JPH02289487A - Production of single crystal of compound semiconductor - Google Patents

Production of single crystal of compound semiconductor

Info

Publication number
JPH02289487A
JPH02289487A JP10785289A JP10785289A JPH02289487A JP H02289487 A JPH02289487 A JP H02289487A JP 10785289 A JP10785289 A JP 10785289A JP 10785289 A JP10785289 A JP 10785289A JP H02289487 A JPH02289487 A JP H02289487A
Authority
JP
Japan
Prior art keywords
quartz tube
raw material
single crystal
seed crystal
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10785289A
Other languages
Japanese (ja)
Inventor
Jun Kono
純 河野
Masami Tatsumi
雅美 龍見
Takashi Araki
高志 荒木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP10785289A priority Critical patent/JPH02289487A/en
Publication of JPH02289487A publication Critical patent/JPH02289487A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To prevent the damage of a quartz tube and the unfixing of starting material and a seed crystal by setting carbon cloths at both noncontact ends of the starting material and the seed crystal and putting them in the quartz tube when a single crystal is grown by a floating zone melting method in a weightless state in space. CONSTITUTION:Carbon cloths 7 are set at both noncontact ends of a polycrystal 3 as starting material and a seed crystal 2, they are put in a quartz tube 1 and this tube 1 is sealed with a quartz cap 9. The sealed tube 1 is placed in a growth furnace and this furnace is carried in a means of transfer to space such as a space shuttle. A single crystal of a compd. semiconductor is grown by a floating zone melting method in a weightless state in space.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は化合物半導体単結晶の製造方法に関し、特に化
合物半導体単結晶を浮遊帯域溶融法(フロートゾーン法
又はFZ法とも称する)で育成する際の石英製反応管へ
の試料封入法を改良した製造方法に関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for producing a compound semiconductor single crystal, and particularly to a method for producing a compound semiconductor single crystal by a floating zone melting method (also referred to as a float zone method or FZ method). This invention relates to a manufacturing method that improves the method of sealing a sample into a quartz reaction tube.

(従来の技術〕 浮遊帯域溶融法においては、第2図に示すように原料多
結晶3及び種結晶2は、例えばチョクラルスキー法にお
ける原料るつぼやボート法におけるボート等の原料チャ
ージ用容器に収納されることなく、石英製反応管(以下
、石英管と略称する)1内に内壁に接触しない状態で固
定されている。
(Prior art) In the floating zone melting method, as shown in FIG. 2, the raw material polycrystal 3 and the seed crystal 2 are stored in a raw material charging container such as a raw material crucible in the Czochralski method or a boat in the boat method. It is fixed in the quartz reaction tube (hereinafter abbreviated as quartz tube) 1 without contacting the inner wall.

この固定は、例えばPb5nTe成長の場合、原料多結
晶3及び種結晶2の一端を同図中に6で示すpbで固め
ることにより行なう。
For example, in the case of Pb5nTe growth, this fixation is performed by solidifying one end of the raw material polycrystal 3 and the seed crystal 2 with Pb indicated by 6 in the figure.

原料多結晶3及び種結晶2の石英管1への封入が終了し
た後、該石英管lは育成炉内に縦向きに設置される。第
3図に示すように、結晶育成は図示されていない育成炉
内の左右に設置された光源より原料多結晶3に光8を照
射して、溶融することにより行われる。まず最初に原料
多結晶3と種結晶2との接合領域から原料溶融を開始す
る。石英管lは上方に移動可能であり、第3図に示すよ
うに種結晶2から原料多結晶3を徐々に溶融させていっ
たならば、単結晶育成が可能である。また、この方法で
は一般に酸素等の混入の少ない単結晶が得られる。
After the raw material polycrystal 3 and the seed crystal 2 have been sealed in the quartz tube 1, the quartz tube 1 is vertically installed in the growth furnace. As shown in FIG. 3, crystal growth is performed by irradiating the raw material polycrystal 3 with light 8 from light sources installed on the left and right sides of a growth furnace (not shown) and melting it. First, melting of the raw material is started from the joining region between the raw material polycrystal 3 and the seed crystal 2. The quartz tube 1 can be moved upward, and if the raw material polycrystal 3 is gradually melted from the seed crystal 2 as shown in FIG. 3, it is possible to grow a single crystal. Furthermore, this method generally yields a single crystal with less contamination of oxygen and the like.

