dispersion device at the bottom of the reaction tube to support the powder. A plate is provided, and a cyclone, a filter, etc. for collecting the powder that flows out is provided above as necessary. The powder that can be fluidized by such a fluidization reactor has a particle size of 10 μm or more (
(edited by the Powder Technology Association, Powder Technology Handbook J, page 678, 1987). On the other hand, a technique is known that improves the fluidity of powder by applying vibration to a reaction tube to fluidize finer particles of powder.

(発明が解決しようとする課題〕 しかしながら、粒径が10μm以下の超微粉の場合には
、流体の流速を上げると粉体が飛散して回収歩留りが悪
くなるため均一な流動層を形成するのが容易ではなかっ
た。また、流体の流速を上げられないため超微粉が焼結
を起こすという問題もあった。一方、分敗板には流体を
通過させる多数の小孔が設けられるが、この小孔は粉体
を通過させない微小なものでなければならない。超微粉
の場合には孔径を極めて微小にしなければならないので
流体抵が大きく実用化が困難であった。これらの理由に
より粒径が10μM以下の超微粉を流動化する装置はま
だ開発されていない。
(Problem to be solved by the invention) However, in the case of ultrafine powder with a particle size of 10 μm or less, increasing the flow rate of the fluid causes the powder to scatter and reduce the recovery yield, making it difficult to form a uniform fluidized bed. There was also the problem that the ultrafine powder would sinter because it was not possible to increase the flow rate of the fluid.On the other hand, the breakup plate has many small holes that allow the fluid to pass through. The small pores must be so small that they do not allow the powder to pass through.In the case of ultra-fine powder, the pore diameter must be extremely small, which creates a large fluid resistance and is difficult to put into practical use.For these reasons, the particle size A device for fluidizing ultrafine powder of 10 μM or less has not yet been developed.

〔課題を解決するための手段〕[Means to solve the problem]

本発明はこれらの問題点を解決して磁性体超微粉を流動
化させる反応装置を提供するものであり、反応管下部か
ら流体を送入して管内の粉体を浮遊流動させる装置にお
いて、反応管上部の外側に複数段の電磁石を設け、各段
の電磁石に交流を位相を変えて印加するようにしたこと
、反応管の振動機構を設けたこと、及び反応管下部外側
に磁性体超微粉の下方への通過を阻止する磁石を設けた
ことを特徴としている。
The present invention solves these problems and provides a reaction device for fluidizing ultrafine magnetic powder. Multiple stages of electromagnets are installed outside the top of the tube, and alternating current is applied to each stage of the electromagnet with a different phase.A vibration mechanism for the reaction tube is installed, and ultrafine magnetic powder is placed outside the bottom of the reaction tube. It is characterized by the provision of a magnet that prevents it from passing downward.

反応管本体は磁場の影響を受けない材質で形成され、例
えば、ガラス、耐熱ガラス、石英、アルミナ、各種セラ
ミック等が適当である。反応管内の流体の流量を増して
いくと第2図に示すように初朋状態から圧損が安定する
流動化領域になり、そこから拡散領域になって最後に系
外に飛敗する。
The reaction tube body is made of a material that is not affected by the magnetic field, such as glass, heat-resistant glass, quartz, alumina, and various ceramics. As the flow rate of the fluid in the reaction tube is increased, the fluid changes from an initial state to a fluidized region where the pressure drop is stable, as shown in FIG. 2, and then to a diffusion region and finally escapes to the outside of the system.

拡散領域があるのは磁場流動層の特徴であり、従来の流
動層には存在しない領域である。本発明の反応管1は下
部Aの管径を粉体の落下を阻止するとともに粉体の加速
を円滑に行わせるために小径にして系外飛敗領域にし、
中央部Bの管径を粉体を拡散状態で流動化させる拡散領
域にし、そして上部Cは粉体を減速、捕獲、下方搬送を
行いやすくするため拡径して初期状態領域にするのがよ
い。
A magnetic fluidized bed is characterized by the presence of a diffusion region, which does not exist in conventional fluidized beds. In the reaction tube 1 of the present invention, the diameter of the lower part A is made small in order to prevent the falling of the powder and to accelerate the powder smoothly, so as to make it an outside-of-system blowout area.
It is preferable that the diameter of the pipe in the center part B is made into a diffusion region where the powder is fluidized in a diffused state, and the diameter of the upper part C is expanded to make it an initial state region in order to make it easier to decelerate, capture, and transport the powder downward. .

このような形状にすることによって粉体を循環させ反応
を均一に行わせることができる。
By using such a shape, the powder can be circulated and the reaction can be carried out uniformly.

反応管の上部外側には粉体を捕獲して下方に搬送するた
め複数段の電磁石を設ける。電磁石は2段以上あればよ
いが3段以上、例えば3〜8段程度が好ましい。各段の
電磁石には交流を順次位相を変えて通電する。磁場の強
さは超微粉の種類、流体の速度等に応じて調製され、通
常300〜1000ガウス程度が適当である。
Multiple stages of electromagnets are provided outside the upper part of the reaction tube to capture the powder and transport it downward. The number of electromagnets may be two or more stages, but preferably three or more stages, for example about 3 to 8 stages. The electromagnets in each stage are energized with alternating current with the phase changed sequentially. The strength of the magnetic field is adjusted depending on the type of ultrafine powder, the velocity of the fluid, etc., and is usually about 300 to 1000 Gauss.

反応管の下部外側には粉体の下方への通過を阻止する磁
石を設ける。この磁石は永久磁石でもよいが、流体送人
後の粉体の上方への移動を容易にし、かつ反応終了後粉
体を下方から取出す操作上の理由で電磁石が好ましい。
A magnet is provided outside the lower part of the reaction tube to prevent the powder from passing downward. Although this magnet may be a permanent magnet, an electromagnet is preferable for operational reasons such as facilitating the upward movement of the powder after the fluid is delivered and for taking out the powder from below after the reaction is completed.

印加する電流は交流、直流のいずれであってもよい。反
応管の下部外側にはさらに粉体を上方及び下方のいずれ
にも搬送しうる複数段の電磁石を設けることができる。
The applied current may be either alternating current or direct current. A plurality of electromagnets capable of transporting the powder both upward and downward can be further provided on the outside of the lower part of the reaction tube.

粉体の上方搬送と下方搬送の切替は交流の位相の変化す
る方向を逆にすることによって行うことができる。上方
搬送によって前記磁石部を通過してきた粉体を回収する
ことができ、一方下方搬送は反応後の粉体の反応管から
の取出しに有用である。
Switching between upward conveyance and downward conveyance of the powder can be performed by reversing the direction in which the phase of the alternating current changes. The upward conveyance allows the powder that has passed through the magnet section to be recovered, while the downward conveyance is useful for taking out the powder from the reaction tube after the reaction.

反応管には振動機構を設けて力学的振動を付加しうるよ
うにする。振動方向は上下方向、左右方向、径方向、周
方向又はその組合せでよい。
A vibration mechanism is provided in the reaction tube so that mechanical vibration can be applied. The vibration direction may be vertical, horizontal, radial, circumferential, or a combination thereof.

反応管の流体送入側には流体の送入手段、2idft計
等が設けられ、吐出側には粉体を回収するフィルター、
サイクロン等が適宜設けられる。
The fluid inlet side of the reaction tube is equipped with a fluid inlet means, a 2idft meter, etc., and the outlet side is equipped with a filter for collecting powder,
Cyclones etc. will be provided as appropriate.

流体はN2、Ar,He等の不活性ガス、その他の反応
性の気体であってもよく、また、液体であってもよい。
The fluid may be an inert gas such as N2, Ar, He, or other reactive gas, or may be a liquid.

本発明の装置を用いて粉体を流動化する方法を第1図を
引用して説明すると、まず下部の電磁石2に電流を印加
して磁界を形成させ粉体を上部がら反応管1に投入する
。反応管工の下端から流体を送入し、電磁石2の電流を
減少させていくと粉体が反応管内部を上昇しはじめる。
The method of fluidizing powder using the apparatus of the present invention will be explained with reference to FIG. 1. First, a current is applied to the electromagnet 2 at the bottom to form a magnetic field, and the powder is introduced into the reaction tube 1 from the top. do. When fluid is introduced from the lower end of the reaction tube and the current of the electromagnet 2 is decreased, the powder begins to rise inside the reaction tube.