しかし、このような方法を重力下にて実施したならば、
原料融液のタレコボレが発生し、はんの小さな直径の単
結晶しか得られない。そこで径がある程度の大きさの単
結晶を得るためには、無重力下で結晶育成を行なう必要
がある。現実に、このような観点から宇宙空間の無重力
下で、浮遊帯域溶融法により単結晶を製造することが、
考えられている。
However, if such a method is carried out under gravity,
Dripping of the raw material melt occurs, and only a single crystal with a small diameter can be obtained. Therefore, in order to obtain a single crystal with a certain diameter, it is necessary to grow the crystal under zero gravity. In reality, from this point of view, it is possible to produce single crystals using the floating zone melting method in zero gravity in space.
It is considered.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

前記のように、従来法では原料多結晶及び種結晶の石英
管内への固定は、溶融Pbを固めることにより行なう。
As described above, in the conventional method, the raw material polycrystal and the seed crystal are fixed in the quartz tube by solidifying molten Pb.

溶融Pbが凝固する際のPb自身の膨張により、或いは
石英管に対しである程度以上の機械的振動が加わった時
にPbが破損することにより、原料多結晶及び種結晶の
固定がはずれたり、石英管が割れたりすることが時折あ
った。
When molten Pb solidifies, Pb itself expands, or when a certain amount of mechanical vibration is applied to the quartz tube, Pb is damaged, causing the raw polycrystals and seed crystals to become unfixed, and the quartz tube to be damaged. Occasionally, it would break.

ところで、前記のように宇宙空間での単結晶製造を考え
た場合、無重力空間において、全ての工程を最初から実
施することは、作業空間の狭さ、無重力状態での作業の
不確実性から、非常に困難であるため、原料多結晶及び
種結晶の石英管内への固定等の工程は、地上で確実に行
っておく必要がある。しかし、地上重力下から宇宙重力
下への移動の際には、かなり激しい振動を避けることが
できないことは、よく知られた事実であり、従来法では
固定外れや石英管割れの危険が大きい。
By the way, when considering single crystal manufacturing in outer space as mentioned above, it is difficult to carry out all the steps from the beginning in zero gravity due to the narrowness of the work space and the uncertainty of working in zero gravity. Because this is extremely difficult, it is necessary to securely perform steps such as fixing the raw polycrystals and seed crystals in the quartz tube on the ground. However, it is a well-known fact that when moving from ground gravity to space gravity, it is impossible to avoid quite severe vibrations, and with conventional methods there is a great risk of the quartz tube becoming unfixed or cracking.

本発明は上記のような従来法の欠点を解消して、無重力
下で浮遊帯域溶融法により単結晶育成を行なう場合に避
けることのできない、地上重力下から宇宙重力下への移
動の際の振動による石英管の破損、或いは原料、種結晶
の固定の外れを防止でき、これにより安定して化合物半
導体単結晶を製造できる方法を提供することを、目的と
するものである。
The present invention eliminates the drawbacks of the conventional method as described above, and eliminates vibrations during movement from ground gravity to space gravity, which are unavoidable when growing single crystals by the floating zone melting method in zero gravity. It is an object of the present invention to provide a method that can prevent damage to a quartz tube or unfixation of raw materials and seed crystals due to this method, and thereby can stably produce compound semiconductor single crystals.