反応管上部の多段電磁石3に電流を印加すると大径部C
に達した粉体は多段電磁石3によって形成される掃引c
ff場によって捕らえられ下方へ戻される。流体の流速
の上昇に伴い下部の電磁石2への通電は停止させてよい
場合もある。また電磁石2の下方に設けられた多段電磁
石4を粉体を上方へ搬送するように作動させておくこと
もできる。目的の流動状態が得られたら反応ガスを導入
するなどして反応を行わせ反応が終了したら流体の送入
を停止させる。
When a current is applied to the multistage electromagnet 3 at the top of the reaction tube, the large diameter part C
The powder that has reached is swept c formed by the multi-stage electromagnet 3.
It is captured by the ff field and returned downward. In some cases, the electricity supply to the lower electromagnet 2 may be stopped as the fluid flow rate increases. Further, the multistage electromagnet 4 provided below the electromagnet 2 can be operated to transport the powder upward. When the desired flow state is obtained, a reaction gas is introduced to cause a reaction, and when the reaction is completed, the supply of fluid is stopped.

そこで電磁石2の通電を停止させて粉体を下方へ取出す
。その際必要により下部の多段電磁石4を粉体を下方へ
搬送するように作動させておく。
Then, the electromagnet 2 is de-energized and the powder is taken out downward. At this time, if necessary, the lower multi-stage electromagnet 4 is operated to transport the powder downward.

本発明の装薗は鉄粉、窒化鉄粉、軟磁性フエライト、パ
ーマロイ、ニッケル、コバルト及びこれらの化合物粉、
ケイ素鉄粉体、アモルファス合金、針状γ−Fe2U:
+微粒子等の磁性体の粉体を流動化するものであり、粒
径がIOμm以下の超微粉、特に3μm以下あるいはl
μm以下のものをも流動化しうるちのである。反応管内
に形成された振動磁場流動層は軟磁性を存する微粉又は
微粉を含む粉体の流動化反応操作に有効である。但し、
温度はキュリー点以下であり、反応を起こさせる場合は
キュリー点以下で目的とする反応が操業上問題とならな
い速度で進行する必要がある。
The device of the present invention contains iron powder, iron nitride powder, soft magnetic ferrite, permalloy, nickel, cobalt and compound powders thereof,
Silicon iron powder, amorphous alloy, acicular γ-Fe2U:
+ It fluidizes magnetic powder such as fine particles, and ultrafine powder with a particle size of IOμm or less, especially 3μm or less or l
It can also fluidize objects smaller than μm. The oscillating magnetic field fluidized bed formed in the reaction tube is effective for fluidizing reaction operations of fine powder having soft magnetic properties or powder containing fine powder. however,
The temperature is below the Curie point, and when a reaction is to occur, it is necessary that the desired reaction proceeds below the Curie point and at a rate that does not cause any operational problems.

このような本発明の装置は、磁性を有する粉体の固和気
相反応による合成、表面処理、磁性を有する粉体のCV
Dとくみあわせた表面コーティング改質、磁性を有する
粉体のプラズマとくみあわせ.た表面コーティング改質
、磁性をもつ粒子同志の混合、磁性材料と非磁性材料の
分離、キュリー点の違う複数の粉の混合体の分離、磁性
を有する粉体同志の複合化、CVDによる超微粉磁性材
料の反応容器としての使用、磁性流体の合成装置として
の使用、磁性流体の回収装置としての使用及びプラズマ
ーCVDによる超微粉磁性材料の反応容器としての使用
等に有用である。
Such an apparatus of the present invention is capable of synthesizing magnetic powder by solid state gas phase reaction, surface treatment, and CV of magnetic powder.
Surface coating modification in combination with D, combination with magnetic powder plasma. surface coating modification, mixing of magnetic particles, separation of magnetic and non-magnetic materials, separation of mixtures of powders with different Curie points, compositing of magnetic powders, ultrafine powder by CVD It is useful for use as a reaction vessel for magnetic materials, as a magnetic fluid synthesis device, as a magnetic fluid recovery device, and as a reaction vessel for ultrafine magnetic material by plasma CVD.

〔作用〕[Effect]

本発明の装置においては上部の複数段の電磁石に交流を
位相を変えて印加することによって磁性粉体を下方へ掃
引する磁場を形成し粉体の系外への飛散を阻止している
。一方、下部に磁石を設けてその磁界によって粉体の落
下を阻止している。
In the apparatus of the present invention, alternating current is applied to the upper electromagnets in multiple stages with different phases to form a magnetic field that sweeps the magnetic powder downward and prevents the powder from scattering outside the system. On the other hand, a magnet is provided at the bottom, and its magnetic field prevents the powder from falling.

また反応管に振動を付加することにより、第1図のC領
域に捕獲される磁性体粉体へ揺動力を与え、掃引磁場と
相補的に使用することにより、下方への搬送効果を高め
ている。また、IBCfil域の傾斜部への粉体の滞留
を防ぐための、ふるい落とし振動としても作用している
。操業中の微粉の反応管壁部への付着を抑制する。さら
に、反応後の取出しにおいて、管内への粉の詰まりを防
止し、円滑に取出すための振動としても利用しうる。こ
れらによって、粉体を完全均一分散化して、固体微粒子
と反応ガスの接触を高めている。また、粉体の完全均一
分敗化して、微粉の焼結防止を行っている。
In addition, by adding vibration to the reaction tube, a rocking force is applied to the magnetic powder captured in region C in Figure 1, and by using it complementary to the sweeping magnetic field, the downward transport effect can be enhanced. There is. It also acts as a sieve-off vibration to prevent powder from accumulating on the slope of the IBCfil area. Prevents fine powder from adhering to the reaction tube wall during operation. Furthermore, in taking out the powder after the reaction, it can be used as a vibration to prevent the powder from clogging the inside of the tube and to take it out smoothly. With these, the powder is completely uniformly dispersed and the contact between the solid particles and the reaction gas is enhanced. In addition, the powder is completely uniformly broken down to prevent sintering of the fine powder.

〔実施例〕 実施例1 第1図に示す反応管lにさらに振動装置を取付け、反応
管の下端には空気配管を接続した。ガス配管の途中には
流遣計及びマノメーターを取付けた。そして反応管の上
部にはフィルタを装着した。
[Example] Example 1 A vibration device was further attached to the reaction tube l shown in FIG. 1, and an air pipe was connected to the lower end of the reaction tube. A flow meter and manometer were installed in the middle of the gas piping. A filter was attached to the top of the reaction tube.

反応管はアルミナ製でA部の径が201fl1Ilφ、
B部の径が301IIfflφそしてC部の径が60m
mφであった。上部の多段電磁石3には4段のものを用
い、それぞれに90度づつ位相をずらせて交流を印加で
きるようにした。下部の多段電磁石には3段のものを用
い、それぞれに120度づつ正方向あるいは逆方向に位
相をずらせて交流を印加できるようにした。
The reaction tube is made of alumina and the diameter of part A is 201fl1Ilφ.
The diameter of part B is 301IIfflφ and the diameter of part C is 60m.
It was mφ. The upper multi-stage electromagnet 3 used had four stages, and the phase was shifted by 90 degrees to each stage so that alternating current could be applied. The multi-stage electromagnet at the bottom has three stages, and alternating current can be applied to each stage with the phase shifted by 120 degrees in the forward or reverse direction.

電磁石2に電流を印加して鉄粉を反応管に入れた。A current was applied to the electromagnet 2 and iron powder was introduced into the reaction tube.

鉄粉には最大粒径8μm、平均粒径3μm、密度?.8
6 X lo”kg/ rrfのものを用いた。空気を
反応管の下部から送入し、多段電磁石3に電流を印加し
た。
The iron powder has a maximum particle size of 8 μm, an average particle size of 3 μm, and a density? .. 8
6 X lo"kg/rrf was used. Air was introduced from the bottom of the reaction tube, and a current was applied to the multistage electromagnet 3.