〔課題を解決するための手段〕[Means to solve the problem]

本発明は浮遊帯域溶融法により無重力下で容器を用いる
ことなしに単結晶を育成する化合物半導体の製造方法に
おいて、無重力下での育成に先立ち石英製反応管内に原
料及び種結晶を互いにその一端を接して封入するにあた
り、該原料及び種結晶の互いに接していない他の端部の
両側にカーボンクロスを配置して封入することを特徴と
する化合物半導体単結晶の製造方法である。
The present invention is a compound semiconductor manufacturing method in which a single crystal is grown in zero gravity without using a container by the floating zone melting method. This method of manufacturing a compound semiconductor single crystal is characterized in that when the material and the seed crystal are encapsulated in contact with each other, carbon cloth is placed on both sides of the other ends of the raw material and the seed crystal that are not in contact with each other.

〔作用〕[Effect]

本発明を図面により具体的に説明する。第1図は本発明
の一実施態様を示す図であり、原料多結晶3及び種結晶
2は従来方法と同様の状態で石英管1内に封入されるが
、原料多結晶3及び種結晶2のそれぞれ一端にはカーボ
ンクロス6が挿入され、石英管lの開口部外周を石英管
封止キャップ9で封止することにより固定して、外部か
らの振動が緩和されるようになっている。図示の例では
石英管の開口部外周と封止キャップの内周には同じピッ
チのネジが切られていて、両者は螺合している。また、
石英管lの内径は種結晶2、原料多結晶3の外径とほぼ
近いサイズに作製されている為、種結晶2と原料多結晶
3を固定することなしに石英管内に封入しても、これら
の位置が単結晶の育成に問題がある程太き(ズレること
はない。
The present invention will be specifically explained with reference to the drawings. FIG. 1 is a diagram showing an embodiment of the present invention, in which a raw material polycrystal 3 and a seed crystal 2 are sealed in a quartz tube 1 in the same state as in the conventional method. A carbon cloth 6 is inserted into each end of the quartz tube 1, and the outer periphery of the opening of the quartz tube 1 is sealed and fixed with a quartz tube sealing cap 9, so that vibrations from the outside are alleviated. In the illustrated example, the outer periphery of the opening of the quartz tube and the inner periphery of the sealing cap are threaded with the same pitch, and the two are screwed together. Also,
Since the inner diameter of the quartz tube l is made to be approximately close to the outer diameter of the seed crystal 2 and raw material polycrystal 3, even if the seed crystal 2 and raw material polycrystal 3 are enclosed in the quartz tube without being fixed, These positions are so thick that it causes problems in growing single crystals (they do not shift).

石英管lへのカーボンクロス6、種結晶2及び原料多結
晶3の封入作業は、作業の確実性を考えて、地上重力下
の振動の殆ど発生しない場所で行なう。封入後、この石
英管は育成炉内に設置され、宇宙無重力下への搬送手段
(例えばスペースシャトル等)内に、運びこまれる。地
上重力下から宇宙重力下への移動途中においては、激し
い機械的振動が石英管に及ぶと予想される。この時、原
料多結晶、種結晶を石英管にpbにより固定する従来法
の場合には、前記のように石英管の割れや原料多結晶、
種結晶の固定外れが発生してしまう。
The work of enclosing the carbon cloth 6, the seed crystal 2, and the raw material polycrystal 3 into the quartz tube 1 is carried out in a place where almost no vibration occurs under ground gravity, considering the reliability of the work. After being sealed, the quartz tube is placed in a growth furnace and transported into a means of transport (for example, a space shuttle) under zero gravity in space. It is expected that the quartz tube will be subjected to severe mechanical vibrations during the transition from ground gravity to space gravity. At this time, in the case of the conventional method of fixing raw material polycrystals and seed crystals to a quartz tube with PB, cracks in the quartz tube, raw material polycrystals,
Seed crystals may become unfixed.

しかし、本発明による封入を行った場合は、封入によっ
て石英管、原料多結晶、種結晶に不自然な力がかかるこ
となく、又カーボンクロスの緩和作用により、外部の機
械的振動は原料多結晶、種結晶に及ぶことがないため、
このようなトラブルは殆ど無くなり、単結晶育成装置を
安全に無重力状態へ搬送できて、所望の組成の単結晶育
成が実現できる。
However, when the encapsulation according to the present invention is carried out, no unnatural force is applied to the quartz tube, the raw material polycrystal, and the seed crystal due to the encapsulation, and due to the relaxing effect of the carbon cloth, external mechanical vibrations are absorbed by the raw material polycrystal. , since it does not reach the seed crystal,
Such troubles are almost eliminated, the single crystal growth apparatus can be safely transported to a zero gravity state, and single crystal growth of a desired composition can be realized.

〔実施例〕〔Example〕

実施例 種結晶及び原料多結晶を本発明に従い石英管内に封入し
た場合、機械的振動による石英管の割れや固定外れがど
の程度防止されるかを、振動実験により調査した。
EXAMPLE When seed crystals and raw material polycrystals were sealed in a quartz tube according to the present invention, a vibration experiment was conducted to examine to what extent the quartz tube was prevented from cracking or becoming unfixed due to mechanical vibration.

従来のPbにより固定する方法により種結晶log。Seed crystal log by conventional Pb fixation method.

原料多結晶40gを封入した石英管(サイズ30a+m
φX 70mm) 10本(比較例)と、本発明により
カーボンクロスを両端に配置して比較例と同様の種結晶
、原料多結晶を封入した同じサイズの石英管10本(実
施例)を用意して、各々の石英管に対して5gの振動強
度(これは地上重力下より宇宙重力下に搬送する際に石
英管が受けると考えられる振動強度であり、石英管への
種結晶、原料多結晶封入から結晶育成終了にいたるまで
に石英管が受ける最も大きい振動強度である)を10分
間与えて、石英管が割れたかどうか、或いは凝固Pbの
破損の有無、原料多結晶、種結晶の固定が外れたかどう
かを調査したところ、従来法においてはIO本中5本に
石英管の割れ、或いは原料多結晶、種結晶の固定の外れ
が確認されたが、本発明によるものでは10本中1本も
存在していなかった。
Quartz tube (size 30a+m) containing 40g of raw material polycrystal
φX 70 mm) (comparative example) and 10 quartz tubes of the same size (example) in which carbon cloth was placed at both ends according to the present invention and the same seed crystal and raw material polycrystal as in the comparative example were sealed. Then, each quartz tube was subjected to a vibration intensity of 5 g (this is the vibration intensity that the quartz tube is thought to receive when being transported from the ground gravity to the space gravity, and the seed crystal and raw material polycrystal to the quartz tube This is the highest vibration intensity that a quartz tube receives from the time of filling until the end of crystal growth. When we investigated whether or not the IO had come off, it was confirmed that cracks in the quartz tube or the fixation of raw material polycrystals and seed crystals had come loose in 5 out of IO in the conventional method, but in 1 out of 10 in the case of the present invention. didn't exist either.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明は熱雷ツノ下で浮遊帯域溶
融法により単結晶育成を行なう場合に避けることのでき
ない、地上重力下から宇宙重力下への移動の際の振動に
よる石英管破損、或いは原料多結晶、種結晶の固定の外
れを防止するのに有効であり、これにより安定した化合
物半導体単結晶の製造を保証できる。
As explained above, the present invention solves the problem of quartz tube damage caused by vibration during movement from ground gravity to space gravity, which is unavoidable when growing single crystals by the floating zone melting method under thermal lightning horns. Alternatively, it is effective in preventing the fixation of the raw material polycrystal and the seed crystal from becoming unfixed, thereby ensuring stable production of compound semiconductor single crystals.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施態様を説明する概略図、第2図及
び第3図は従来法を説明する概略図である。 1は石英管、2は種結晶、3は原料多結晶、4は原料融
液、5は単結晶、6は固体t’b、7はカーボンクロス
、8は光、9は石英管封止キャップを表す。
FIG. 1 is a schematic diagram for explaining an embodiment of the present invention, and FIGS. 2 and 3 are schematic diagrams for explaining a conventional method. 1 is a quartz tube, 2 is a seed crystal, 3 is a raw material polycrystal, 4 is a raw material melt, 5 is a single crystal, 6 is a solid t'b, 7 is a carbon cloth, 8 is a light, 9 is a quartz tube sealing cap represents.