鉄粉の上昇に伴い磁石2の電流を城少させた。反応管に
は振動を加えた。空気の流速を第1図B部で30mm/
secまで高め、そこから逆戻りさせて圧力損失の変化
を測定した結果を第3図に示す。一方、比較のために磁
場と振動を加えないで従来型流動層で圧損変化を測定し
た結果を第4図に示す。振動と磁場を加えなかった場合
には流動化の初期に圧損が大きく振れて安定した流動層
の形成が不可能であった。一方、振動と磁場を加えるこ
とによって安定した流動層の形成が可能であり、上部磁
場に集められた鉄粉は振動と重力によって落下し循環を
繰り返した。また、最小流動化速度は5mm/secで
あり、振動と重力を加えなかった場合の173に低下し
た。
As the iron powder rose, the current in magnet 2 was reduced. Vibration was applied to the reaction tube. The air flow velocity is 30 mm/
Fig. 3 shows the results of measuring changes in pressure loss after increasing the pressure to sec and then returning it back. On the other hand, for comparison, Fig. 4 shows the results of measuring changes in pressure drop in a conventional fluidized bed without applying a magnetic field or vibration. When vibration and magnetic field were not applied, the pressure drop fluctuated greatly in the early stage of fluidization, making it impossible to form a stable fluidized bed. On the other hand, by applying vibrations and a magnetic field, it was possible to form a stable fluidized bed, and the iron powder collected in the upper magnetic field fell down due to the vibrations and gravity, repeating the cycle. Further, the minimum fluidization speed was 5 mm/sec, which decreased to 173 when vibration and gravity were not applied.

実施例2 実施例1で使用した装置を用いて第8図に示す窒化鉄製
造装置を作成した。反応管lの上部出口5からサイクロ
ン6、循環用圧送ボンブ7、流量計8及び予熱部9を順
に通って反応管lの下部人口10に連結された循環ライ
ンを形成する。循環ラインの途中には搬送流体であるN
2ガスのボンへ11、反応ガスであるN H :lガス
のボンベ12及びH2ガスのボンベ13が接続され、こ
れらのボンへの弁はやはり循環ラインに接続されたガス
分析装置14からの指令によって開閉される。反応管1
の中央部の外側にはヒータl5が配設され、反応管1の
下部には振動発生器16からの振動伝達部17が接続さ
れてる。反応管1の真下には循環ラインから分岐して回
収部I8が接続されている。一方、反応管Iの上部出口
近傍の循環ラインには排ガス取出ラインが接続され、こ
れにリーク弁19、サイクロン20、排ガス処理設備2
1が順に接続されている。
Example 2 Using the apparatus used in Example 1, an iron nitride manufacturing apparatus shown in FIG. 8 was created. A circulation line is formed from the upper outlet 5 of the reaction tube 1, passing through the cyclone 6, the circulation pressure bomb 7, the flow meter 8, and the preheating section 9 in order, and connected to the lower port 10 of the reaction tube 1. In the middle of the circulation line, N is a carrier fluid.
2 gas cylinder 11, reactant gas N H :l gas cylinder 12 and H2 gas cylinder 13 are connected, and the valves to these cylinders are controlled by commands from a gas analyzer 14 which is also connected to the circulation line. It is opened and closed by Reaction tube 1
A heater 15 is disposed outside the center of the reaction tube 1, and a vibration transmission section 17 from a vibration generator 16 is connected to the lower part of the reaction tube 1. Directly below the reaction tube 1, a recovery section I8 is connected, branching off from the circulation line. On the other hand, an exhaust gas extraction line is connected to the circulation line near the upper outlet of the reaction tube I, and is connected to a leak valve 19, a cyclone 20, and an exhaust gas treatment equipment 2.
1 are connected in sequence.

このような装置を用い実施例1で用いたものと同じ鉄粉
から窒化鉄を製造した。電磁石2に電流を印加して鉄粉
を反応管1の投入し、多段電磁石3に電流を印加した。
Iron nitride was produced from the same iron powder used in Example 1 using such an apparatus. A current was applied to the electromagnet 2 to introduce iron powder into the reaction tube 1, and a current was applied to the multistage electromagnet 3.

N2ガスを3Ng/hrの速度で流し、反応管に振動を
加えるとともに鉄粉の上昇に伴い磁石2の電流を減少さ
せた。鉄粉の流動化が定常状態に達してからNH.ガス
50%、H2ガス50%の混合ガスを約1 m/sec
の速度で加速、反応管の中央部をヒータ15で450゜
Cに加熱した。
N2 gas was flowed at a rate of 3 Ng/hr, vibration was applied to the reaction tube, and the current of the magnet 2 was decreased as the iron powder rose. After fluidization of iron powder reaches steady state, NH. Mixed gas of 50% gas and 50% H2 gas at approximately 1 m/sec
The center of the reaction tube was heated to 450°C with the heater 15.