Claims (1)

【特許請求の範囲】 浮遊帯域溶融法により無重力下で容器を用 いることなしに単結晶を育成する化合物半導体の製造方
法において、無重力下での育成に先立ち石英製反応管内
に原料及び種結晶を互いにその一端を接して封入するに
あたり、該原料及び種結晶の互いに接していない他の端
部の両側にカーボンクロスを配置して封入することを特
徴とする化合物半導体単結晶の製造方法。
[Claims] In a method for producing a compound semiconductor in which a single crystal is grown in zero gravity without using a container by the floating zone melting method, raw materials and seed crystals are placed together in a quartz reaction tube prior to growth in zero gravity. 1. A method for producing a compound semiconductor single crystal, which comprises placing carbon cloth on both sides of the other ends of the raw material and seed crystal that are not in contact with each other and enclosing the raw material and seed crystal in contact with each other.
JP10785289A 1989-04-28 1989-04-28 Production of single crystal of compound semiconductor Pending JPH02289487A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10785289A JPH02289487A (en) 1989-04-28 1989-04-28 Production of single crystal of compound semiconductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10785289A JPH02289487A (en) 1989-04-28 1989-04-28 Production of single crystal of compound semiconductor

Publications (1)

Publication Number Publication Date
JPH02289487A true JPH02289487A (en) 1990-11-29

Family

ID=14469696

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10785289A Pending JPH02289487A (en) 1989-04-28 1989-04-28 Production of single crystal of compound semiconductor

Country Status (1)

Country Link
JP (1) JPH02289487A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476063A (en) * 1993-08-04 1995-12-19 National Research Institute For Metals Method of production of single crystal

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5476063A (en) * 1993-08-04 1995-12-19 National Research Institute For Metals Method of production of single crystal

Similar Documents

Publication Publication Date Title
US2872299A (en) Preparation of reactive materials in a molten non-reactive lined crucible
US4946542A (en) Crystal growth method in crucible with step portion
US2890139A (en) Semi-conductive material purification method and apparatus
US4923561A (en) Crystal growth method
JPH02289487A (en) Production of single crystal of compound semiconductor
JPH02289488A (en) Production of single crystal of compound semiconductor
JPH0340987A (en) Growing method for single crystal
JPH0244798B2 (en)
JP2723249B2 (en) Crystal growing method and crucible for crystal growing
US5372088A (en) Crystal growth method and apparatus
JP3144058B2 (en) Single crystal growth method
JPS58199796A (en) Pulling device of crystal under sealing with liquid
JPH05319973A (en) Single crystal production unit
JPH05139884A (en) Production of single crystal
JPH01126289A (en) Production of compound semiconductor single crystal body
JPS60215597A (en) Crucible for producing crystal
JPH0524964A (en) Production of compound semiconductor single crystal
JPS61227989A (en) Production of single crystal and apparatus therefor
JPH0764671B2 (en) Method for growing compound semiconductor single crystal
JPS5669297A (en) Method of growing to large-size single crystal
JPH03261692A (en) Raw material packaging method
JPH0416591A (en) Single crystal pulling up device for compound semiconductor
JP2000203980A (en) Crucible for growing single crystal and production of single crystal
JP2003335598A (en) Apparatus for preparing compound semiconductor single crystal
JPH0132200B2 (en)