N]43ガス及びH2ガスを補給して前記濃度に保ちな
がら、IO分間ガスを循環して反応させた。この後、高
温に移り、窒化鉄が安定に生成する温度、ガス分圧領域
に調製しながら200 ’Cまで降温した。
N]43 gas and H2 gas were supplied to maintain the above concentration, and the gases were circulated for 10 minutes to cause a reaction. Thereafter, the temperature was increased to 200'C while adjusting the temperature to a gas partial pressure range at which iron nitride was stably generated.

その後加熱を停止するとともに排ガス取出ラインを開放
し、一方、電磁石2への電流の印加を停止して反応管下
部から窒化鉄の粉末を取出した。
Thereafter, the heating was stopped and the exhaust gas take-off line was opened.Meanwhile, the application of current to the electromagnet 2 was stopped and iron nitride powder was taken out from the lower part of the reaction tube.

得られた窒化鉄粉末を小型振動ミルで5分間粉砕し、マ
イクロトラックで粒度を測定した結果を第5図に示す。
The obtained iron nitride powder was pulverized for 5 minutes using a small vibrating mill, and the particle size was measured using a microtrack. The results are shown in FIG.

一方、振動及び磁界を加えないで従来型流動層における
流動化の流量に調製して反応させて得られた窒化鉄粉末
について粒度を測定した結果を第6図に示す。
On the other hand, FIG. 6 shows the results of measuring the particle size of iron nitride powder obtained by adjusting the flow rate for fluidization in a conventional fluidized bed and reacting without applying vibration or magnetic field.

次に、ガスの巡回速度を変えたほかは前記と同様にして
反応を行い、回収した窒化鉄の重量を測定して系外に飛
び出した微粉量を求めた結果を第7図に白丸で示す。一
方、振動及び磁界を加えないで同様に反応させて求めた
循環速度と系外に飛び出した微粉量の関係を同図に黒四
角で示す。
Next, the reaction was carried out in the same manner as above except that the gas circulation speed was changed, and the weight of the recovered iron nitride was measured to determine the amount of fine powder that flew out of the system. The results are shown as white circles in Figure 7. . On the other hand, the relationship between the circulation speed and the amount of fine powder that flew out of the system, which was determined by a similar reaction without applying vibration or magnetic field, is shown by a black square in the same figure.

〔発明の効果〕〔Effect of the invention〕

本発明の装置は10μm以下の超微粉を完全に均一に流
動させることができ、微粉を焼結させないで目的とする
反応を行わせることができる。
The apparatus of the present invention can completely uniformly flow ultrafine powder of 10 μm or less, and can perform the desired reaction without sintering the fine powder.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である装置の使用状態を示す
断面図である。第2図は流体の流量と圧1員の関係と流
動化の程度との関係を示す図である。 第3図〜第7図は振動及び磁界を印加した場合としなか
った場合について測定をした結果を示す図であり、第3
図と第4図は圧損と流速の関係を、第5図と第6図は焼
結による粒径の増加を、そして第7図は流速と系外飛出
し微粉量の関係をそれぞれ示している。第8図に第5図
〜第7図の測定に使用した装置のフローチャートを示す
図である。 図面の浄書
FIG. 1 is a cross-sectional view showing a state in which an apparatus according to an embodiment of the present invention is used. FIG. 2 is a diagram showing the relationship between the flow rate of fluid, the pressure, and the degree of fluidization. Figures 3 to 7 are diagrams showing the results of measurements with and without applying vibration and a magnetic field.
Figures 5 and 4 show the relationship between pressure drop and flow velocity, Figures 5 and 6 show the increase in particle size due to sintering, and Figure 7 shows the relationship between flow velocity and the amount of fine powder ejected from the system. . FIG. 8 is a diagram showing a flowchart of the apparatus used for the measurements in FIGS. 5 to 7. engraving of drawings

Claims (4)

【特許請求の範囲】[Claims] (1)反応管底部から流体を送入して管内の粉体を浮遊
流動させる装置において、反応管上部の外側に複数段の
電磁石を設け、各段の電磁石に交流を位相を変えて印加
するようにしたことを特徴とする磁性体超微粉の流動化
反応装置
(1) In a device that feeds fluid from the bottom of a reaction tube to float and flow the powder inside the tube, multiple stages of electromagnets are installed outside the top of the reaction tube, and alternating current is applied to each stage of the electromagnets with different phases. Fluidization reaction device for ultrafine magnetic powder, characterized by:
(2)反応管の振動機構を有する請求項1に記載の流動
化反応装置
(2) The fluidization reaction device according to claim 1, which has a reaction tube vibration mechanism.
(3)反応管下部から流体を送入して管内の粉体を浮遊
流動させる装置において、反応管下部外側に磁性体超微
粉の下方への通過を阻止する磁石を設けたことを特徴と
する磁性体超微粉の流動化反応装置
(3) A device for causing powder in the tube to float and flow by feeding fluid from the lower part of the reaction tube, characterized in that a magnet is provided outside the lower part of the reaction tube to prevent the magnetic ultrafine powder from passing downward. Fluidization reaction device for magnetic ultrafine powder
(4)反応管下部に磁性体超微粉の下方への通過を阻止
する磁石を設けた請求項1又は2に記載の流動化反応装
(4) The fluidization reaction device according to claim 1 or 2, further comprising a magnet provided at the lower part of the reaction tube to prevent the magnetic ultrafine powder from passing downward.
JP10783789A 1989-04-28 1989-04-28 Fluidizing reaction device for magnetic micronized powder Pending JPH02290239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10783789A JPH02290239A (en) 1989-04-28 1989-04-28 Fluidizing reaction device for magnetic micronized powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10783789A JPH02290239A (en) 1989-04-28 1989-04-28 Fluidizing reaction device for magnetic micronized powder

Publications (1)

Publication Number Publication Date
JPH02290239A true JPH02290239A (en) 1990-11-30

Family

ID=14469302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10783789A Pending JPH02290239A (en) 1989-04-28 1989-04-28 Fluidizing reaction device for magnetic micronized powder

Country Status (1)

Country Link
JP (1) JPH02290239A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038658A1 (en) * 2011-09-12 2013-03-21 東洋炭素株式会社 Powder-processing device and powder-processing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013038658A1 (en) * 2011-09-12 2013-03-21 東洋炭素株式会社 Powder-processing device and powder-processing method
JP2013059709A (en) * 2011-09-12 2013-04-04 Toyo Tanso Kk Powder-processing device and powder-processing method

Similar Documents

Publication Publication Date Title
US3439899A (en) Method for the production and control of fluidized beds
US3440731A (en) Magnetically stabilized fluidized bed
US4255166A (en) Process for the removal of particulates entrained in a fluid using a magnetically stabilized fluid cross-flow contactor
US20070108320A1 (en) System and method for nanoparticle and nanoagglomerate fluidization
EP0530297B1 (en) A process for the surface treatment of powder particles
US20100040512A1 (en) Method and plant for the heat treatment of solids containing iron oxide
US4497598A (en) Method and apparatus for controlled rate feeding of fluidized solids
JPS6193828A (en) Preparation of ultra-fine particle mixture
Siegell Magnetically frozen beds
US7878156B2 (en) Method and plant for the conveyance of fine-grained solids
Baron et al. Electrostatic effects on entrainment from a fluidized bed
Saxena et al. Some hydrodynamic investigations of a magnetically stabilized air-fluidized bed of ferromagnetic particles
JPH02290239A (en) Fluidizing reaction device for magnetic micronized powder
Li et al. Fluidizing ultrafine powders with circulating fluidized bed
JPH0860215A (en) Fluidized bed furnace and smelting reduction apparatus using it
Fangary et al. The effect of fine particles on slurry transport processes
US4546552A (en) Fluid induced transverse flow magnetically stabilized fluidized bed
CN206535529U (en) A kind of spouted fluidized bed apparatus of sound field
Dry et al. Gas—solid contact in a circulating fluidized bed: The effect of particle size
JPH02307548A (en) Superconductor sorting apparatus
CA1095695A (en) Process for operating a magnetically stabilized fluidized bed
EP0085563B1 (en) A continuous transverse flow magnetically stabilised fluidised bed
Li et al. Elutriation of very fine particles from fluidized bed—effect of mean diameter of bed particles
JPH01283305A (en) Production of metallic iron powder from ferrous dust
SU1326625A1 (en) Device for reducing nickel powder